** WARNING ** WARNING ** WARNING ** This document is intended for informational purposes only. Users are cautioned that California Department of Transportation (Department) does not assume any liability or responsibility based on these electronic files or for any defective or incomplete copying, exerpting, scanning, faxing or downloading of the contract documents. As always, for the official paper versions of the bidders packages and non-bidder packages, including addenda write to the California Department of Transportation, Plans and Bid Documents, Room 0200, P.O. Box 942874, Sacramento, CA 94272-0001, telephone (916) 654-4490 or fax (916) 654-7028. Office hours are 7:30 a.m. to 4:15 p.m. When ordering bidder or non-bidder packages it is important that you include a telephone number and fax number, P.O. Box and street address so that you can receive addenda. # STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION ______ # NOTICE TO CONTRACTORS AND SPECIAL PROVISIONS ### FOR CONSTRUCTION ON STATE HIGHWAY IN LOS ANGELES COUNTY IN LOS ANGELES FROM 0.1 KM SOUTH OF ROUTE 10/405 SEPARATION TO BURNHAM STREET AND AT SUNSET BOULEVARD | | DISTRICT 07, ROUTE 405 | |-------------------------|--| | For Use in Connection w | h Standard Specifications Dated JULY 1999, Standard Plans Dated JULY 1999, and Labo
Surcharge and Equipment Rental Rates. | | | | CONTRACT NO. 07-195904 07-LA-405-47.5/51.8, 53.3 > Federal Aid Project ACNHI-405-3(054)N Bids Open: January 27, 2005 Dated: December 6, 2004 # IMPORTANT SPECIAL NOTICES #### A+B BIDDING SPECIAL NOTICE The bidder's attention is directed to Section 2, "Proposal Requirements and Conditions," Section 3, "Award and Execution of Contract," and Section 4, "Beginning of Work, Time of Completion and Liquidated Damages," in the special provisions. In addition to the item prices and totals, the proposal shall set forth the number of working days bid to complete the work on the contract, except plant establishment. Bids will be compared on the basis of the sum of the item totals on the Engineer's Estimate for the work to be done (TOTAL BID (A)), plus the product of the number of working days bid to complete the work, except plant establishment, and the cost per day shown on the Engineer's Estimate (TOTAL BID (B)). The lowest bid will be determined on the basis of the "Total Basis for Comparison of Bids (A+B)" set forth in the Engineer's Estimate. Bids in which the number of working days bid for completion of the work, except plant establishment, exceed the maximum number of days specified will be considered non-responsive and will be rejected. ### TABLE OF CONTENTS | NOTICE TO CONTRACTORS | 1 | |--|-----| | SPECIAL PROVISIONS | | | SECTION 1. SPECIFICATIONS AND PLANS | | | AMENDMENTS TO JULY 1999 STANDARD SPECIFICATIONS | | | SECTION 2. PROPOSAL REQUIREMENTS AND CONDITIONS | 78 | | 2-1.01 GENERAL | 78 | | 2-1.015 FEDERAL LOBBYING RESTRICTIONS | 79 | | 2-1.02 DISADVANTAGED BUSINESS ENTERPRISE (DBE) | 79 | | 2-1.02A DBE GOAL FOR THIS PROJECT | | | 2-1.02B SUBMISSION OF DBE INFORMATION | 81 | | SECTION 3. AWARD AND EXECUTION OF CONTRACT | | | SECTION 4. BEGINNING OF WORK, TIME OF COMPLETION AND LIQUIDATED DAMAGES | 83 | | INCENTIVE AND DISINCENTIVE | 83 | | SECTION 5. GENERAL | | | SECTION 5-1. MISCELLANEOUS | | | 5-1.01 PLANS AND WORKING DRAWINGS | | | 5-1.011 EXAMINATION OF PLANS, SPECIFICATIONS, CONTRACT, AND SITE OF WORK | | | 5-1.012 DIFFERING SITE CONDITIONS | 84 | | 5-1.013 LINES AND GRADES | | | 5-1.015 LABORATORY | | | 5-1.017 CONTRACT BONDS | | | 5-1.019 COST REDUCTION INCENTIVE | | | 5-1.02 LABOR NONDISCRIMINATION | 85 | | 5-1.022 EXCLUSION OF RETENTION | | | 5-1.023 UNSATISFACTORY PROGRESS | | | 5-1.03 INTEREST ON PAYMENTS | | | 5-1.04 PUBLIC SAFETY | | | 5-1.05 TESTING | | | 5-1.06 REMOVAL OF ASBESTOS AND HAZARDOUS SUBSTANCES | 87 | | 5-1.07 YEAR 2000 COMPLIANCE | 87 | | 5-1.075 BUY AMERICA REQUIREMENTS | 88 | | 5-1.08 SUBCONTRACTOR AND DBE RECORDS | | | 5-1.083 DBE CERTIFICATION STATUS | 88 | | 5-1.086 PERFORMANCE OF DBE SUBCONTRACTORS AND SUPPLIERS | 88 | | 5-1.09 SUBCONTRACTING | 89 | | 5-1.10 PROMPT PROGRESS PAYMENT TO SUBCONTRACTORS | 89 | | 5-1.103 RECORDS | 90 | | 5-1.11 PARTNERING | 90 | | 5-1.114 VALUE ANALYSIS | 90 | | 5-1.12 DISPUTE REVIEW BOARD | 91 | | 5-1.13 FORCE ACCOUNT PAYMENT | 101 | | 5-1.14 COMPENSATION ADJUSTMENTS FOR PRICE INDEX FLUCTUATIONS | 102 | | 5-1.15 RELATIONS WITH THE CITY OF LOS ANGELES | 102 | | 5-1.16 AREAS FOR CONTRACTOR'S USE | 103 | | 5-1.17 PAYMENTS | 103 | | 5-1.18 PROJECT INFORMATION | 104 | | 5-1.19 SOUND CONTROL REQUIREMENTS | 104 | | 5-1.20 GENERAL MIGRATORY BIRD TREATY ACT | 104 | | 5-1.21 CULTURAL RESOURCES | 105 | | 5-1.22 AERIALLY DEPOSITED LEAD | | | SECTION 6. (BLANK) | 106 | | SECTION 7. (BLANK) | | | SECTION 8. MATERIALS | | | SECTION 8-1. MISCELLANEOUS | 106 | | 8-1.01 SUBSTITUTION OF NON-METRIC MATERIALS AND PRODUCTS | | |---|-----| | 8-1.02 PREQUALIFIED AND TESTED SIGNING AND DELINEATION MATERIALS | | | 8-1.03 STATE-FURNISHED MATERIALS | | | 8-1.04 SLAG AGGREGATE | 119 | | 8-1.05 ADHESIVE FOR BONDING REFLEX REFLECTORS TO PORCELAIN ENAMEL | | | TRAFFIC SIGNS | 119 | | 8-1.06 ENGINEERING FABRICS | | | SECTION 8-2. CONCRETE | 120 | | 8-2.01 PORTLAND CEMENT CONCRETE | 120 | | 8-2.02 PRECAST CONCRETE QUALITY CONTROL | | | GENERAL | 121 | | PRECAST CONCRETE QUALIFICATION AUDIT | | | PRECAST CONCRETE QUALITY CONTROL PLAN | | | REPORTING | | | PAYMENT | | | SECTION 8-3. WELDING | | | 8-3.01 WELDING | | | WELDING QUALITY CONTROL | | | WELDING GOALITT CONTROL WELDING FOR OVERHEAD SIGN AND POLE STRUCTURES | | | PAYMENTPAYMENT | | | SECTION 9. DESCRIPTION OF BRIDGE WORK | | | SECTION 10. CONSTRUCTION DETAILS | | | SECTION 10-1. GENERAL | | | 10-1.01 CONSTRUCTION PROJECT INFORMATION SIGNS | | | 10-1.02 ORDER OF WORK | | | 10-1.03 WATER POLLUTION CONTROL | | | RETENTION OF FUNDS | | | STORM WATER POLLUTION PREVENTION PLAN PREPARATION, APPROVAL | | | AND AMENDMENTS | | | COST BREAK-DOWN | 134 | | SWPPP IMPLEMENTATION | | | MAINTENANCE | | | REPORTING REQUIREMENTS | 138 | | SAMPLING AND ANALYTICAL REQUIREMENTS | | | PAYMENT | | | 10-1.04 TEMPORARY FENCE | | | 10-1.05 PRESERVATION OF PROPERTY | | | 10-1.06 DAMAGE REPAIR | | | 10-1.07 RELIEF FROM MAINTENANCE AND RESPONSIBILITY | | | 10-1.08 SCAFFOLDING | | | 10-1.09 COOPERATION | | | DEFINITIONS | | | GENERAL REQUIREMENTS. | | | COMPUTER SOFTWARE | | | NETWORK DIAGRAMS, REPORTS AND DATA | | | PRE-CONSTRUCTION SCHEDULING CONFERENCE | | | BASELINE SCHEDULE | | | UPDATE SCHEDULE | | | TIME IMPACT ANALYSIS | 147 | | FINAL UPDATE SCHEDULE | | | RETENTION | | | PAYMENT | 148 | | 10-1.11 TIME-RELATED OVERHEAD | | | 10-1.12 OBSTRUCTIONS | 151 | | 10-1.13 DUST CONTROL | | | 10-1.14 MOBILIZATION | | | 10-1.15 CONSTRUCTION AREA TRAFFIC CONTROL DEVICES | 151 | | 10-1.16 CONSTRUCTION AREA SIGNS | | |---|-------| | 10-1.17 MAINTAINING TRAFFIC | .152 | | 10-1.18 CLOSURE REQUIREMENTS AND CONDITIONS | .177 | | CLOSURE SCHEDULE | .177 | | CONTINGENCY PLAN | | | LATE REOPENING OF CLOSURES | .177 | | COMPENSATION | .177 | | 10-1.19 TRAFFIC CONTROL SYSTEM FOR LANE CLOSURE | .178 | | STATIONARY LANE CLOSURE | .178 | | MOVING LANE CLOSURE | .178 | | PAYMENT | .179 | | 10-1.20 TRAFFIC CONTROL SYSTEM FOR RAMP CLOSURES | .179 | | 10-1.21 BARRICADE | .180 | | 10-1.22 PORTABLE CHANGEABLE MESSAGE SIGN | .180 | | 10-1.23 TEMPORARY RAILING | | | 10-1.24 CHANNELIZER | | | 10-1.25 TEMPORARY TRAFFIC SCREEN | | | 10-1.26 TEMPORARY CRASH CUSHION MODULE | | | 10-1.27 EXISTING HIGHWAY FACILITIES | | | REMOVE METAL BEAM GUARD RAILING | | | REMOVE SIGN STRUCTURE | | | REMOVE PAVEMENT MARKER | | | REMOVE TRAFFIC STRIPE AND PAVEMENT MARKING | | | REMOVE DRAINAGE FACILITY | | | REMOVE ROADSIDE SIGN | | | RECONSTRUCT CHAIN LINK FENCE. | | | RECONSTRUCT METAL BEAM GUARD RAILING | | | RELOCATE SIGN STRUCTURE | | | RELOCATE ROADSIDE SIGN | | | MODIFY INLET | | | REMOVE BASE AND SURFACING | | | CAP INLET. | | | EXISTING LOOP DETECTORS | | | BRIDGE REMOVAL | | | PREPARE CONCRETE BRIDGE DECK SURFACE | | | REMOVE CONCRETE DECK SURFACE | | | REMOVE CONCRETE (STRUCTURE) | | | REMOVE CONCRETE BARRIER, CURB AND SIDEWALK | | | 10-1.28 CLEARING AND GRUBBING | | | 10-1.29 EARTHWORK | | | 10-1.30 CONTROLLED LOW STRENGTH MATERIAL | | | 10-1.31 MATERIAL CONTAINING AERIALLY DEPOSITED LEAD | | | LEAD COMPLIANCE PLAN | | | EXCAVATION AND TRANSPORTATION PLAN | | | DUST CONTROL | | | MATERIAL TRANSPORTATION | | | DISPOSAL | | | MEASUREMENT AND PAYMENT | | | 10-1.32 EROSION CONTROL (TYPE D) | | | MATERIALS | | | APPLICATION | - | | 10-1.33 IRRIGATION CROSSOVERS | | | 10-1.34 EXTEND IRRIGATION CROSSOVERS | | | | | | 10-1.35 WATER SUPPLY LINE (BRIDGE) | | | MATERIALS | | | INSTALLATION | | | TESTING | | | MEASUREMENT AND PAYMENT | | | 10-1.36 AGGREGATE BASE | . 197 | | 10-1.37 LEAN CONCRETE BASE | | |---|-----| | 10-1.38 ASPHALT CONCRETE | 197 | | 10-1.39 CONCRETE PAVEMENT | | | GENERAL | 201 | | PREPAVING CONFERENCE | | | JUST-IN-TIME TRAINING | | | TEST STRIP | | | MATERIALS | | | PAVEMENT CONCRETE MIX PROPORTIONS | 206 | | MODULUS OF RUPTURE | | | INSTALLING TIE BARS | | | DOWEL PLACEMENT | | | CORE DRILLING FOR DOWEL BAR AND TIE BAR PLACEMENT ALIGNMENT | 207 | | ASSURANCE TESTING | 208 | | LIQUID JOINT SEALANT INSTALLATION | 200 | | CONSTRUCTING TRANSVERSE CONTACT JOINTS | | | CONSTRUCTING TRANSVERSE CONTACT JOINTS | | | CONSTRUCTING LONGITUDINAL ISOLATION JOINTSCONSTRUCTING TRANSVERSE JOINT CONNECTIONS AND ANCHORS | | | | | | PROFILE INDEX | 210 | | CONSTRUCTING WEAKENED PLANE JOINTS (EARLY ENTRY SAW METHOD) | 211 | | TIE BARS ALONG LONGITUDINAL JOINT
FOR SHORT RADIUS CURVES | | | MEASUREMENT AND PAYMENT | | | 10-1.40 EXIT RAMP TERMINI | | | 10-1.41 PROFILE GRINDING FOR CONCRETE PAVEMENT | | | 10-1.42 TEST BORINGS | | | 10-1.43 PILING | | | GENERAL | | | CAST-IN-DRILLED-HOLE CONCRETE PILES | | | MICROPILING | | | ALTERNATIVE MICROPILING | | | MEASUREMENT AND PAYMENT (PILING) | | | 10-1.44 PRESTRESSING CONCRETE | | | 10-1.45 TIEBACK ANCHORS | | | MATERIALS | 235 | | CONSTRUCTION | 236 | | MEASUREMENT AND PAYMENT | 239 | | 10-1.46 CONCRETE STRUCTURES | 239 | | FALSEWORK | 239 | | DECK CLOSURE POURS | 240 | | SLIDING BEARINGS | | | ELASTOMERIC BEARING PADS | | | CURING | | | DECK CRACK TREATMENT | | | PRECAST CONCRETE GIRDERS | | | PRECAST PRESTRESSED CONCRETE BRIDGE MEMBERS | | | MEASUREMENT AND PAYMENT | | | 10-1.47 PRECAST PRESTRESSED CONCRETE SLABS | 244 | | 10-1.47 TRECAST TRESTRESSED CONCRETE SEADS | | | GENERAL | | | STRUCTURE APPROACH DRAINAGE SYSTEM | | | | | | ENGINEERING FABRICSTREATED PERMEABLE BASE UNDER APPROACH SLAB | | | | | | APPROACH SLABS | | | JOINTS | | | MEASUREMENT AND PAYMENT | | | 10-1.49 STRUCTURE APPROACH SLABS (TYPE R) | | | GENERAL | | | REMOVING PORTIONS OF EXISTING STRUCTURES | | | REMOVING EXISTING PAVEMENT AND BASE MATERIALS | 248 | | AGGREGATE BASE (APPROACH SLAB) | 248 | |--|-----| | STRUCTURE APPROACH SLAB | | | JOINTS | 250 | | MEASUREMENT AND PAYMENT | 250 | | 10-1.50 PAVING NOTCH EXTENSION | | | 10-1.51 SOUND WALL | 252 | | DESCRIPTION | 252 | | SOUND WALL (MASONRY BLOCK) | 252 | | ACCESS GATES | 254 | | MEASUREMENT AND PAYMENT | | | 10-1.52 DRILL AND BOND DOWEL (EPOXY CARTRIDGE) | 255 | | 10-1.53 DRILL AND BOND DOWELS | | | 10-1.54 POLYESTER CONCRETE EXPANSION DAM | 256 | | 10-1.55 SEALING JOINTS | | | 10-1.56 REFINISHING BRIDGE DECKS | | | PORTLAND CEMENT CONCRETE | | | RAPID SETTING CONCRETE | | | FINISHING REQUIREMENTS | | | MEASUREMENT AND PAYMENT | | | 10-1.57 POLYESTER CONCRETE OVERLAY | | | GENERAL | 261 | | MATERIALS | | | CONSTRUCTION | | | MEASUREMENT AND PAYMENT | | | 10-1.58 ARCHITECTURAL SURFACE (TEXTURED CONCRETE) | | | TEST PANELS | | | FORM LINERS | | | RELEASING FORM LINERS | | | CURING | | | MEASUREMENT AND PAYMENT | | | 10-1.59 REINFORCEMENT | | | MEASUREMENT AND PAYMENT | | | 10-1.60 SIGN STRUCTURES | | | ROTATIONAL CAPACITY TESTING PRIOR TO SHIPMENT TO JOB SITE | 268 | | INSTALLATION TENSION TESTING AND ROTATIONAL CAPACITY TESTING | | | AFTER ARRIVAL ON THE JOB SITE | | | 10-1.61 ROADSIDE SIGNS | | | 10-1.62 INSTALL SIGN PANEL ON EXISTING FRAME | | | 10-1.63 INSTALL BRIDGE MOUNTED SIGN (STICKY BACK) | | | 10-1.64 PLASTIC PIPE | | | 10-1.65 REINFORCED CONCRETE PIPE | | | 10-1.66 CORRUGATED METAL PIPE AND RISER | | | 10-1.67 GRATED LINE DRAIN | | | 10-1.68 SLOPE PROTECTION | | | 10-1.69 MISCELLANEOUS CONCRETE CONSTRUCTION | | | 10-1.70 MISCELLANEOUS IRON AND STEEL | | | 10-1.71 CHAIN LINK FENCE | | | 10-1.72 CHAIN LINK WALK GATE | | | 10-1.73 MARKERS AND DELINEATORS | | | 10-1.74 METAL BEAM GUARD RAILING | | | TERMINAL SYSTEM (TYPE ET) | | | TERMINAL SYSTEM (TYPE SRT) | | | 10-1.75 CHAIN LINK RAILING | | | 10-1.76 CONCRETE BARRIER | | | | | | 10-1.78 CRASH CUSHION (REACT) | | | 10-1.79 THERMOPLASTIC PAVEMENT MARKING | | | 10-1.81 PAINT TRAFFIC STRIPE AND PAVEMENT MARKING | | | TO LOT TAILLE TRAITE DIVILE AND LAYERIDIN WANKING | ZOI | | 10-1.82 PAVEMENT MARKERS | | |---|-----| | SECTION 10-2 HIGHWAY PLANTING AND IRRIGATION SYSTEMS | 281 | | 10-2.01 GENERAL | 281 | | PROGRESS INSPECTIONS | 281 | | COST BREAK-DOWN | | | 10-2.02 EXISTING HIGHWAY PLANTING | 286 | | MAINTAIN EXISTING PLANTED AREAS | 286 | | REMOVE EXISTING PLANTS FOR TRENCHING | 286 | | PRUNE EXISTING PLANTS | 286 | | 10-2.03 EXISTING HIGHWAY IRRIGATION FACILITIES | 286 | | LOCATE EXISTING CROSSOVERS AND CONDUITS | 286 | | CHECK AND TEST EXISTING IRRIGATION FACILITIES | 286 | | REMOVE EXISTING IRRIGATION FACILITIES | 287 | | 10-2.04 HIGHWAY PLANTING | 287 | | HIGHWAY PLANTING MATERIALS | 287 | | ROADSIDE CLEARING | 287 | | PESTICIDES | 288 | | PREPARING PLANTING AREAS | 289 | | PLANTING | 289 | | PLANT ESTABLISHMENT WORK | 289 | | 10-2.05 IRRIGATION SYSTEMS | 290 | | VALVE BOXES | 290 | | BALL VALVES | 290 | | ELECTRIC AUTOMATIC IRRIGATION COMPONENTS | 291 | | PIPE | 292 | | WATER METER | 292 | | BACKFLOW PREVENTER ASSEMBLIES | 292 | | BACKFLOW PREVENTER ASSEMBLY ENCLOSURE | | | TESTING NEW BACKFLOW PREVENTERS | 293 | | SPRINKLERS | 293 | | PRESSURE REDUCING VALVE | 293 | | FINAL IRRIGATION SYSTEM CHECK | 293 | | SECTION 10-3. SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS | 294 | | 10-3.01 DESCRIPTION | 294 | | 10-3.02 ABBREVIATIONS AND GLOSSARY | 295 | | ABBREVIATIONS | 295 | | GLOSSARY | 298 | | 10-3.03 COST BREAK-DOWN | | | 10-3.04 MAINTAINING EXISTING AND TEMPORARY ELECTRICAL SYSTEMS | | | MAINTAINING EXISTING TRAFFIC SIGNAL | 300 | | MAINTAINING EXISTING STREET LIGHTING | 300 | | MAINTAINING EXISTING TRAFFIC CONTROL SIGNING | | | 10-3.05 MAINTAINING EXISTING COMMUNICATION SYSTEM ROUTING | 300 | | GENERAL | 300 | | PRE-CONSTRUCTION CHECK | 301 | | RESTRICTIONS OF CLOSED CIRCUIT TELEVISION (CCTV) CAMERA, AND | | | TRAFFIC MONITORING STATION, RAMP METERING SYSTEM AND CHANGEABLE | | | MESSAGE SIGN | 301 | | 10-3.06 COMMUNICATION SYSTEM ROUTING | 301 | | GENERAL | 301 | | 10-3.07 MODIFY COMMUNICATION SYSTEM ROUTING, RELOCATE CMS AND | | | CCTV CAMERAS, MODIFY VIDEO NODE AND DATA NODE, AND | | | TRAFFIC MONITORING STATION | | | 10-3.08 RELOCATE CLOSED CIRCUIT TELEVISON CAMERA | | | 10-3.09 RELOCATE COUNT STATION AND TRAFFIC MONITORING STATION | | | 10-3.10 RELOCATE CHANGEABLE MESSAGE SIGN | | | 10-3.11 MODIFY DATA AND VIDEO NODE | | | 10-3.12 FOUNDATIONS | | | 10-3 13 STANDARDS STEEL PEDESTALS AND POSTS | 303 | | 10-3.14 CONDUIT | 303 | |--|------------| | CITY CONDUIT | | | 10-3.15 COMMUNICATION CONDUIT | | | WARNING TAPE | | | COLORED CEMENT BACKFILL | 305 | | FIBER UNDERGROUND WARNING SIGN | | | 0.5-MM PLASTIC SHEET | | | SIZE 32 INNERDUCTS | | | 10-3.16 PULL BOXES | | | TRAFFIC SIGNAL | | | STREET LIGHTING | | | 10-3.17 COMMUNICATION PULL BOXES | | | SPLICE VAULT | | | 10-3.18 CONDUCTORS AND WIRING | 308 | | SIGNAL INTERCONNECT CABLE | | | CITY CONDUCTORS AND WIRING | | | STREET LIGHTING | | | | | | 10-3.19 TWISTED PAIR CABLE | | | TWISTED PAIR SPLICE CLOSURE | | | 10-3.20 FIBER OPTIC CABLE | | | DEFINITIONS | | | FIBER OPTIC OUTSIDE PLANT CABLE | | | LABELING | | | CABLE INSTALLATION | | | SPLICING | | | SPLICE CLOSURES | | | SPLICE TRAYS | | | PASSIVE CABLE ASSEMBLIES AND COMPONENTS | | | FIBER OPTIC CABLE TERMINATIONS | | | FIBER OPTIC TESTING | | | 10-3.21 BONDING AND GROUNDING | | | 10-3.22 SERVICE | | | ELECTRIC SERVICE (IRRIGATION) | | | 10-3.23 NUMBERING ELECTRICAL EQUIPMENT | | | 10-3.24 STATE-FURNISHED CONTROLLER ASSEMBLIES | | | 10-3.25 IRRIGATION CONTROLLER ENCLOSURE CABINET | | | 10-3.26 VEHICLE SIGNAL FACES AND SIGNAL HEADS | 327 | | 10-3.27 PEDESTRIAN SIGNALS | 327 | | 10-3.28 DETECTORS | 327 | | CITY OF LOS ANGELES TRAFFIC SIGNAL LOOP DETECTORS | | | PREFORMED INDUCTIVE LOOPS | 328 | | 10-3.29 PEDESTRIAN PUSH BUTTONS | 328 | | 10-3.30 LUMINAIRES | | | 10-3.31 INDUCTION SIGN LIGHTING (ISL) | | | 10-3.32 PHOTOELECTRIC CONTROLS. | | | 10-3.33 COMMUNICATION SYSTEM ROUTING CUT-OVER | | | 10-3.34 SYSTEM TESTING AND DOCUMENTATION | | | SYSTEM TESTING | | | SYSTEM DOCUMENTATION | | | 10-3.35 REMOVING, DISPOSING, RELOCATING, OR REINSTALLING ELECTRICAL EQUIPMENT | | | 10-3.36 DISPOSING OF ELECTRICAL EQUIPMENT | | | 10-3.37 PAYMENT | | | SECTION 11. MODIFIED STANDARD SPECIFICATION SECTIONS | | | SECTION 11. MODIFIED STANDARD SPECIFICATION SECTIONS SECTION 11-1. QUALITY CONTROL / QUALITY ASSURANCE | | | SECTION 11-1. QUALITY CONTROL/QUALITY ASSURANCE SECTION 39: ASPHALT CONCRETE | | | 39-1 GENERAL | | | 39-1.01 DESCRIPTION | | | 39-1.01 DESCRIPTION | | | 39-2 MATERIALS | 333
225 | | | AGGREGATE | | |------------|--|-----| | 39-2.03 | ASPHALT CONCRETE MIXTURE | 336 | | 39-2.04 | PAVEMENT REINFORCING FABRIC | 337 | | 39-3 ASPH. | ALT CONCRETE MIX DESIGN PROPOSAL AND REVIEW | 337 | | | CONTRACTOR MIX DESIGN PROPOSAL | | | 39-3.02 | ENGINEER REVIEW OF ASPHALT CONCRETE MIX DESIGN | 337 | | 39-4 CONT | RACTOR QUALITY CONTROL | 338 | | | GENERAL | | | | QUALITY CONTROL PLAN | | | 39-4.03 | CONTRACTOR QUALITY CONTROL INSPECTION, SAMPLING, AND TESTING | 339 | | 39-4.04 | CONTRACTOR PROCESS CONTROL | 339 | | 39-4.05 | CONTRACTOR QUALITY CONTROL | 340 | | 39-4.06 | CHARTS AND RECORDS | 341 | | 39-4 | 1.06A Compliance Charts | 341 | | 39-4 | 1.06B Records of Inspection and Testing | 341 | | 39-5 ENGIN | NEER QUALITY ASSURANCE | 342 | | | GENERAL | | | 39-5.02 | SAMPLING AND TESTING FOR VERIFICATION | 342 | | | VERIFICATION | | | 39-6 DISPU | JTE RESOLUTION | 344 | | 39-6.01 | GENERAL | 344 | | 39-6.02 | DURING THE ASPHALT CONCRETE MIX DESIGN REVIEW | 345 | | 39-6.03 | DURING THE PRODUCTION START-UP EVALUATION | 345 | | 39-6.04 | DURING PRODUCTION | 345 | | | ING, PROPORTIONING AND MIXING MATERIALS | | | 39-7.01 | STORAGE | 346 | | 39-7 | 7.01A Aggregate Cold Storage | 346 | | 39-7 | 7.01B Aggregate Hot Storage | 346 | | 39-7 | 7.01C Asphalt Binder Storage | 346 | | 39-7.02 | DRYING | 347 | | 39-7.03 | PROPORTIONING | 347 | | 39-7 | 7.03A Proportioning for Batch Mixing | 347 | | 39-7 | 7.03B Proportioning for Continuous Mixing | 348 | | | (BLANK) | | | 39-7.05 | MIXING | 349 | | 39-7 | 7.05A Batch Mixing | 349 | | 39-7 | 7.05B Continuous Mixing | 349 | | 39-7.06 | ASPHALT CONCRETE STORAGE | 350 | | 39-7.07 | ASPHALT CONCRETE PLANTS | 350 | | 39-8 SUBG | RADE, PRIME COAT, PAINT BINDER (TACK COAT), AND PAVEMENT | | | REINFORCI | NG FABRIC | 350 | | 39-8.01 | SUBGRADE | 350 | | 39-8.02 | PRIME COAT AND PAINT BINDER (TACK COAT) | 350 | | 39-8.03 | PAVEMENT REINFORCING
FABRIC | 351 | | 39-9 SPREA | ADING AND COMPACTING EQUIPMENT | 351 | | 39-9.01 | SPREADING EQUIPMENT | 351 | | 39-9.02 | COMPACTING EQUIPMENT | 352 | | 39-10 SPRE | EADING AND COMPACTING | 352 | | | GENERAL REQUIREMENTS | | | 39-10.02 | PRODUCTION START-UP EVALUATION AND NUCLEAR DENSITY TEST STRIPS | 353 | | 39-1 | 0.02A Production Start-Up Evaluation | 353 | | | 0.02B Nuclear Density Test Strip | | | 39-10.03 | SPREADING | 354 | | | COMPACTING | | | | EPTANCE OF WORK | | | | GENERAL | | | | STATISTICAL EVALUATION AND DETERMINATION OF PAY FACTOR | | | 39-1 | 1.02A General | | | 30_1 | 1 02B Statistical Evaluation | 356 | | 39-11.02C Pay Factor Determination and Compensation Adjustment | 358 | |---|-----| | 39-12 MEASUREMENT AND PAYMENT | | | 39-12.01 MEASUREMENT. | 363 | | 39-12.02 PAYMENT | | | SECTION 12. (BLANK) | | | SECTION 13. (BLANK) | | | SECTION 14 FEDERAL REQUIREMENTS FOR FEDERAL-AID CONSTRUCTION PROJECTS | | | FEDERAL REQUIREMENT TRAINING SPECIAL PROVISIONS | | ## STANDARD PLANS LIST The Standard Plan sheets applicable to this contract include, but are not limited to those indicated below. The Revised Standard Plans (RSP) and New Standard Plans (NSP) which apply to this contract are included as individual sheets of the project plans. | A10A | Abbreviations | |-------------|---| | A10B | Symbols | | A20A | Pavement Markers and Traffic Lines, Typical Details | | A20B | Pavement Markers and Traffic Lines, Typical Details | | A20C | Pavement Markers and Traffic Lines, Typical Details | | A20D | Pavement Markers and Traffic Lines, Typical Details | | A24A | Pavement Markings - Arrows | | A24E | Pavement Markings - Words and Crosswalks | | RSP A35B | Portland Cement Concrete Pavement (Doweled Transverse Joints) | | A35C | Portland Cement Concrete Pavement Joint and End Anchor Details | | A62A | Excavation and Backfill - Miscellaneous Details | | A62C | Limits of Payment for Excavation and Backfill - Bridge | | NSP A63A | Portable Concrete Barrier (Type 60K) | | NSP A63B | Portable Concrete Barrier (Type 60K) | | A73A | Object Markers | | A73B | Markers | | RSP A73C | Delineators, Channelizers and Barricades | | A76A | Concrete Barrier Type 60 | | A76B | Concrete Barrier Type 60 | | A77A | Metal Beam Guard Railing - Typical Wood Post With Wood Block | | A77AA | Metal Beam Guard Railing - Typical Steel Post With Wood Block | | A77B | Metal Beam Guard Railing - Standard Hardware | | A77C | Metal Beam Guard Railing – Wood Post and Wood Block Details | | A77CA | Metal Beam Guard Railing – Steel Post and Wood Block Details | | A77F | Metal Beam Guard Railing - Typical Embankment Widening for End Treatments | | A77FA | Metal Beam Guard Railing – Typical Line Post Installation | | RSP A77G | Metal Beam Guard Railing – End Treatment, Terminal Anchor Assembly (Type SFT) | | A77H | Metal Beam Guard Railing - Anchor Cable and Anchor Plate Details | | A77I | Metal Beam Guard Railing – End Treatment, Terminal Anchor Assembly (Type CA) | | A77IA | Metal Beam Guard Railing - End Treatment, Buried Post Anchor | | A77J | Metal Beam Guard Railing Connections to Bridge Railings, Retaining Walls and | | DCD 4771 | Abutments Metal Page Count Pailing and Single Faced Pageing Pailing Torquinal System. Find | | RSP A77L | Metal Beam Guard Railing and Single Faced Barrier Railing Terminal System - End Treatments | | RSP A77M | Metal Beam Guard Railing and Single Faced Barrier Railing Terminal System - End | | KSI A//WI | Treatment | | RSP A77N | Metal Beam Guard Railing and Single Faced Barrier Railing Terminal System - End | | 1201 11//11 | Treatment | | A82C | Crash Cushion (Type REACT 9CBB) | | A82CA | Crash Cushion (Type REACT 9CBB) – Backup Block Details | | | / 1 | A82CB Crash Cushion (Type REACT 9CBB) – Concrete Barrier Transition Details A85 Chain Link Fence Curbs, Dikes and Driveways A87 A88A Curb Ramp Details A88B Curb Ramp Details D98A Slotted Corrugated Steel Pipe Drain Details D98B Slotted Corrugated Steel Pipe Drain Details D98C Grated Line Drain Details D99C Edge Drain Cleanout and Vent Details D99D Cross Drain Interceptor Details H1 Planting and Irrigation - Abbreviations Planting and Irrigation - Symbols H2 **H3** Planting and Irrigation Details H4 Planting and Irrigation Details **H5** Planting and Irrigation Details H6 Planting and Irrigation Details H7 Planting and Irrigation Details H8 Planting and Irrigation Details Temporary Crash Cushion, Sand Filled (Unidirectional) T₁A T₁B Temporary Crash Cushion, Sand Filled (Bidirectional) RSP T2 Temporary Crash Cushion, Sand Filled (Shoulder Installations) T3 Temporary Railing (Type K) T4 Temporary Traffic Screen T5 Temporary Terminal Section (Type K) T7 Construction Project Funding Identification Signs T10 Traffic Control System for Lane Closure On Freeways and Expressways Traffic Control System for Lane and Complete Closures On Freeways and Expressways T10A T14 Traffic Control System for Ramp Closure B0-1 **Bridge Details Bridge Details RSP B0-3** B0-5Bridge Details B0-13 **Bridge Details** B2-3 400 mm Cast-In-Drilled Hole-Concrete Pile B2-5 Pile Details-Class 400 and Class 625 B2-6 Pile Details-Class 400C and Class 625C Retaining Wall Type 1 - H=1200 Through 9100 mm RSP B3-1 **RSP B3-8** Retaining Wall Details No. 1 B3-9 Retaining Wall Details No. 2 B6-10 Utility Openings, T-Beam B6-21 Joint Seals (Maximum Movement Rating = 50 mm) B7-10 Utility Opening - Box Girder B8-5 Cast-in-Place Prestressed Girder Details B11-7 Chain Link Railing RSP B11-56 Concrete Barrier Type 736 Communication and Sprinkler Control Conduits (Conduit Less Than size 103) B14-3 RS1 Roadside Signs, Typical Installation Details No. 1 Roadside Signs - Wood Post, Typical Installation Details No. 2 RS2 RS3 Roadside Signs - Laminated Wood Box Post Typical Installation Details No. 3 Roadside Signs, Typical Installation Details No. 4 RS4 RSP S1 Overhead Signs - Truss, Instructions and Examples RSP_{S2} Overhead Signs - Truss, Single Post Type - Post Types II Thru VII Overhead Signs - Truss, Two Post Type - Post Types I-S Thru VII-S RSP S3 S4 Overhead Signs - Truss, Single Post Type - Structural Frame Members Overhead Signs - Truss Two Post Type - Structural Frame Members RSP S5 RSP S6 Overhead Signs - Truss, Structural Frame Details RSP S7 Overhead Signs -Truss, Frame Juncture Details RSP S8A Overhead Signs - Steel Frames - Removable Sign Panel Frames Overhead Signs - Removable Sign Panel Frames - Overhead Formed Panel Mounting S8B Overhead Signs - Truss, Sign Mounting Details, Laminated Panel - Type A RSP S8C Overhead Signs - Truss, Removable Sign Panel Frames - 2794 mm and 3048 mm Sign S8D S9 Overhead Signs - Walkway Details No. 1 Overhead Signs - Walkway Details No. 2 S10 RSP S11 Overhead Signs - Walkway Safety Railing Details Overhead Signs - Truss, Pile Foundation RSP S13 Signal, Lighting and Electrical Systems - Symbols and Abbreviations ES-1A Signal, Lighting and Electrical Systems - Symbols and Abbreviations ES-1B Signal, Lighting and Electrical Systems - Service Equipment ES-2A ES-2C Signal, Lighting and Electrical Systems - Service Equipment Notes, Type III Series ES-2E Signal, Lighting and Electrical Systems - Service Equipment and Typical Wiring Diagram Type III-B Series ES-3C Signal, Lighting and Electrical Systems - Controller Cabinet Details ES-3F Signal, Lighting and Electrical Systems - Telephone Demarcation Cabinet Details, Type C Signal, Lighting and Electrical Systems – Irrigation Controller Enclosure Cabinet ES-3H ES-5A Signal, Lighting and Electrical Systems - Detectors ES-5B Signal, Lighting and Electrical Systems - Detectors Signal, Lighting and Electrical Systems - Detectors ES-5C Signal, Lighting and Electrical Systems - Detectors ES-5D Lighting Standards - Types 15, 21 and 22 RSP ES-6A RSP ES-6B Lighting Standards - Types 15 AND 21, Barrier Rail Mounted Details ES-6E Lighting Standards - Types 30 and 31 Lighting Standards - Type 30 and 31 Base Plate Details RSP ES-6F Signal and Lighting Standards - Type 1 Standards and Equipment Numbering ES-7B Signal and Lighting Standards - Case 3 Arm Loading, Wind Velocity = 129 km/h, Arm RSP ES-7E Lengths 4.6 m to 13.7 m ES-7N Signal and Lighting Standards - Details No. 2 ES-8 Signal, Lighting and Electrical Systems - Pull Box Details Signal, Lighting and Electrical Systems - Electrical Details, Structure Installations ES-9A ES-9B Signal, Lighting and Electrical Systems - Electrical Details, Structure Installations Signal, Lighting and Electrical Systems - Electrical Details, Structure Installations ES-9C ES-9D Signal, Lighting and Electrical Systems - Electrical Details, Structure Installations Signal, Lighting and Electrical Systems - Isolux Diagrams ES-10 ES-11 Signal, Lighting and Electrical Systems - Foundation Installations Signal, Lighting and Electrical Systems - Splicing Details ES-13A Signal, Lighting and Electrical Systems - Wiring Details and Fuse Ratings ES-13B ES-15A Sign Illumination - Mercury Vapor Sign Illumination Equipment Sign Illumination - Sign Illumination Equipment ES-15C ES-15D Sign Illumination - Sign Illumination Control Closed Circuit Television Pole Details ES-16A #### DEPARTMENT OF TRANSPORTATION #### NOTICE TO CONTRACTORS CONTRACT NO. 07-195904 07-LA-405-47.5/51.8, 53.3 Sealed proposals for the work shown on the plans entitled: ## STATE OF CALIFORNIA; DEPARTMENT OF TRANSPORTATION; PROJECT PLANS FOR CONSTRUCTION ON STATE HIGHWAY IN LOS ANGELES COUNTY IN LOS ANGELES FROM 0.1 KM SOUTH OF ROUTE 10/405 SEPARATION TO BURNHAM STREET AND AT SUNSET BOULEVARD will be received at the Department of Transportation, 3347 Michelson Drive, Suite 100, Irvine, CA 92612-1692, until 2 o'clock p.m. on January 27, 2005, at which time they will be publicly opened and read in Room C - 1116 at the same address. Proposal forms for this work are included in a separate book
entitled: ## STATE OF CALIFORNIA; DEPARTMENT OF TRANSPORTATION; PROPOSAL AND CONTRACT FOR CONSTRUCTION ON STATE HIGHWAY IN LOS ANGELES COUNTY IN LOS ANGELES FROM 0.1 KM SOUTH OF ROUTE 10/405 SEPARATION TO BURNHAM STREET AND AT SUNSET BOULEVARD General work description: Freeway to be widened with PCC over AB, and bridges to be widened. This project has a goal of 11 percent disadvantaged business enterprise (DBE) participation. No prebid meeting is scheduled for this project. ## THIS PROJECT IS SUBJECT TO THE "BUY AMERICA" PROVISIONS OF THE SURFACE TRANSPORTATION ASSISTANCE ACT OF 1982 AS AMENDED BY THE INTERMODAL SURFACE TRANSPORTATION EFFICIENCY ACT OF 1991. Bids are required for the entire work described herein. At the time this contract is awarded, the Contractor shall possess either a Class A license or a combination of Class C licenses which constitutes a majority of the work. This contract is subject to state contract nondiscrimination and compliance requirements pursuant to Government Code, Section 12990. Inquiries or questions based on alleged patent ambiguity of the plans, specifications or estimate must be communicated as a bidder inquiry prior to bid opening. Any such inquiries or questions, submitted after bid opening, will not be treated as a bid protest. Bidder inquiries may be submitted by one of the following methods: - 1. Mail: District 7 Construction Duty Senior, 801 S. Grand Avenue, 4th Floor, Los Angeles, CA 90017. - 2. Phone: (213) 897-0054. - 3. Fax: (213) 897-0637. - 4. E-mail: Duty Senior D7@dot.ca.gov. - 5. Website at: http://www.dot.ca.gov/dist07/construction/bir/ To expedite processing, the preferred method for submission of bidder inquiries is via "Bidder's Inquiry & Response Website." Project plans, special provisions, and proposal forms for bidding this project can only be obtained at the Department of Transportation, Plans and Bid Documents, Room 0200, MS #26, Transportation Building, 1120 N Street, Sacramento, California 95814, FAX No. (916) 654-7028, Telephone No. (916) 654-4490. Use FAX orders to expedite orders for project plans, special provisions and proposal forms. FAX orders must include credit card charge number, card expiration date and authorizing signature. Project plans, special provisions, and proposal forms may be seen at the above Department of Transportation office and at the offices of the District Directors of Transportation at Irvine, Oakland, and the district in which the work is situated. Standard Specifications and Standard Plans are available through the State of California, Department of Transportation, Publications Unit, 1900 Royal Oaks Drive, Sacramento, CA 95815, Telephone No. (916) 445-3520. The successful bidder shall furnish a payment bond and a performance bond. The Department of Transportation hereby notifies all bidders that it will affirmatively ensure that in any contract entered into pursuant to this advertisement, disadvantaged business enterprises will be afforded full opportunity to submit bids in response to this invitation. The U.S. Department of Transportation (DOT) provides a toll-free "hotline" service to report bid rigging activities. Bid rigging activities can be reported Mondays through Fridays, between 8:00 a.m. and 5:00 p.m., eastern time, Telephone No. 1-800-424-9071. Anyone with knowledge of possible bid rigging, bidder collusion, or other fraudulent activities should use the "hotline" to report these activities. The "hotline" is part of the DOT's continuing effort to identify and investigate highway construction contract fraud and abuse and is operated under the direction of the DOT Inspector General. All information will be treated confidentially and caller anonymity will be respected. Pursuant to Section 1773 of the Labor Code, the general prevailing wage rates in the county, or counties, in which the work is to be done have been determined by the Director of the California Department of Industrial Relations. These wages are set forth in the General Prevailing Wage Rates for this project, available at the Labor Compliance Office at the offices of the District Director of Transportation for the district in which the work is situated, and available from the California Department of Industrial Relations' internet web site at: http://www.dir.ca.gov. The Federal minimum wage rates for this project as predetermined by the United States Secretary of Labor are available through the California Department of Transportation's Electronic Project Document Distribution Site on the internet at http://hqidoc1.dot.ca.gov/. Addenda to modify the Federal minimum wage rates, if necessary, will be issued to holders of "Proposal and Contract" books. Future effective general prevailing wage rates which have been predetermined and are on file with the California Department of Industrial Relations are referenced but not printed in the general prevailing wage rates. If there is a difference between the minimum wage rates predetermined by the United States Secretary of Labor and the general prevailing wage rates determined by the Director of the California Department of Industrial Relations for similar classifications of labor, the Contractor and subcontractors shall pay not less than the higher wage rate. The Department will not accept lower State wage rates not specifically included in the Federal minimum wage determinations. This includes "helper" (or other classifications based on hours of experience) or any other classification not appearing in the Federal wage determinations. Where Federal wage determinations do not contain the State wage rate determination otherwise available for use by the Contractor and subcontractors, the Contractor and subcontractors shall pay not less than the Federal minimum wage rate which most closely approximates the duties of the employees in question. DEPARTMENT OF TRANSPORTATION Deputy Director Transportation Engineering Dated December 6, 2004 **EFO** ## COPY OF ENGINEER'S ESTIMATE (NOT TO BE USED FOR BIDDING PURPOSES) #### 07-195904 | Item
No. | Item Code | Item Description | Unit of Measure | Estimated Quantity | |-------------|-----------|--|-----------------|--------------------| | 1 | 070012 | PROGRESS SCHEDULE (CRITICAL PATH METHOD) | LS | LUMP SUM | | 2 | 070018 | TIME-RELATED OVERHEAD | LS | LUMP SUM | | 3 | 071322 | TEMPORARY FENCE (TYPE CL-1.8) | M | 148 | | 4 | 074019 | PREPARE STORM WATER POLLUTION
PREVENTION PLAN | LS | LUMP SUM | | 5 | 074020 | WATER POLLUTION CONTROL | LS | LUMP SUM | | 6
(S) | 120090 | CONSTRUCTION AREA SIGNS | LS | LUMP SUM | | 7
(S) | 120100 | TRAFFIC CONTROL SYSTEM | LS | LUMP SUM | | 8
(S) | 120116 | TYPE II BARRICADE | EA | 12 | | 9
(S) | 120120 | TYPE III BARRICADE | EA | 9 | | 10
(S) | 120165 | CHANNELIZER (SURFACE MOUNTED) | EA | 320 | | 11
(S) | 121161 | TEMPORARY TERMINAL SECTION (TYPE K) | EA | 3 | | 12
(S) | 033808 | TEMPORARY SIGNAL AND LIGHTING (CITY) | LS | LUMP SUM | | 13
(S) | 129000 | TEMPORARY RAILING (TYPE K) | M | 13 600 | | 14
(S) | 129100 | TEMPORARY CRASH CUSHION MODULE | EA | 180 | | 15 | 150608 | REMOVE CHAIN LINK FENCE | M | 170 | | 16 | 150662 | REMOVE METAL BEAM GUARD RAILING | M | 840 | | 17 | 150701 | REMOVE YELLOW PAINTED TRAFFIC STRIPE | M | 10 000 | | 18 | 150704 | REMOVE YELLOW THERMOPLASTIC TRAFFIC STRIPE | M | 5200 | | 19 | 150711 | REMOVE PAINTED TRAFFIC STRIPE | M | 16 800 | | 20 | 150713 | REMOVE PAVEMENT MARKING | M2 | 61 | | Item
No. | Item Code | Item Description | Unit of Measure | Estimated Quantity | |-------------|-----------|--|-----------------|--------------------| | 21 | 150714 | REMOVE THERMOPLASTIC TRAFFIC STRIPE | M | 7450 | | 22 | 150722 | REMOVE PAVEMENT MARKER | EA | 9110 | | 23 | 150744 | REMOVE ROADSIDE SIGN (WOOD POST) | EA | 55 | | 24 | 150760 | REMOVE SIGN STRUCTURE | EA | 16 | | 25 | 150806 | REMOVE PIPE | M | 950 | | 26 | 150820 | REMOVE INLET | EA | 35 | | 27 | 150860 | REMOVE BASE AND SURFACING | M3 | 230 | | 28 | 150870 | REMOVE CONCRETE DECK SURFACE | M2 | 7 | | 29
(S) | 151540 | RECONSTRUCT CHAIN LINK FENCE | M | 470 | | 30
(S) | 151625 | RECONSTRUCT METAL BEAM GUARD RAILING (WOOD POST) | M | 220 | | 31 | 152390 | RELOCATE ROADSIDE SIGN | EA | 3 | | 32 | 152394 | RELOCATE SIGN STRUCTURE | EA | 1 | | 33 | 152604 | MODIFY INLET | EA | 3 | | 34 | 153213 | REMOVE CONCRETE (STRUCTURE) | M3 | 6 | | 35 | 153216 | REMOVE CONCRETE CURB AND SIDEWALK | M | 4640 | | 36 | 153221 | REMOVE CONCRETE BARRIER | M | 4020 | | 37 | 153225 | PREPARE CONCRETE BRIDGE DECK SURFACE | M2 | 83 | | 38 | 155003 | CAP INLET | EA | 18 | | 39 | 156585 | REMOVE CRASH CUSHION | EA | 1 | | 40 | 049774 | BRIDGE REMOVAL , RETAINING WALL NO 165 | LS | LUMP SUM | | Item
No. | Item Code | Item Description | Unit of Measure | Estimated Quantity | |-------------|-----------|---|-----------------|--------------------| | 41 | 049775 | BRIDGE REMOVAL , RETAINING WALL NO 113 | LS | LUMP SUM | | 42 | 049776 | BRIDGE REMOVAL , RETAINING WALL NO 157 | LS | LUMP SUM | | 43 | 157561 | BRIDGE REMOVAL (PORTION), LOCATION A | LS | LUMP SUM | | 14 | 157562 | BRIDGE REMOVAL (PORTION), LOCATION B | LS | LUMP SUM | | 15 | 157563 | BRIDGE REMOVAL (PORTION), LOCATION C | LS | LUMP SUM | | 46 | 157564 | BRIDGE REMOVAL (PORTION), LOCATION D | LS | LUMP SUM | | 47 | 157565 | BRIDGE REMOVAL (PORTION), LOCATION E | LS | LUMP SUM | | 48 | 157566 | BRIDGE REMOVAL (PORTION), LOCATION F | LS | LUMP SUM | | 19 | 157567 | BRIDGE REMOVAL (PORTION), LOCATION G | LS | LUMP SUM | | 50 | 160101 | CLEARING AND GRUBBING | LS | LUMP SUM | | 51 | 190101 | ROADWAY EXCAVATION | M3 | 24 300 | | 52 | 190103 | ROADWAY EXCAVATION (TYPE Y) (AERIALLY DEPOSITED LEAD) | M3 | 16 300 | | 53 | 190110 | LEAD COMPLIANCE PLAN | LS | LUMP SUM | | 54
(F) | 192003 | STRUCTURE EXCAVATION (BRIDGE) | M3 | 1117 | |
55
(F) | 192037 | STRUCTURE EXCAVATION (RETAINING WALL) | M3 | 2386 | | 56
(F) | 192051 | STRUCTURE EXCAVATION (TYPE Y) (AERIALLY DEPOSITED LEAD) | M3 | 2718 | | 57
(F) | 193003 | STRUCTURE BACKFILL (BRIDGE) | M3 | 2745 | | 58
(F) | 193013 | STRUCTURE BACKFILL (RETAINING WALL) | M3 | 4637 | | 59
(S) | 200001 | HIGHWAY PLANTING | LS | LUMP SUM | | 60
(S) | 203014 | FIBER (EROSION CONTROL) | KG | 810 | | Item
No. | Item Code | Item Description | Unit of Measure | Estimated Quantity | |-------------|-----------|---|-----------------|--------------------| | 61
(S) | 203045 | PURE LIVE SEED (EROSION CONTROL) | KG | 51 | | 62
(S) | 203056 | COMMERCIAL FERTILIZER (EROSION CONTROL) | KG | 350 | | 63
(S) | 204099 | PLANT ESTABLISHMENT WORK | LS | LUMP SUM | | 64
(S) | 208000 | IRRIGATION SYSTEM | LS | LUMP SUM | | 65
(F) | 208036 | NPS 2 SUPPLY LINE (BRIDGE) | M | 58 | | 66
(F) | 208038 | NPS 3 SUPPLY LINE (BRIDGE) | M | 62 | | 67 | 049777 | NPS 3 ELECTRICAL CONDUIT (BRIDGE) | M | 62 | | 68 | 049778 | NPS 2 ELECTRICAL CONDUIT (BRIDGE) | M | 33 | | 69
(S) | 208304 | WATER METER | EA | 1 | | 70
(S) | 208731 | 200 MM CORRUGATED HIGH DENSITY
POLYETHYLENE PIPE CONDUIT | M | 160 | | 71
(S) | 208909 | EXTEND 200 MM CONDUIT | M | 5 | | 72
(S) | 208910 | EXTEND 250 MM CONDUIT | M | 5 | | 73 | 260210 | AGGREGATE BASE (APPROACH SLAB) | M3 | 12 | | 74 | 260301 | CLASS 3 AGGREGATE BASE | M3 | 8840 | | 75 | 280000 | LEAN CONCRETE BASE | M3 | 5360 | | 76 | 049779 | ASPHALT CONCRETE (BRIDGE) | TONN | 46 | | 77 | 390154 | ASPHALT CONCRETE (TYPE B) | TONN | 14 500 | | 78 | 394002 | PLACE ASPHALT CONCRETE (MISCELLANEOUS AREA) | M2 | 45 | | 79 | 394044 | PLACE ASPHALT CONCRETE DIKE (TYPE C) | M | 1110 | | 30 | 394049 | PLACE ASPHALT CONCRETE DIKE (TYPE F) | M | 230 | | Item
No. | Item Code | Item Description | Unit of Measure | Estimated Quantity | |-------------|-----------|---|-----------------|--------------------| | 81 | 401000 | CONCRETE PAVEMENT | M3 | 9100 | | 82 | 401066 | CONCRETE PAVEMENT (RAMP TERMINI) | M3 | 160 | | 83 | 404092 | SEAL PAVEMENT JOINT | M | 5050 | | 34 | 404094 | SEAL LONGITUDINAL ISOLATION JOINT | M | 8540 | | 85
(S) | 049780 | PROFILE GRINDING FOR CONCRETE PAVEMENT | M | 5660 | | 86
(S) | 049781 | MICROPILE | EA | 22 | | 87
(S) | 049782 | PILE LOAD TEST | EA | 2 | | 88
(S) | 490657 | 600 MM CAST-IN-DRILLED-HOLE CONCRETE
PILING | M | 880 | | 39 | 490753 | FURNISH PILING (CLASS 625) | M | 1632 | | 90
(S) | 490754 | DRIVE PILE (CLASS 625) | EA | 125 | | 91 | 490757 | FURNISH PILING (CLASS 625C) | M | 449 | | 92
(S) | 490758 | DRIVE PILE (CLASS 625C) | EA | 36 | | 93 | 490759 | FURNISH PILING (CLASS 400C) | M | 298 | | 94
(S) | 490760 | DRIVE PILE (CLASS 400C) | EA | 24 | | 95 | 491007 | FURNISH PILING (CLASS 400) | M | 821 | | 96
(S) | 491008 | DRIVE PILE (CLASS 400) | EA | 68 | | 97
(S) | 498027 | 400 MM CAST-IN-DRILLED-HOLE CONCRETE
PILING (SOUND WALL) | M | 4487 | | 98
(S) | 500050 | TIEBACK ANCHOR | EA | 12 | | 99
(F) | 510051 | STRUCTURAL CONCRETE, BRIDGE FOOTING | M3 | 387 | | 100
(F) | 510053 | STRUCTURAL CONCRETE, BRIDGE | M3 | 1810 | | Item
No. | Item Code | Item Description | Unit of Measure | Estimated Quantity | |-------------|-----------|--|-----------------|--------------------| | 101
(F) | 510060 | STRUCTURAL CONCRETE, RETAINING WALL | M3 | 1609 | | 102
(F) | 510086 | STRUCTURAL CONCRETE, APPROACH SLAB (TYPE N) | M3 | 255 | | 103
(F) | 510087 | STRUCTURAL CONCRETE, APPROACH SLAB (TYPE R) | М3 | 173 | | 104
(F) | 510502 | MINOR CONCRETE (MINOR STRUCTURE) | M3 | 230 | | 105 | 510504 | MINOR CONCRETE (PIPE ENCASEMENT) | M3 | 4 | | 106
(F) | 510524 | MINOR CONCRETE (SOUND WALL) | M3 | 55 | | 107 | 510800 | PAVING NOTCH EXTENSION | M3 | 1.9 | | 108
(F) | 511064 | FRACTURED RIB TEXTURE | M2 | 214 | | 109
(F) | 049783 | FRACTURED RIB TEXTURE AND V-NOTCH | M2 | 2368 | | 110 | 511106 | DRILL AND BOND DOWEL | M | 691 | | 111 | 511109 | DRILL AND BOND DOWEL (EPOXY CARTRIDGE) | EA | 60 | | 112 | 512232 | FURNISH PRECAST PRESTRESSED CONCRETE
GIRDER (20 M - 25 M) | EA | 21 | | 113 | 512234 | FURNISH PRECAST PRESTRESSED CONCRETE
GIRDER (30 M - 35 M) | EA | 2 | | 114 | 512235 | FURNISH PRECAST PRESTRESSED CONCRETE
GIRDER (35 M - 40 M) | EA | 3 | | 115 | 512354 | FURNISH PRECAST PRESTRESSED CONCRETE SLAB (TYPE SIV) | M2 | 163 | | 116
(S) | 512500 | ERECT PRECAST PRESTRESSED CONCRETE
GIRDER | EA | 26 | | 117
(S) | 512510 | ERECT PRECAST PRESTRESSED CONCRETE DECK UNIT | EA | 11 | | 118 | 515020 | REFINISH BRIDGE DECK | M2 | 75 | | 119 | 515041 | FURNISH POLYESTER CONCRETE OVERLAY | M3 | 0.6 | | 120
(F) | 515042 | PLACE POLYESTER CONCRETE OVERLAY | M2 | 15 | | Item
No. | Item Code | Item Description | Unit of Measure | Estimated Quantity | |--------------|-----------|---|-----------------|--------------------| | 121
(S-F) | 518002 | SOUND WALL (MASONRY BLOCK) | M2 | 3986 | | 122 | 519050 | EXPANSION DAM | M3 | 2.1 | | 123
(S) | 519117 | JOINT SEAL (MR 30 MM) | M | 45 | | 124
(S) | 519120 | JOINT SEAL (MR 15 MM) | M | 73 | | 125
(S) | 519144 | JOINT SEAL (MR 50 MM) | M | 6 | | 126
(S-F) | 520102 | BAR REINFORCING STEEL (BRIDGE) | KG | 315 470 | | 127
(S-F) | 520103 | BAR REINFORCING STEEL (RETAINING WALL) | KG | 100 930 | | 128
(F) | 560218 | FURNISH SIGN STRUCTURE (TRUSS) | KG | 94 130 | | 129
(S-F) | 560219 | INSTALL SIGN STRUCTURE (TRUSS) | KG | 98 530 | | 130
(F) | 560223 | FURNISH SIGN STRUCTURE (BRIDGE MOUNTED WITHOUT WALKWAY) | KG | 484 | | 131
(F) | 560224 | INSTALL SIGN STRUCTURE (BRIDGE MOUNTED WITHOUT WALKWAY) | KG | 484 | | 132
(S) | 561008 | 760 MM CAST-IN-DRILLED-HOLE CONCRETE PILE (SIGN FOUNDATION) | М | 18 | | 133
(S) | 561009 | 920 MM CAST-IN-DRILLED-HOLE CONCRETE PILE (SIGN FOUNDATION) | М | 72 | | 134
(S) | 033809 | 1370 MM CAST-IN-DRILLED-HOLE CONCRETE
PILE (SIGN FOUNDATION) | M | 17 | | 135
(S) | 033810 | 1524 MM CAST-IN-DRILLED-HOLE CONCRETE
PILE (SIGN FOUNDATION) | M | 9 | | 136 | 562002 | METAL (BARRIER MOUNTED SIGN) | KG | 1330 | | 137 | 033811 | METAL (SOUND WALL MOUNTED SIGN) | KG | 560 | | 138 | 566011 | ROADSIDE SIGN - ONE POST | EA | 27 | | 139 | 566012 | ROADSIDE SIGN - TWO POST | EA | 8 | | 140 | 568001 | INSTALL SIGN (STRAP AND SADDLE BRACKET METHOD) | EA | 17 | | Item
No. | Item Code | Item Description | Unit of Measure | Estimated Quantity | |--------------|-----------|--|-----------------|--------------------| | 141 | 033812 | INSTALL BRIDGE OVERLAY (STICKY BACK) | M2 | 4 | | 142 | 568016 | INSTALL SIGN PANEL ON EXISTING FRAME | M2 | 44 | | 143 | 568023 | INSTALL ROADSIDE SIGN (LAMINATED WOOD BOX POST) | EA | 3 | | 144 | 641132 | 300 MM PLASTIC PIPE | M | 180 | | 145 | 650068 | 375 MM REINFORCED CONCRETE PIPE | M | 4 | | 146 | 650069 | 450 MM REINFORCED CONCRETE PIPE | M | 48 | | 147 | 650075 | 600 MM REINFORCED CONCRETE PIPE | M | 690 | | 148 | 650079 | 900 MM REINFORCED CONCRETE PIPE | M | 43 | | 149 | 665733 | 450 MM SLOTTED CORRUGATED STEEL PIPE (2.01 MM THICK) | M | 430 | | 150 | 703233 | GRATED LINE DRAIN | M | 44 | | 151 | 703271 | 450 MM CORRUGATED STEEL PIPE RISER (2.01 MM THICK) | M | 1 | | 152 | 721011 | ROCK SLOPE PROTECTION (BACKING NO. 2, METHOD B) | M3 | 7 | | 153 | 033813 | ROCK SLOPE PROTECTION FABRIC (TYPE A) | M2 | 33 | | 154 | 731502 | MINOR CONCRETE (MISCELLANEOUS CONSTRUCTION) | M3 | 670 | | 155
(F) | 731517 | MINOR CONCRETE (GUTTER) | M | 188 | | 156
(S-F) | 750001 | MISCELLANEOUS IRON AND STEEL | KG | 21 653 | | 157
(S) | 802589 | 1.5 M CHAIN LINK GATE
(TYPE CL-1.8) | EA | 11 | | 158 | 820107 | DELINEATOR (CLASS 1) | EA | 67 | | 159
(S-F) | 833020 | CHAIN LINK RAILING | M | 188 | | 160 | 833080 | CONCRETE BARRIER (TYPE K) | M | 240 | | Item
No. | Item Code | Item Description | Unit of Measure | Estimated Quantity | |-------------|-----------|---|-----------------|--------------------| | 161
(S) | 839551 | TERMINAL SECTION (TYPE B) | EA | 2 | | 162
(S) | 839559 | TERMINAL SYSTEM (TYPE ET) | EA | 2 | | 163
(S) | 839565 | TERMINAL SYSTEM (TYPE SRT) | EA | 4 | | (S) | 839568 | TERMINAL ANCHOR ASSEMBLY (TYPE SFT) | EA | 4 | | 165
(S) | 839604 | CRASH CUSHION (REACT 9CBB) | EA | 4 | | 166 | 839701 | CONCRETE BARRIER (TYPE 60) | M | 550 | | 167 | 033814 | CONCRETE BARRIER (TYPE 60R) | M | 200 | | 168 | 033815 | CONCRETE BARRIER (TYPE 60W) | M | 2760 | | 169
(F) | 049784 | CONCRETE BARRIER (TYPE 60 MODIFIED) | M | 336 | | 170 | 839731 | CONCRETE BARRIER (TYPE 736B) | M | 960 | | 171
(F) | 839727 | CONCRETE BARRIER (TYPE 736 MODIFIED) | M | 975 | | 172
(F) | 839734 | CONCRETE BARRIER (TYPE 736SV) | M | 1045 | | 173
(S) | 840515 | THERMOPLASTIC PAVEMENT MARKING | M2 | 160 | | 174
(S) | 033816 | 100 MM INVERTED PROFILE THERMOPLASTIC TRAFFIC STRIPE (SOLID) | M | 21 300 | | 175
(S) | 033817 | 200 MM INVERTED PROFILE THERMOPLASTIC
TRAFFIC STRIPE (SOLID) | M | 1940 | | 176
(S) | 033818 | 200 MM INVERTED PROFILE THERMOPLASTIC
TRAFFIC STRIPE (BROKEN 3.66 M - 0.92 M) | M | 1340 | | 177
(S) | 033819 | 100 MM INVERTED PROFILE THERMOPLASTIC
TRAFFIC STRIPE (BROKEN 10.98 M - 3.66 M) | M | 310 | | 178
(S) | 033820 | 100 MM INVERTED PROFILE THERMOPLASTIC
TRAFFIC STRIPE (BROKEN 5.18 M - 2.14 M) | M | 16 300 | | 179
(S) | 033821 | 200 MM INVERTED PROFILE THERMOPLASTIC
TRAFFIC STRIPE (BROKEN 10.98 M - 3.66 M) | M | 1010 | | 180
(S) | 840656 | PAINT TRAFFIC STRIPE (2-COAT) | M | 40 600 | | Item
No. | Item Code | Item Description | Unit of Measure |
Estimated Quantity | |--------------|-----------|--|-----------------|--------------------| | 181
(S) | 840666 | PAINT PAVEMENT MARKING (2-COAT) | M2 | 110 | | 182
(S) | 850101 | PAVEMENT MARKER (NON-REFLECTIVE) | M | 9000 | | 183
(S) | 850111 | PAVEMENT MARKER (RETROREFLECTIVE) | M | 6400 | | 184
(S) | 033822 | LIGHTING (CITY) | LS | LUMP SUM | | 185
(S) | 033823 | RELOCATE CHANGEABLE MESSAGE SIGN NO. 32 | LS | LUMP SUM | | 186
(S) | 860640 | IRRIGATION CONTROLLER ENCLOSURE CABINET | EA | 4 | | 187
(S-F) | 049785 | COMMUNICATION CONDUIT (BARRIER) | M | 3750 | | 188
(S-F) | 860792 | COMMUNICATION CONDUIT (BRIDGE) | M | 206 | | 189
(S-F) | 860796 | SPRINKLER CONTROL CONDUIT (BRIDGE) | M | 120 | | 190
(S) | 860797 | ELECTRIC SERVICE (IRRIGATION) | LS | LUMP SUM | | 191
(S) | 860889 | MODIFY TRAFFIC MONITORING STATION | LS | LUMP SUM | | 192
(S) | 033824 | TRAFFIC MONITORING STATION NO. 2421 (KP 47.92) | LS | LUMP SUM | | 193
(S) | 033825 | RELOCATE CLOSED CIRCUIT TELEVISION
CAMERA SD307 | LS | LUMP SUM | | 194
(S) | 033826 | RELOCATE CLOSED CIRCUIT TELEVISION
CAMERA SD321 | LS | LUMP SUM | | 195
(S) | 033827 | COMMUNICATION SYSTEM ROUTING (MODIFY) | LS | LUMP SUM | | 196
(S) | 861088 | MODIFY RAMP METERING SYSTEM | LS | LUMP SUM | | 197
(S) | 033828 | MODIFY VIDEO NODE SD301 | LS | LUMP SUM | | 198
(S) | 033829 | MODIFY DATA NODE SD301 | LS | LUMP SUM | | 199
(S) | 033830 | RELOCATE EXTINGUISHABLE MESSAGE SIGN | LS | LUMP SUM | | 200
(S) | 033831 | MODIFY SIGNAL AND LIGHTING (CITY) | LS | LUMP SUM | | Item
No. | Item Code | Item Description | Unit of Measure | Estimated Quantity | |-------------|-----------|---------------------------------------|-----------------|--------------------| | 201
(S) | 033832 | MODIFY LIGHTING (CITY) | LS | LUMP SUM | | 202
(S) | 861504 | MODIFY LIGHTING AND SIGN ILLUMINATION | LS | LUMP SUM | | 203
(S) | 869075 | SYSTEM TESTING AND DOCUMENTATION | LS | LUMP SUM | | 204 | 999990 | MOBILIZATION | LS | LUMP SUM | ## STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION ____ #### SPECIAL PROVISIONS Annexed to Contract No. 07-195904 #### SECTION 1. SPECIFICATIONS AND PLANS The work embraced herein shall conform to the provisions in the Standard Specifications dated July 1999, and the Standard Plans dated July 1999, of the Department of Transportation insofar as the same may apply, and these special provisions. In case of conflict between the Standard Specifications and these special provisions, the special provisions shall take precedence over and shall be used in lieu of the conflicting portions. # AMENDMENTS TO JULY 1999 STANDARD SPECIFICATIONS #### **UPDATED NOVEMBER 2, 2004** Amendments to the Standard Specifications set forth in these special provisions shall be considered as part of the Standard Specifications for the purposes set forth in Section 5-1.04, "Coordination and Interpretation of Plans, Standard Specifications and Special Provisions," of the Standard Specifications. Whenever either the term "Standard Specifications is amended" or the term "Standard Specifications are amended" is used in the special provisions, the text or table following the term shall be considered an amendment to the Standard Specifications. In case of conflict between such amendments and the Standard Specifications, the amendments shall take precedence over and be used in lieu of the conflicting portions. #### **SECTION 1: DEFINITIONS AND TERMS** Issue Date: November 2, 2004 Section 1-1.265, "Manual of Traffic Controls," of the Standard Specifications is amended to read: #### 1-1.265 Manual on Uniform Traffic Control Devices • "Manual on Uniform Traffic Control Devices" (MUTCD) is published by the Federal Highway Administration. Section 1, "Definitions and Terms," of the Standard Specifications is amended by adding the following section: #### 1-1.266 Manual on Uniform Traffic Control Devices California Supplement • "Manual on Uniform Traffic Control Devices California Supplement" (MUTCD California Supplement) is published by the Department of Transportation to provide amendments to the MUTCD. The MUTCD and MUTCD CA Supplement supersede and replace the Department's Manual of Traffic Controls. #### SECTION 2: PROPOSAL REQUIREMENTS AND CONDITIONS Issue Date: June 19, 2003 Section 2-1.03, "Examination of Plans, Specifications, Contract, and Site of Work," of the Standard Specifications is amended to read: #### 2-1.03 Examination of Plans, Specifications, Contract, and Site of Work - The bidder shall examine carefully the site of the work contemplated, the plans and specifications, and the proposal and contract forms therefor. The submission of a bid shall be conclusive evidence that the bidder has investigated and is satisfied as to the general and local conditions to be encountered, as to the character, quality and scope of work to be performed, the quantities of materials to be furnished and as to the requirements of the proposal, plans, specifications and the contract. - The submission of a bid shall also be conclusive evidence that the bidder is satisfied as to the character, quality and quantity of surface and subsurface materials or obstacles to be encountered insofar as this information was reasonably ascertainable from an inspection of the site and the records of exploratory work done by the Department as shown in the bid documents, as well as from the plans and specifications made a part of the contract. - Where the Department has made investigations of site conditions including subsurface conditions in areas where work is to be performed under the contract, or in other areas, some of which may constitute possible local material sources, bidders or contractors may, upon written request, inspect the records of the Department as to those investigations subject to and upon the conditions hereinafter set forth. - Where there has been prior construction by the Department or other public agencies within the project limits, records of the prior construction that are currently in the possession of the Department and which have been used by, or are known to, the designers and administrators of the project will be made available for inspection by bidders or contractors, upon written request, subject to the conditions hereinafter set forth. The records may include, but are not limited to, as-built drawings, design calculations, foundation and site studies, project reports and other data assembled in connection with the investigation, design, construction and maintenance of the prior projects. - Inspection of the records of investigations and project records may be made at the office of the district in which the work is situated, or in the case of records of investigations related to structure work, at the Transportation Laboratory in Sacramento, California. - When a log of test borings or other record of geotechnical data obtained by the Department's investigation of surface and subsurface conditions is included with the contract plans, it is furnished for the bidders' or Contractor's information and its use shall be subject to the conditions and limitations set forth in this Section 2-1.03. - In some instances, information considered by the Department to be of possible interest to bidders or contractors has been compiled as "Materials Information." The use of the "Materials Information" shall be subject to the conditions and limitations set forth in this Section 2-1.03 and Section 6-2, "Local Materials." - When cross sections are not included with the plans, but are available, bidders or contractors may inspect the cross sections and obtain copies for their use, at their expense. - When cross sections are included with the contract plans, it is expressly understood and agreed that the cross sections do not constitute part of the contract, do not necessarily represent actual site conditions or show location, character, dimensions and details of work to be performed, and are included in the plans only for the convenience of bidders and their use is subject to the conditions and limitations set forth in this Section 2-1.03. - When contour maps were used in the design of the project, the bidders may inspect those maps, and if available, they may obtain copies for their use. - The availability or use of information described in this Section 2-1.03 is not to be construed in any way as a waiver of the provisions of the first paragraph in this Section 2-1.03 and bidders and contractors are cautioned to make independent investigations and examinations as they deem necessary to be satisfied as to conditions to be encountered in the performance of the work and, with respect to possible local material sources, the quality and quantity of material available from the property and the type and extent of processing that may be required in order to produce material conforming to the requirements of the specifications. - The Department assumes no responsibility for conclusions or interpretations made by a bidder or contractor based on the information or data made available by the Department. The Department does not assume responsibility for representation made by its officers or agents before the execution of the contract concerning surface or subsurface conditions, unless that representation is expressly stated in the contract. - No conclusions or interpretations made by a bidder or contractor from the information and data made available by the Department will relieve a bidder or contractor from properly fulfilling the terms of the contract. #### **SECTION 5: CONTROL OF WORK** Issue Date: December 31, 2001 Section 5-1.02A, "Trench Excavation Safety Plans," of the Standard Specifications is amended to read: #### 5-1.02A Excavation Safety Plans - The Construction Safety Orders of the Division of Occupational Safety and Health shall apply to all excavations. For all excavations 1.5 m or more in depth,
the Contractor shall submit to the Engineer a detailed plan showing the design and details of the protective systems to be provided for worker protection from the hazard of caving ground during excavation. The detailed plan shall include any tabulated data and any design calculations used in the preparation of the plan. Excavation shall not begin until the detailed plan has been reviewed and approved by the Engineer. - Detailed plans of protective systems for which the Construction Safety Orders require design by a registered professional engineer shall be prepared and signed by an engineer who is registered as a Civil Engineer in the State of California, and shall include the soil classification, soil properties, soil design calculations that demonstrate adequate stability of the protective system, and any other design calculations used in the preparation of the plan. - No plan shall allow the use of a protective system less effective than that required by the Construction Safety Orders. - If the detailed plan includes designs of protective systems developed only from the allowable configurations and slopes, or Appendices, contained in the Construction Safety Orders, the plan shall be submitted at least 5 days before the Contractor intends to begin excavation. If the detailed plan includes designs of protective systems developed from tabulated data, or designs for which design by a registered professional engineer is required, the plan shall be submitted at least 3 weeks before the Contractor intends to begin excavation. - Attention is directed to Section 7-1.01E, "Trench Safety." #### SECTION 7: LEGAL RELATIONS AND RESPONSIBILITY Issue Date: November 2, 2004 The eighth paragraph of Section 7-1.09, "Public Safety" of the Standard Specifications is amended to read: • Signs, lights, flags, and other warning and safety devices and their use shall conform to the requirements set forth in Part 6 of the MUTCD and of the MUTCD California Supplement. Signs or other protective devices furnished and erected by the Contractor, at the Contractor's expense, as above provided, shall not obscure the visibility of, nor conflict in intent, meaning and function of either existing signs, lights and traffic control devices or any construction area signs and traffic control devices for which furnishing of, or payment for, is provided elsewhere in the specifications. Signs furnished and erected by the Contractor, at the Contractor's expense, shall be approved by the Engineer as to size, wording and location. #### **SECTION 9: MEASUREMENT AND PAYMENT** Issue Date: February 10, 2004 Section 9-1.04, "Notice of Potential Claim," of the Standard Specifications is amended to read: #### 9-1.04 NOTICE OF POTENTIAL CLAIM - It is the intention of this section that disputes between the parties arising under and by virtue of the contract be brought to the attention of the Engineer at the earliest possible time in order that the matters may be resolved, if possible, or other appropriate action promptly taken. - Disputes will not be considered unless the Contractor has first complied with specified notice or protest requirements, including Section 4-1.03, "Changes," Section 5-1.116, "Differing Site Conditions," Section 8-1.06, "Time of Completion," Section 8-1.07, "Liquidated Damages," and Section 8-1.10, "Utility and Non-Highway Facilities." - For disputes arising under and by virtue of the contract, including an act or failure to act by the Engineer, the Contractor shall provide a signed written initial notice of potential claim to the Engineer within 5 days from the date the dispute first arose. The initial notice of potential claim shall provide the nature and circumstances involved in the dispute which shall remain consistent through the dispute. The initial notice of potential claim shall be submitted on Form CEM-6201A furnished by the Department and shall be certified with reference to the California False Claims Act, Government Code Sections 12650-12655. The Contractor shall assign an exclusive identification number for each dispute, determined by chronological sequencing, based on the date of the dispute. - The exclusive identification number for each dispute shall be used on the following corresponding documents: - A. Initial notice of potential claim. - B. Supplemental notice of potential claim. - C. Full and final documentation of potential claim. - D. Corresponding claim included in the Contractor's written statement of claims. Contract No. 07-195904 - The Contractor shall provide the Engineer the opportunity to examine the site of work within 5 days from the date of the initial notice of potential claim. The Contractor shall proceed with the performance of contract work unless otherwise specified or directed by the Engineer. - Throughout the disputed work, the Contractor shall maintain records that provide a clear distinction between the incurred direct costs of disputed work and that of undisputed work. The Contractor shall allow the Engineer access to the Contractor's project records deemed necessary by the Engineer to evaluate the potential claim within 20 days of the date of the Engineer's written request. - Within 15 days of submitting the initial notice of potential claim, the Contractor shall provide a signed supplemental notice of potential claim to the Engineer that provides the following information: - A. The complete nature and circumstances of the dispute which caused the potential claim. - B. The contract provisions that provide the basis of claim. - C. The estimated cost of the potential claim, including an itemized breakdown of individual costs and how the estimate was determined. - D. A time impact analysis of the project schedule that illustrates the effect on the scheduled completion date due to schedule changes or disruptions where a request for adjustment of contract time is made. - The information provided in items A and B above shall provide the Contractor's complete reasoning for additional compensation or adjustments. - The supplemental notice of potential claim shall be submitted on Form CEM-6201B furnished by the Department and shall be certified with reference to the California False Claims Act, Government Code Sections 12650-12655. The Engineer will evaluate the information presented in the supplemental notice of potential claim and provide a written response to the Contractor within 20 days of its receipt. If the estimated cost or effect on the scheduled completion date changes, the Contractor shall update information in items C and D above as soon as the change is recognized and submit this information to the Engineer. - Within 30 days of the completion of work related to the potential claim, the Contractor shall provide the full and final documentation of potential claim to the Engineer that provides the following information: - A. A detailed factual narration of events fully describing the nature and circumstances that caused the dispute, including, but not limited to, necessary dates, locations, and items of work affected by the dispute. - B. The specific provisions of the contract that support the potential claim and a statement of the reasons these provisions support and provide a basis for entitlement of the potential claim. - C. When additional monetary compensation is requested, the exact amount requested calculated in conformance with Section 9-1.03, "Force Account Payment," or Section 8-1.09, "Right of Way Delays," including an itemized breakdown of individual costs. These costs shall be segregated into the following cost categories: - 1. Labor A listing of individuals, classifications, regular hours and overtime hours worked, dates worked, and other pertinent information related to the requested reimbursement of labor costs. - 2. Materials Invoices, purchase orders, location of materials either stored or incorporated into the work, dates materials were transported to the project or incorporated into the work, and other pertinent information related to the requested reimbursement of material costs. - 3. Equipment Listing of detailed description (make, model, and serial number), hours of use, dates of use and equipment rates. Equipment rates shall be at the applicable State rental rate as listed in the Department of Transportation publication entitled "Labor Surcharge and Equipment Rental Rates," in effect when the affected work related to the dispute was performed. - 4. Other categories as specified by the Contractor or the Engineer. - D. When an adjustment of contract time is requested the following information shall be provided: - 1. The specific dates for which contract time is being requested. - 2. The specific reasons for entitlement to a contract time adjustment. - 3. The specific provisions of the contract that provide the basis for the requested contract time adjustment. - 4. A detailed time impact analysis of the project schedule. The time impact analysis shall show the effect of changes or disruptions on the scheduled completion date to demonstrate entitlement to a contract time adjustment. - E. The identification and copies of the Contractor's documents and the substance of oral communications that support the potential claim. - The full and final documentation of the potential claim shall be submitted on Form CEM-6201C furnished by the Department and shall be certified with reference to the California False Claims Act, Government Code Sections 12650-12655. - Pertinent information, references, arguments, and data to support the potential claim shall be included in the full and final documentation of potential claim. Information submitted subsequent to the full and final documentation submittal will not be considered. Information required in the full and final documentation of potential claim, as listed in items A to E above, that is not applicable to the dispute may be exempted as determined by the Engineer. No full and final documentation of potential claim will be considered
that does not have the same nature and circumstances, and basis of claim as those specified on the initial and supplemental notices of potential claim. - The Engineer will evaluate the information presented in the full and final documentation of potential claim and provide a written response to the Contractor within 30 days of its receipt unless otherwise specified. The Engineer's receipt of the full and final documentation of potential claim shall be evidenced by postal receipt or the Engineer's written receipt if delivered by hand. If the full and final documentation of potential claim is submitted by the Contractor after acceptance of the work by the Director, the Engineer need not provide a written response. - Provisions in this section shall not apply to those claims for overhead costs and administrative disputes that occur after issuance of the proposed final estimate. Administrative disputes are disputes of administrative deductions or retentions, contract item quantities, contract item adjustments, interest payments, protests of contract change orders as provided in Section 4-1.03A, "Procedure and Protest," and protests of the weekly statement of working days as provided in Section 8-1.06, "Time of Completion." Administrative disputes that occur prior to issuance of the proposed final estimate shall follow applicable requirements of this section. Information listed in the supplemental notice and full and final documentation of potential claim that is not applicable to the administrative dispute may be exempted as determined by the Engineer. - Unless otherwise specified in the special provisions, the Contractor may pursue the administrative claim process pursuant to Section 9-1.07B, "Final Payment and Claims," for any potential claim found by the Engineer to be without merit. - Failure of the Contractor to conform to specified dispute procedures shall constitute a failure to pursue diligently and exhaust the administrative procedures in the contract, and is deemed as the Contractor's waiver of the potential claim and a waiver of the right to a corresponding claim for the disputed work in the administrative claim process in conformance with Section 9-1.07B, "Final Payment of Claims," and shall operate as a bar to arbitration pursuant to Section 10240.2 of the California Public Contract Code. Section 9-1.07B, "Final Payment and Claims," of the Standard Specifications is amended to read: #### 9-1.07B Final Payment and Claims - After acceptance by the Director, the Engineer will make a proposed final estimate in writing of the total amount payable to the Contractor, including an itemization of the total amount, segregated by contract item quantities, extra work and other bases for payment, and shall also show each deduction made or to be made for prior payments and amounts to be kept or retained under the provisions of the contract. Prior estimates and payments shall be subject to correction in the proposed final estimate. The Contractor shall submit written approval of the proposed final estimate or a written statement of claims arising under or by virtue of the contract so that the Engineer receives the written approval or statement of claims no later than close of business of the thirtieth day after receiving the proposed final estimate. If the thirtieth day falls on a Saturday, Sunday or legal holiday, then receipt of the written approval or statement of claims by the Engineer shall not be later than close of business of the next business day. The Contractor's receipt of the proposed final estimate shall be evidenced by postal receipt. The Engineer's receipt of the Contractor's written approval or statement of claims shall be evidenced by postal receipt or the Engineer's written receipt if delivered by hand. - On the Contractor's approval, or if the Contractor files no claim within the specified period of 30 days, the Engineer will issue a final estimate in writing in conformance with the proposed final estimate submitted to the Contractor, and within 30 days thereafter the State will pay the entire sum so found to be due. That final estimate and payment thereon shall be conclusive and binding against both parties to the contract on all questions relating to the amount of work done and the compensation payable therefor, except as otherwise provided in Sections 9-1.03C, "Records," and 9-1.09, "Clerical Errors." - If the Contractor within the specified period of 30 days files claims, the Engineer will issue a semifinal estimate in conformance with the proposed final estimate submitted to the Contractor and within 30 days thereafter the State will pay the sum found to be due. The semifinal estimate and corresponding payment shall be conclusive and binding against both parties to the contract on each question relating to the amount of work done and the compensation payable therefor, except insofar as affected by the claims filed within the time and in the manner required hereunder and except as otherwise provided in Sections 9-1.03C, "Records," and 9-1.09, "Clerical Errors." - Except for claims for overhead costs and administrative disputes that occur after issuance of the proposed final estimate, the Contractor shall only provide the following two items of information for each claim: - A. The exclusive identification number that corresponds to the supporting full and final documentation of potential claim. - B. The final amount of requested additional compensation. - If the final amount of requested additional compensation is different than the amount of requested compensation included in the full and final documentation of potential claim, the Contractor shall provide in the written statement of claims the reasons for the changed amount, the specific provisions of the contract which support the changed amount, and a statement of the reasons the provisions support and provide a basis for the changed amount. If the Contractor's claim fails to provide an exclusive identification number or if there is a disparity in the provided exclusive identification number, the Engineer will notify the Contractor of the omission or disparity. The Contractor shall have 15 days after receiving notification from the Engineer to correct the omission or disparity. If after the 15 days has elapsed, there is still an omission or disparity of the exclusive identification number assigned to the claim, the Engineer will assign the number. No claim will be considered that has any of the following deficiencies: - A. The claim does not have the same nature, circumstances, and basis as the corresponding full and final documentation of potential claim. - B. The claim does not have a corresponding full and final documentation of potential claim. - C. The claim was not included in the written statement of claims. - D. The Contractor did not comply with applicable notice or protest requirements of Sections 4-1.03, "Changes," 5-1.116, "Differing Site Condition," 8-1.06, "Time of Completion," 8-1.07, "Liquidated Damages," 8-1.10, "Utility and Non-Highway Facilities," and 9-1.04, "Notice of Potential Claim." - Administrative disputes that occur after issuance of the proposed final estimate shall be included in the Contractor's written statement of claims in sufficient detail to enable the Engineer to ascertain the basis and amounts of those claims. - The Contractor shall keep full and complete records of the costs and additional time incurred for work for which a claim for additional compensation is made. The Engineer or designated claim investigators or auditors shall have access to those records and any other records as may be required by the Engineer to determine the facts or contentions involved in the claims. Failure to permit access to those records shall be sufficient cause for denying the claims. - The written statement of claims submitted by the Contractor shall be accompanied by a notarized certificate containing the following language: | Under the penalty of law for perjury or falsific | | |--|----------------------------| | reference to the California False Claims Act, C | Sovernment Code Section | | 12650 et. seq., the undersigned, | | | (name) | <u> </u> | | | of | | (title) | | | (company) | · | | hereby certifies that the claim for the additiona
any, made herein for the work on this contract
actual costs incurred and time sought, and is fu
under the contract between parties. | is a true statement of the | | Dated | | | /s/ | | | Subscribed and sworn before me this | day | | of | | | | | | (Notary Public) | | | My Commission | | | Expires | | • Failure to submit the notarized certificate will be sufficient cause for denying the claim. - Claims for overhead type expenses or costs, in addition to being certified as stated above, shall be supported and accompanied by an audit report of an independent Certified Public Accountant. Omission of a supporting audit report of an independent Certified Public Accountant shall result in denial of the claim and shall operate as a bar to arbitration, as to the claim, in conformance with the requirements in Section 10240.2 of the California Public Contract Code. Claims for overhead type expenses or costs shall be subject to audit by the State at its discretion. The costs of performing an audit examination and submitting the report shall be borne by the Contractor. The Certified Public Accountant's audit examination shall be performed in conformance with the requirements of the American Institute of Certified Public Accountants Attestation Standards. The audit examination and report shall depict the Contractor's project and company-wide financial records and shall specify the actual overall average daily rates for both field and home office overhead for the entire duration of the project, and
whether the costs have been properly allocated. The rates of field and home office overhead shall exclude unallowable costs as determined in Title 48 of the Federal Acquisition Regulations, Chapter 1, Part 31. The audit examination and report shall determine if the rates of field and home office overhead are: - A. Allowable in conformance with the requirements in Title 48 of the Federal Acquisition Regulations, Chapter 1, Part - B. Adequately supported by reliable documentation. - C. Related solely to the project under examination. - Costs or expenses incurred by the State in reviewing or auditing claims that are not supported by the Contractor's cost accounting or other records shall be deemed to be damages incurred by the State within the meaning of the California False Claims Act. - If the Contractor files a timely written statement of claims in response to the proposed final estimate, the District that administers the contract will submit a claim position letter to the Contractor by hand delivery or deposit in the U.S. mail within 135 days of acceptance of the contract. The claim position letter will delineate the District's position on the Contractor's claims. If the Contractor disagrees with the claim position letter, the Contractor shall submit a written notification of its disagreement and a written request to meet with the board of review, to be received by the District not later than 15 days after the Contractor's receipt of the claim position letter. The written notification of disagreement shall set forth the basis for the Contractor's disagreement and be submitted to the office designated in the claim position letter. The Contractor's failure to provide a timely written notification of disagreement or timely written request to meet with the board of review shall constitute the Contractor's acceptance and agreement with the determinations provided in the claim position letter and with final payment pursuant to the claim position letter. - If the Contractor files a timely notification of disagreement with the District claim position letter and a timely request to meet with the board of review, then the board of review, designated by the District Director to review claims that remain in dispute, will meet with the Contractor within 45 days after receipt by the District of the notification of disagreement. - If the District fails to submit a claim position letter to the Contractor within 135 days after the acceptance of the contract and the Contractor has claims that remain in dispute, the Contractor may request a meeting with the board of review designated by the District Director to review claims that remain in dispute. The Contractor's request for a meeting shall identify the claims that remain in dispute. If the Contractor files a request for a meeting, the board of review will meet with the Contractor within 45 days after the District receives the request for the meeting. - Attendance by the Contractor at the board of review meeting shall be mandatory. The board of review will review those claims and make a written recommendation thereon to the District Director. The final determination of claims, made by the District Director, will be sent to the Contractor by hand delivery or deposit in the U.S. mail. The Engineer will then make and issue the Engineer's final estimate in writing and within 30 days thereafter the State will pay the entire sum, if any, found due thereon. That final estimate shall be conclusive and binding against both parties to the contract on all questions relating to the amount of work done and the compensation payable therefor, except as otherwise provided in Sections 9-1.03C, "Records," and 9-1.09, "Clerical Errors." - Failure of the Contractor to conform to the specified dispute procedures shall constitute a failure to pursue diligently and exhaust the administrative procedures in the contract and shall operate as a bar to arbitration in conformance with the requirements in Section 10240.2 of the California Public Contract Code. #### SECTION 12: CONSTRUCTION AREA TRAFFIC CONTROL DEVICES Issue Date: November 2, 2004 The second paragraph of Section 12-1.01, "Description," of the Standard Specifications is amended to read: • Attention is directed to Part 6 of the MUTCD and of the MUTCD California Supplement. Nothing in this Section 12 is to be construed as to reduce the minimum standards in these manuals. Section 12-2.01, "Flaggers," of the Standard Specifications is amended to read: • Flaggers while on duty and assigned to traffic control or to give warning to the public that the highway is under construction and of any dangerous conditions to be encountered as a result thereof, shall perform their duties and shall be provided with the necessary equipment in conformance with Part 6 of the MUTCD and of the MUTCD California Supplement. The equipment shall be furnished and kept clean and in good repair by the Contractor at the Contractor's expense. The first paragraph of Section 12-3.01, "General," of the Standard Specifications is amended to read: • In addition to the requirements in Part 6 of the MUTCD and of the MUTCD California Supplement, all devices used by the Contractor in the performance of the work shall conform to the provisions in this Section 12-3. The first paragraph of Section 12-3.06, "Construction Area Signs," of the Standard Specifications is amended to read: • The term "Construction Area Signs" shall include all temporary signs required for the direction of public traffic through or around the work during construction. Construction area signs are shown in or referred to in Part 6 of the MUTCD and of the MUTCD California Supplement. The fourth paragraph of Section 12-3.06, "Construction Area Signs," of the Standard Specifications is amended to read: • All construction area signs shall conform to the dimensions, color and legend requirements of the plans, Part 6 of the MUTCD, Part 6 of the MUTCD California Supplement, and these specifications. All sign panels shall be the product of a commercial sign manufacturer, and shall be as specified in these specifications. The eighth paragraph of Section 12-3.06, "Construction Area Signs," of the Standard Specifications is amended to read: • Used signs with the specified sheeting material will be considered satisfactory if they conform to the requirements for visibility and legibility and the colors conform to the requirements in Part 6 of the MUTCD and of the MUTCD California Supplement. A significant difference between day and nighttime retroreflective color will be grounds for rejecting signs. Section 12-3.06A, "Stationary Mounted Signs," of the Standard Specifications is amended by deleting the third, fourth, fifth, and sixth paragraphs. #### **SECTION 15: EXISTING HIGHWAY FACILITIES** Issue Date: November 2, 2004 The sixth paragraph of Section 15-2.07, "Payment," of the Standard Specifications is amended to read: • Full compensation for removing, salvaging, reconstructing, relocating or resetting end caps, return caps, terminal sections, and buried post anchors, for metal beam guard railings and thrie beam barriers, and for connecting reconstructed, relocated or reset railings and barriers to new and existing facilities, including connections to concrete, shall be considered as included in the contract price paid per meter for the type of railing or barrier work involved and no additional compensation will be allowed therefor. #### **SECTION 19: EARTHWORK** Issue Date: December 31, 2001 The third paragraph of Section 19-1.02, "Preservation of Property," of the Standard Specifications is amended to read: • In addition to the provisions in Sections 5-1.02, "Plans and Working Drawings," and 5-1.02A, "Excavation Safety Plans," detailed plans of the protective systems for excavations on or affecting railroad property will be reviewed for adequacy of protection provided for railroad facilities, property, and traffic. These plans shall be submitted at least 9 weeks before the Contractor intends to begin excavation requiring the protective systems. Approval by the Engineer of the detailed plans for the protective systems will be contingent upon the plans being satisfactory to the railroad company involved. #### **SECTION 42: GROOVE AND GRIND PAVEMENT** Issue Date: December 31, 2001 The last sentence of the first subparagraph of the third paragraph in Section 42-2.02, "Construction," of the Standard Specifications is amended to read: • After grinding has been completed, the pavement shall conform to the straightedge and profile requirements specified in Section 40-1.10, "Final Finishing." #### **SECTION 49: PILING** Issue Date: November 2, 2004 The first paragraph in Section 49-1.03, "Determination of Length," of the Standard Specifications is amended to read: • Foundation piles of any material shall be of such length as is required to obtain the specified penetration, and to extend into the cap or footing block as shown on the plans, or specified in the special provisions. The fourth paragraph in Section 49-1.03, "Determination of Length," of the Standard Specifications is amended to read: Modification to the specified installation methods and specified pile tip elevation will not be considered at locations where tension or lateral load demands control design pile tip elevations or when the plans state that specified pile tip elevation shall not be revised. The sixth and seventh paragraphs in Section 49-1.03, "Determination of Length," of the Standard Specifications are amended to read: - Indicator compression pile load testing shall conform to the requirements in ASTM Designation: D 1143. The pile shall sustain the first compression test load applied which is equal to the nominal resistance in compression, as shown on the plans, with no more than 13 mm total vertical movement at the top of the pile measured relative to the top of the pile prior to the start of compression load testing. - Indicator tension pile load
testing shall conform to the requirements in ASTM Designation: D 3689. The loading apparatus described as "Load Applied to Pile by Hydraulic Jack(s) Acting at One End of Test Beam(s) Anchored to the Pile" shall not be used. The pile shall sustain the first tension test load applied which is equal to the nominal resistance in tension, as shown on the plans, with no more than 13 mm total vertical movement at the top of the pile measured relative to the top of the pile prior to the start of tension load testing. The ninth paragraph in Section 49-1.03, "Determination of Length," of the Standard Specifications is amended to read: • For driven piling, the Contractor shall furnish piling of sufficient length to obtain the specified tip elevation shown on the plans or specified in the special provisions. For cast-in-drilled-hole concrete piling, the Contractor shall construct piling of such length to develop the nominal resistance in compression and to obtain the specified tip elevation shown on the plans or specified in the special provisions. The tenth paragraph in Section 49-1.03, "Determination of Length," of the Standard Specifications is deleted. The fourth paragraph in Section 49-1.04, "Load Test Piles," of the Standard Specifications is amended to read: • Load test piles and anchor piles which are not to be incorporated in the completed structure shall be removed in conformance with the provisions in Section 15-4.02, "Removal Methods," and the remaining holes shall be backfilled with earth or other suitable material approved by the Engineer. The fifth paragraph in Section 49-1.04, "Load Test Piles," of the Standard Specifications is amended to read: - Load test anchorages in piles used as anchor piles shall conform to the following requirements: - A. High strength threaded steel rods shall conform to the provisions for bars in Section 50-1.05, "Prestressing Steel," except Type II bars shall be used. - B. High strength steel plates shall conform to the requirements in ASTM Designation: A 709/A 709M, Grade 345. - C. Anchor nuts shall conform to the provisions in the second paragraph in Section 50-1.06, "Anchorages and Distribution." The first paragraph in Section 49-1.05, "Driving Equipment," of the Standard Specifications is amended to read: • Driven piles shall be installed with impact hammers that are approved in writing by the Engineer. Impact hammers shall be steam, hydraulic, air or diesel hammers. Impact hammers shall develop sufficient energy to drive the piles at a penetration rate of not less than 3 mm per blow at the specified nominal resistance. The seventh paragraph in Section 49-1.05, "Driving Equipment," of the Standard Specifications is amended to read: - When necessary to obtain the specified penetration and when authorized by the Engineer, the Contractor may supply and operate one or more water jets and pumps, or furnish the necessary drilling apparatus and drill holes not greater than the least dimension of the pile to the proper depth and drive the piles therein. Jets shall not be used at locations where the stability of embankments or other improvements would be endangered. In addition, for steel piles, steel shells, or steel casings, when necessary to obtain the specified penetration or to prevent damage to the pile during installation, the Contractor shall provide special driving tips or heavier pile sections or take other measures as approved by the Engineer. - The use of followers or underwater hammers for driving piles will be permitted if authorized in writing by the Engineer. When a follower or underwater hammer is used, its efficiency shall be verified by furnishing the first pile in each bent or footing sufficiently long and driving the pile without the use of a follower or underwater hammer. The second paragraph in Section 49-1.07, "Driving," of the Standard Specifications is amended to read: • Timber piles shall be fresh-headed and square and when permitted by the Engineer, the heads of the piles may be protected by means of heavy steel or wrought iron rings. During driving operations timber piling shall be restrained from lateral movement at intervals not to exceed 6 m over the length between the driving head and the ground surface. During driving operations, the timber pile shall be kept moving by continuous operation of the hammer. When the blow count exceeds either 2 times the blow count required in 300 mm, or 3 times the blow count required in 75 mm for the nominal resistance as shown on the plans, computed in conformance with the provisions in Section 49-1.08, "Pile Driving Acceptance Criteria," additional aids shall be used to obtain the specified penetration. These aids may include the use of water jets or drilling, where permitted, or the use of a larger hammer employing a heavy ram striking with a low velocity. Section 49-1.08, "Bearing Value and Penetration," of the Standard Specifications is amended to read: #### 49-1.08 PILE DRIVING ACCEPTANCE CRITERIA - Except for piles to be load tested, driven piles shall be driven to a value of not less than the nominal resistance shown on the plans unless otherwise specified in the special provisions or permitted in writing by the Engineer. In addition, when a pile tip elevation is specified, driven piles shall penetrate at least to the specified tip elevation, unless otherwise permitted in writing by the Engineer. Piles to be load tested shall be driven to the specified tip elevation. - When the pile nominal resistance is omitted from the plans or the special provisions, timber piles shall be driven to a nominal resistance of 800 kN, and steel and concrete piles shall be driven to a nominal resistance of 1250 kN. - The nominal resistance for driven piles shall be determined from the following formula in which " R_u " is the nominal resistance in kilonewtons, " E_T " is the manufacturer's rating for joules of energy developed by the hammer at the observed field drop height, and "N" is the number of hammer blows in the last 300 millimeters. (maximum value to be used for N is 100): $$R_u = (7 * (E_r)^{1/2} * log_{10} (0.83 * N)) - 550$$ The first paragraph in Section 49-2.03, "Requirements," of the Standard Specifications is amended to read: • When preservative treatment of timber piles is required by the plans or specified in the special provisions, the treatment shall conform to the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," and the applicable AWPA Use Category. The first paragraph in Section 49-2.04, "Treatment of Pile Heads," of the Standard Specifications is amended to read: - A. An application of wood preservative conforming to the provisions in Section 58-1.04, "Wood Preservative for Manual Treatment," shall first be applied to the head of the pile and a protective cap shall then be built up by applying alternate layers of loosely woven fabric and hot asphalt or tar similar to membrane waterproofing, using 3 layers of asphalt or tar and 2 layers of fabric. The fabric shall measure at least 150 mm more in each direction than the diameter of the pile and shall be turned down over the pile and the edges secured by binding with 2 turns of No. 10 galvanized wire. The fabric shall be wired in advance of the application of the final layer of asphalt or tar, which shall extend down over the wiring. - B. The sawed surface shall be covered with 3 applications of a hot mixture of 60 percent creosote and 40 percent roofing pitch, or thoroughly brushcoated with 3 applications of hot creosote and covered with hot roofing pitch. A covering of 3.50-mm nominal thickness galvanized steel sheet shall be placed over the coating and bent down over the sides of each pile to shed water. Section 49-3.01, "Description," of the Standard Specifications is amended by deleting the fifth paragraph. The sixth and seventh paragraphs in Section 49-3.01, "Description," of the Standard Specifications are amended to read: - Except for precast prestressed concrete piles in a corrosive environment, lifting anchors used in precast prestressed concrete piles shall be removed, and the holes filled in conformance with the provisions in Section 51-1.18A, "Ordinary Surface Finish." - Lifting anchors used in precast prestressed concrete piles in a corrosive environment shall be removed to a depth of at least 25 mm below the surface of the concrete, and the resulting hole shall be filled with epoxy adhesive before the piles are delivered to the job site. The epoxy adhesive shall conform to the provisions in Sections 95-1, "General," and 95-2.01, "Binder (Adhesive), Epoxy Resin Base (State Specification 8040-03)." The first and second paragraphs in Section 49-4.01, "Description," of the Standard Specifications are amended to read: - Cast-in-place concrete piles shall consist of one of the following: - A. Steel shells driven permanently to the required nominal resistance and penetration and filled with concrete. - B. Steel casings installed permanently to the required penetration and filled with concrete. - C. Drilled holes filled with concrete. - D. Rock sockets filled with concrete. - The drilling of holes shall conform to the provisions in these specifications. Concrete filling for cast-in-place concrete piles is designated by compressive strength and shall have a minimum 28-day compressive strength of 25 MPa. At the option of the Contractor, the combined aggregate grading for the concrete shall be either the 25-mm maximum grading, the 12.5-mm maximum grading, or the 9.5-mm maximum grading. Concrete shall conform to the provisions in Section 90, "Portland Cement Concrete," and Section 51, "Concrete Structures." Reinforcement shall conform to the provisions in Section 52, "Reinforcement." The fourth paragraph in Section 49-4.03, "Drilled Holes," of the Standard Specifications is amended to read: • After placing reinforcement and prior to placing concrete in the drilled hole, if caving occurs or deteriorated foundation material
accumulates on the bottom of the hole, the bottom of the drilled hole shall be cleaned. The Contractor shall verify that the bottom of the drilled hole is clean. The first and second paragraphs in Section 49-4.04, "Steel Shells," of the Standard Specifications are amended to read: • Steel shells shall be sufficiently watertight to exclude water during the placing of concrete. The shells may be cylindrical or tapered, step-tapered, or a combination of either, with cylindrical sections. The first paragraph in Section 49-4.05, "Inspection," of the Standard Specifications is amended to read: • After being driven and prior to placing reinforcement and concrete therein, the steel shells shall be examined for collapse or reduced diameter at any point. Any shell which is improperly driven or broken or shows partial collapse to such an extent as to materially decrease its nominal resistance will be rejected. Rejected shells shall be removed and replaced, or a new shell shall be driven adjacent to the rejected shell. Rejected shells which cannot be removed shall be filled with concrete by the Contractor at the Contractor's expense. When a new shell is driven to replace a rejected shell, the Contractor, at the Contractor's expense, shall enlarge the footing as determined necessary by the Engineer. The third paragraph in Section 49-5.01, "Description," of the Standard Specifications is amended to read: - Steel pipe piles shall conform to the following requirements: - 1. Steel pipe piles less than 360 mm in diameter shall conform to the requirements in ASTM Designation: A 252, Grade 2 or 3. - 2. Steel pipe piles 360 mm and greater in diameter shall conform to the requirements in ASTM Designation: A 252, Grade 3. - 3. Steel pipe piles shall be of the nominal diameter and nominal wall thickness shown on the plans or specified in the special provisions. - 4. The carbon equivalency (CE) of steel for steel pipe piles, as defined in AWS D 1.1, Section XI5.1, shall not exceed 0.45. - 5. The sulfur content of steel for steel pipe piles shall not exceed 0.05-percent. - 6. Seams in steel pipe piles shall be complete penetration welds. The first paragraph in Section 49-6.01, "Measurement," of the Standard Specifications is amended to read: - The length of timber, steel, and precast prestressed concrete piles, and of cast-in-place concrete piles consisting of driven shells filled with concrete, shall be the greater of the following: - A. The total length in place in the completed work, measured along the longest side, from the tip of the pile to the plane of pile cut-off. - B. The length measured along the longest side, from the tip elevation shown on the plans or the tip elevation ordered by the Engineer, to the plane of pile cut-off. The third paragraph in Section 49-6.02, "Payment," of the Standard Specifications is amended to read: • The contract price paid per meter for cast-in-drilled-hole concrete piling shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all work involved in drilling holes, disposing of material resulting from drilling holes, temporarily casing holes and removing water when necessary, furnishing and placing concrete and reinforcement, and constructing reinforced concrete extensions, complete in place, to the required penetration, as shown on the plans, as specified in these specifications and in the special provisions, and as directed by the Engineer. The seventh paragraph in Section 49-6.02, "Payment," of the Standard Specifications is amended to read • The contract unit price paid for drive pile shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in driving timber, concrete and steel piles, driving steel shells for cast-in-place concrete piles, placing filling materials for cast-in-place concrete piles and cutting off piles, all complete in place to the required nominal resistance and penetration as shown on the plans and as specified in these specifications and the special provisions, and as directed by the Engineer. The ninth paragraph in Section 49-6.02, "Payment," of the Standard Specifications is amended to read: • Full compensation for all jetting, drilling, providing special driving tips or heavier sections for steel piles or shells, or other work necessary to obtain the specified penetration and nominal resistance of the piles, for predrilling holes through embankment and filling the space remaining around the pile with sand or pea gravel, for disposing of material resulting from jetting, drilling or predrilling holes, and for all excavation and backfill involved in constructing concrete extensions as shown on the plans, and as specified in these specifications and the special provisions, and as directed by the Engineer shall be considered as included in the contract unit price paid for drive pile or in the contract price paid per meter for cast-in-drilled-hole concrete piling, and no additional compensation will be allowed therefor. Section 49-6.02, "Payment," of the Standard Specifications is amended by adding the following paragraphs: Full compensation for furnishing and placing additional testing reinforcement, for load test anchorages, and for cutting off test piles, shall be considered as included in the contract price paid for piling of the type or class shown in the Engineer's Estimate, and no additional compensation will be allowed. No additional compensation or extension of time will be made for additional foundation investigation, installation and testing of indicator piling, cutting off piling and restoring the foundation investigation and indicator pile sites, and review of request by the Engineer # **SECTION 50: PRESTRESSING CONCRETE** Issue Date: November 18, 2002 Section 50-1.02, "Drawings," of the Standard Specifications is amended by adding the following paragraph after the second paragraph: • Each working drawing submittal shall consist of plans for a single bridge or portion thereof. For multi-frame bridges, each frame shall require a separate working drawing submittal. Section 50-1.05, "Prestressing Steel," of the Standard Specifications is amended to read: - Prestressing steel shall be high-tensile wire conforming to the requirements in ASTM Designation: A 421, including Supplement I; high-tensile seven-wire strand conforming to the requirements in ASTM Designation: A 416; or uncoated high-strength steel bars conforming to the requirements in ASTM Designation: A 722, including all supplementary requirements. The maximum mass requirement of ASTM Designation: A 722 will not apply. - In addition to the requirements of ASTM Designation: A 722, for deformed bars, the reduction of area shall be determined from a bar from which the deformations have been removed. The bar shall be machined no more than necessary to remove the deformations over a length of 300 mm, and reduction will be based on the area of the machined portion. - In addition to the requirements specified herein, epoxy-coated seven-wire prestressing steel strand shall be grit impregnated and filled in conformance with the requirements in ASTM Designation: A 882/A 882M, including Supplement I, and the following: - A. The coating material shall be on the Department's list of approved coating materials for epoxy-coated strand, available from the Transportation Laboratory. - B. The film thickness of the coating after curing shall be 381 μ m to 1143 μ m. - C. Prior to coating the strand, the Contractor shall furnish to the Transportation Laboratory a representative 230-g sample from each batch of epoxy coating material to be used. Each sample shall be packaged in an airtight container identified with the manufacturer's name and batch number. - D. Prior to use of the epoxy-coated strand in the work, written certifications referenced in ASTM Designation: A 882/A 882M, including a representative load-elongation curve for each size and grade of strand to be used and a copy of the quality control tests performed by the manufacturer, shall be furnished to the Engineer. - E. In addition to the requirements in Section 50-1.10, "Samples for Testing," four 1.5-m long samples of coated strand and one 1.5-m long sample of uncoated strand of each size and reel shall be furnished to the Engineer for testing. These samples, as selected by the Engineer, shall be representative of the material to be used in the work. - F. Epoxy-coated strand shall be cut using an abrasive saw. - G. All visible damage to coatings caused by shipping and handling, or during installation, including cut ends, shall be repaired in conformance with the requirements in ASTM Designation: A 882/A 882M. The patching material shall be furnished by the manufacturer of the epoxy powder and shall be applied in conformance with the manufacturer's written recommendations. The patching material shall be compatible with the original epoxy coating material and shall be inert in concrete. - All bars in any individual member shall be of the same grade, unless otherwise permitted by the Engineer. - When bars are to be extended by the use of couplers, the assembled units shall have a tensile strength of not less than the manufacturer's minimum guaranteed ultimate tensile strength of the bars. Failure of any one sample to meet this requirement will be cause for rejection of the heat of bars and lot of couplers. The location of couplers in the member shall be subject to approval by the Engineer. - Wires shall be straightened if necessary to produce equal stress in all wires or wire groups or parallel lay cables that are to be stressed simultaneously or when necessary to ensure proper positioning in the ducts. - Where wires are to be button-headed, the buttons shall be cold formed symmetrically about the axes of the wires. The buttons shall develop the minimum guaranteed ultimate tensile strength of the wire. No cold forming
process shall be used that causes indentations in the wire. Buttonheads shall not contain wide open splits, more than 2 splits per head, or splits not parallel with the axis of the wire. - Prestressing steel shall be protected against physical damage and rust or other results of corrosion at all times from manufacture to grouting or encasing in concrete. Prestressing steel that has sustained physical damage at any time shall be rejected. The development of visible rust or other results of corrosion shall be cause for rejection, when ordered by the Engineer. - Epoxy-coated prestressing steel strand shall be covered with an opaque polyethylene sheeting or other suitable protective material to protect the strand from exposure to sunlight, salt spray, and weather. For stacked coils, the protective covering shall be draped around the perimeter of the stack. The covering shall be adequately secured; however, it should allow for air circulation around the strand to prevent condensation under the covering. Epoxy-coated strand shall not be stored within 300 m of ocean or tidal water for more than 2 months. - Prestressing steel shall be packaged in containers or shipping forms for the protection of the steel against physical damage and corrosion during shipping and storage. Except for epoxy-coated strand, a corrosion inhibitor which prevents rust or other results of corrosion, shall be placed in the package or form, or shall be incorporated in a corrosion inhibitor carrier type packaging material, or when permitted by the Engineer, may be applied directly to the steel. The corrosion inhibitor shall have no deleterious effect on the steel or concrete or bond strength of steel to concrete. Packaging or forms damaged from any cause shall be immediately replaced or restored to original condition. - The shipping package or form shall be clearly marked with a statement that the package contains high-strength prestressing steel, and the type of corrosion inhibitor used, including the date packaged. - Prestressing steel for post-tensioning which is installed in members prior to placing and curing of the concrete, and which is not epoxy-coated, shall be continuously protected against rust or other results of corrosion, until grouted, by means of a corrosion inhibitor placed in the ducts or applied to the steel in the duct. The corrosion inhibitor shall conform to the provisions specified herein. - When steam curing is used, prestressing steel for post-tensioning shall not be installed until the steam curing is completed. - Water used for flushing ducts shall contain either quick lime (calcium oxide) or slaked lime (calcium hydroxide) in the amount of 0.01-kg/L. Compressed air used to blow out ducts shall be oil free. - When prestressing steel for post-tensioning is installed in the ducts after completion of concrete curing, and if stressing and grouting are completed within 10 days after the installation of the prestressing steel, rust which may form during those 10 days will not be cause for rejection of the steel. Prestressing steel installed, tensioned, and grouted in this manner, all within 10 days, will not require the use of a corrosion inhibitor in the duct following installation of the prestressing steel. Prestressing steel installed as above but not grouted within 10 days shall be subject to all the requirements in this section pertaining to corrosion protection and rejection because of rust. The requirements in this section pertaining to tensioning and grouting within 10 days shall not apply to epoxy-coated prestressing steel strand. - Any time prestressing steel for pretensioning is placed in the stressing bed and is exposed to the elements for more than 36 hours prior to encasement in concrete, adequate measures shall be taken by the Contractor, as approved by the Engineer, to protect the steel from contamination or corrosion. - After final fabrication of the seven-wire prestressing steel strand, no electric welding of any form shall be performed on the prestressing steel. Whenever electric welding is performed on or near members containing prestressing steel, the welding ground shall be attached directly to the steel being welded. - Pretensioned prestressing steel shall be cut off flush with the end of the member. For epoxy-coated prestressing steel, only abrasive saws shall be used to cut the steel. The exposed ends of the prestressing steel and a 25-mm strip of adjoining concrete shall be cleaned and painted. Cleaning shall be by wire brushing or abrasive blast cleaning to remove all dirt and residue on the metal or concrete surfaces. Immediately after cleaning, the surfaces shall be covered with one application of unthinned zinc-rich primer (organic vehicle type) conforming to the provisions in Section 91, "Paint," except that 2 applications shall be applied to surfaces which will not be covered by concrete or mortar. Aerosol cans shall not be used. The paint shall be thoroughly mixed at the time of application and shall be worked into any voids in the prestressing tendons. The thirteenth paragraph in Section 50-1.08, "Prestressing," of the Standard Specifications is amended to read: • Prestressing steel in pretensioned members shall not be cut or released until the concrete in the member has attained a compressive strength of not less than the value shown on the plans or 28 MPa, whichever is greater. In addition to these concrete strength requirements, when epoxy-coated prestressing steel strand is used, the steel shall not be cut or released until the temperature of the concrete surrounding the strand is less than 65°C, and falling. The fifth paragraph in Section 50-1.10, "Samples for Testing," of the Standard Specifications is amended to read: - The following samples of materials and tendons, selected by the Engineer from the prestressing steel at the plant or jobsite, shall be furnished by the Contractor to the Engineer well in advance of anticipated use: - A. For wire or bars, one 2-m long sample and for strand, one 1.5-m long sample, of each size shall be furnished for each heat or reel. - B. For epoxy-coated strand, one 1.5-m long sample of uncoated strand of each size shall be furnished for each reel. - C. If the prestressing tendon is a bar, one 2-m long sample shall be furnished and in addition, if couplers are to be used with the bar, two 1.25-m long samples of bar, equipped with one coupler and fabricated to fit the coupler, shall be furnished. The second paragraph in Section 50-1.11, "Payment," of the Standard Specifications is amended to read: • The contract lump sum prices paid for prestressing cast-in-place concrete of the types listed in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all work involved in furnishing, placing, and tensioning the prestressing steel in cast-in-place concrete structures, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer. # **SECTION 51: CONCRETE STRUCTURES** Issue Date: November 2, 2004 The eleventh paragraph in Section 51-1.05, "Forms," of the Standard Specifications is amended to read: • Form panels for exposed surfaces shall be furnished and placed in uniform widths of not less than 0.9-m and in uniform lengths of not less than 1.8 m, except at the end of continuously formed surfaces where the final panel length required is less than 1.8 m. Where the width of the member formed is less than 0.9-m, the width of the panels shall be not less than the width of the member. Panels shall be arranged in symmetrical patterns conforming to the general lines of the structure. Except when otherwise provided herein or shown on the plans, panels for vertical surfaces shall be placed with the long dimension horizontal and with horizontal joints level and continuous. Form panels for curved surfaces of columns shall be continuous for a minimum of one quarter of the circumference, or 1.8 m. For walls with sloping footings which do not abut other walls, panels may be placed with the long dimension parallel to the footing. Form panels on each side of the panel joint shall be precisely aligned, by means of supports or fasteners common to both panels, to result in a continuous unbroken concrete plane surface. When prefabricated soffit panels are used, form filler panels joining prefabricated panels shall have a uniform minimum width of 0.3-m and shall produce a smooth uniform surface with consistent longitudinal joint lines between the prefabricated panels. The first and second paragraph in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications are amended to read: - The Contractor shall submit to the Engineer working drawings and design calculations for falsework proposed for use at bridges. For bridges where the height of any portion of the falsework, as measured from the ground line to the soffit of the superstructure, exceeds 4.25 m; or where any individual falsework clear span length exceeds 4.85 m; or where provision for vehicular, pedestrian, or railroad traffic through the falsework is made; the drawings shall be signed by an engineer who is registered as a Civil Engineer in the State of California. Six sets of the working drawings and 2 copies of the design calculations shall be furnished. Additional working drawings and design calculations shall be submitted to the Engineer when specified in "Railroad Relations and Insurance" of the special provisions. - The falsework drawings shall include details of the falsework erection and removal operations showing the methods and sequences of erection and removal and the equipment to be used. The details of the falsework erection and removal operations shall demonstrate the stability of all or any portions of the falsework during all stages of the erection and removal operations. The seventh paragraph in Section 51-1.06A,
"Falsework Design and Drawings," of the Standard Specifications is amended to read: • In the event that several falsework plans are submitted simultaneously, or an additional plan is submitted for review before the review of a previously submitted plan has been completed, the Contractor shall designate the sequence in which the plans are to be reviewed. In such event, the time to be provided for the review of any plan in the sequence shall be not less than the review time specified above for that plan, plus 2 weeks for each plan of higher priority which is still under review. A falsework plan submittal shall consist of plans for a single bridge or portion thereof. For multi-frame bridges, each frame shall require a separate falsework plan submittal. Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications is amended by adding the following paragraphs: - If structural composite lumber is proposed for use, the falsework drawings shall clearly identify the structural composite lumber members by grade (E value), species, and type. The Contractor shall provide technical data from the manufacturer showing the tabulated working stress values of the composite lumber. The Contractor shall furnish a certificate of compliance as specified in Section 6-1.07, "Certificates of Compliance," for each delivery of structural composite lumber to the project site. - For falsework piles with a calculated loading capacity greater than 900 kN, the falsework piles shall be designed by an engineer who is registered as either a Civil Engineer or a Geotechnical Engineer in the State of California, and the calculations shall be submitted to the Engineer. The first paragraph in Section 51-1.06A(1), "Design Loads," of the Standard Specifications is amended to read: • The design load for falsework shall consist of the sum of dead and live vertical loads, and an assumed horizontal load. The minimum total design load for any falsework, including members that support walkways, shall be not less than 4800 N/m^2 for the combined live and dead load regardless of slab thickness. The eighth paragraph in Section 51-1.06A(1), "Design Loads," of the Standard Specifications is amended to read: • In addition to the minimum requirements specified in this Section 51-1.06A, falsework for box girder structures with internal falsework bracing systems using flexible members capable of withstanding tensile forces only, shall be designed to include the vertical effects caused by the elongation of the flexible member and the design horizontal load combined with the dead and live loads imposed by concrete placement for the girder stems and connected bottom slabs. Falsework comprised of individual steel towers with bracing systems using flexible members capable of withstanding tensile forces only to resist overturning, shall be exempt from these additional requirements. The third paragraph in Section 51-1.06B, "Falsework Construction," of the Standard Specifications is amended to read: • When falsework is supported on piles, the piles shall be driven and the actual nominal resistance assessed in conformance with the provisions in Section 49, "Piling." Section 51-1.06B, "Falsework Construction," of the Standard Specifications is amended by adding the following paragraphs: - For falsework piles with a calculated nominal resistance greater than 1800 kN, the Contractor shall conduct dynamic monitoring of pile driving and generate field acceptance criteria based on a wave equation analysis. These analyses shall be signed by an engineer who is registered as a Civil Engineer in the State of California and submitted to the Engineer prior to completion of falsework erection. - Prior to the placement of falsework members above the stringers, the final bracing system for the falsework shall be installed. Section 51-1.06C, "Removing Falsework," of the Standard Specifications is amended by adding the following paragraph: • The falsework removal operation shall be conducted in such a manner that any portion of the falsework not yet removed remains in a stable condition at all times. The sixth paragraph in Section 51-1.09, "Placing Concrete," of the Standard Specifications is amended to read: • Vibrators used to consolidate concrete containing epoxy-coated bar reinforcement or epoxy-coated prestressing steel shall have a resilient covering to prevent damage to the epoxy-coating on the reinforcement or prestressing steel. The third sentence of the fourth paragraph in Section 51-1.12D, "Sheet Packing, Preformed Pads and Board Fillers," of the Standard Specifications is amended to read: Surfaces of expanded polystyrene against which concrete is placed shall be faced with hardboard. Section 51-1.12F, "Sealed Joints," of the Standard Specifications is amended by adding the following paragraph: • The opening of the joints at the time of placing shall be that shown on the plans adjusted for temperature. Care shall be taken to avoid impairment of the clearance in any manner. The first paragraph in Section 51-1.12F, "Sealed Joints," of the Standard Specifications is amended to read: • Where shown on the plans, joints in structures shall be sealed with joint seals, joint seal assemblies, or seismic joints in conformance with the details shown on the plans, the provisions in these specifications, and the special provisions. The fourth paragraph in Section 51-1.12F, "Sealed Joints," of the Standard Specifications is amended to read: • Joint seal assemblies and seismic joints shall consist of metal or metal and elastomeric assemblies which are anchored or cast into a recess in the concrete over the joint. Strip seal joint seal assemblies consist of only one joint cell. Modular unit joint seal assemblies consist of more than one joint cell. The second paragraph in Section 51-1.12F(3)(b), "Type B Seal," of the Standard Specifications is amended to read: - The preformed elastomeric joint seal shall conform to the requirements in ASTM Designation: D 2628 and the following: - A. The seal shall consist of a multi-channel, nonporous, homogeneous material furnished in a finished extruded form. - B. The minimum depth of the seal, measured at the contact surface, shall be at least 95 percent of the minimum uncompressed width of the seal as designated by the manufacturer. - C. When tested in conformance with the requirements in California Test 673 for Type B seals, joint seals shall provide a Movement Rating (MR) of not less than that shown on the plans. - D. The top and bottom edges of the joint seal shall maintain continuous contact with the sides of the groove over the entire range of joint movement. - E. The seal shall be furnished full length for each joint with no more than one shop splice in any 18-m length of seal. - F. The Contractor shall demonstrate the adequacy of the procedures to be used in the work before installing seals in the joints. - G. Shop splices and field splices shall have no visible offset of exterior surfaces, and shall show no evidence of bond failure. - H. At all open ends of the seal that would admit water or debris, each cell shall be filled to a depth of 80 mm with commercial quality open cell polyurethane foam, or closed by other means subject to approval by the Engineer. Section 51-1.12F(3)(c), "Joint Seal Assemblies," of the Standard Specifications is amended to read: #### (c) Joint Seal Assemblies and Seismic Joints • Joint seal assemblies and seismic joints shall be furnished and installed in joints in bridge decks as shown on the plans and as specified in the special provisions. The eighth paragraph in Section 51-1.12H(1), "Plain and Fabric Reinforced Elastomeric Bearing Pads," of the Standard Specifications is amended to read: The elastomer, as determined from test specimens, shall conform to the following: | ASTM | | |------------------------|---| | Designation | Requirement | | D 412 | 15.5 Min. | | D 412 | 350 Min. | | D 395 (Method B) | 25 Max. | | | | | D 624 (Die C) | 31.5 Min. | | D 2240 with 2 kg. mass | 55 ±5 | | D 1149 (except 100 ±20 | | | parts per 100 000 000) | No cracks | | D 1043 | Shall not exceed 4 | | | times the stiffness | | | measured at 23°C | | D 746 (Procedure B) | Pass | | | Designation D 412 D 412 D 395 (Method B) D 624 (Die C) D 2240 with 2 kg. mass D 1149 (except 100 ±20 parts per 100 000 000) D 1043 | The table in the ninth paragraph of Section 51-1.12H(1), "Plain and Fabric Reinforced Elastomeric Bearing Pads," of the Standard Specifications is amended to read: | Tensile strength, percent | -15 | |------------------------------|-----------------------------------| | Elongation at break, percent | -40; but not less than 300% total | | | elongation of the material | | Hardness, points | +10 | The first paragraph in Section 51-1.12H(2), "Steel Reinforced Elastomeric Bearings," of the Standard Specifications is amended to read: - Steel reinforced elastomeric bearings shall conform to the requirements for steel-laminated elastomeric bearings in ASTM Designation: D 4014 and the following: - A. The bearings shall consist of alternating steel laminates and internal elastomer laminates with top and bottom elastomer covers. Steel laminates shall have a nominal thickness of 1.9 mm (14 gage). Internal elastomer laminates shall have a thickness of 12 mm, and top and bottom elastomer covers shall each have a thickness of 6 mm. The combined thickness of internal elastomer laminates and top and bottom elastomer covers shall be equal to the bearing pad thickness shown on the plans. The elastomer cover to the steel laminates at the sides of the bearing shall be 3 mm. If guide pins or other devices are used to control the side cover over the steel laminates, any exposed portions of the steel laminates shall be sealed by vulcanized patching. The length, width, or diameter of the
bearings shall be as shown on the plans. - B. The total thickness of the bearings shall be equal to the thickness of elastomer laminates and covers plus the thickness of the steel laminates. - C. Elastomer for steel reinforced elastomeric bearings shall conform to the provisions for elastomer in Section 51-1.12H(1), "Plain and Fabric Reinforced Elastomeric Bearing Pads." - D. A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," shall be furnished to the Engineer certifying that the bearings to be furnished conform to all of the above provisions. The Certificate of Compliance shall be supported by a certified copy of the results of tests performed by the manufacturer on the bearings. - E. One sample bearing shall be furnished to the Engineer from each lot of bearings to be furnished for the contract. Samples shall be available at least 3 weeks in advance of intended use. The sample bearing shall be one of the following: | Bearing Pad Thickness | | |-----------------------|--| | as Shown on the Plans | Sample Bearing | | ≤ 50 mm | Smallest complete bearing shown on the plans | | > 50 mm | * 57 ± 3 mm thick sample not less than 200 mm x 305 mm | | | in plan and cut by the manufacturer from the center of one | | | of the thickest complete bearings | ^{*} The sample bearing plus remnant parts of the complete bearing shall be furnished to the Engineer. F. A test specimen taken from the sample furnished to the Engineer will be tested in conformance with the requirements in California Test 663. Specimens tested shall show no indication of loss of bond between the elastomer and steel laminates. The fourth paragraph in Section 51-1.14, "Waterstops," of the Standard Specifications is amended to read: Neoprene shall be manufactured from a vulcanized elastomeric compound containing neoprene as the sole elastomer and shall conform to the following: | | ASTM | | |------------------------------------|---------------------|--------------------| | Test | Designation | Requirement | | Tensile strength, MPa | D 412 | 13.8 Min. | | Elongation at break, percent | D 412 | 300 Min. | | Compression set, 22 h at 70°C, | D 395 (Method B) | 30 Max. | | percent | | | | Tear strength, kN/m | D 624 (Die C) | 26.3 Min. | | Hardness (Type A) | D 2240 | 55±5 | | Ozone resistance 20% strain, 100 h | D 1149 (except 100± | | | at $38^{\circ}C \pm 1^{\circ}C$ | 20 | No cracks | | | parts per | | | | 100 000 000) | | | Low temperature brittleness at | D 746 (Procedure B) | Pass | | -40°C | 0.540 | 25 | | Flame resistance | C 542 | Must not propagate | | | | flame | | Oil Swell, ASTM Oil #3, 70 h at | | | | 100°C, volume change, percent | D 471 | 80 Max. | | Water absorption, immersed 7 days | | | | at 70°C, change in mass, percent | D 471 | 15 Max. | The first sentence of the fourth paragraph in Section 51-1.17, "Finish Bridge Decks," of the Standard Specifications is amended to read: • The smoothness of completed roadway surfaces of structures, approach slabs and the adjacent 15 m of approach pavement, and the top surfaces of concrete decks which are to be covered with another material, will be tested by the Engineer with a bridge profilograph in conformance with the requirements in California Test 547 and the requirements herein. Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications is amended by deleting the seventh, thirteenth and fourteenth paragraphs. The fourteenth paragraph in Section 51-1.23, "Payment," of the Standard Specifications is amended by deleting "and injecting epoxy in cracks". #### **SECTION 52: REINFORCEMENT** Issue Date: November 2, 2004 The first paragraph in Section 52-1.02A, "Bar Reinforcement," of the Standard Specifications is amended to read: - Reinforcing bars shall be low-alloy steel deformed bars conforming to the requirements in ASTM Designation: A 706/A 706M, except that deformed or plain billet-steel bars conforming to the requirements in ASTM Designation: A 615/A 615M, Grade 280 or 420, may be used as reinforcement in the following 5 categories: - A. Slope and channel paving, - B. Minor structures, - C. Sign and signal foundations (pile and spread footing types), - D. Roadside rest facilities, and E. Concrete barrier Type 50 and Type 60 series and temporary railing. The third paragraph in Section 52-1.04, "Inspection," of the Standard Specifications is amended to read: • A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," shall also be furnished for each shipment of epoxy-coated bar reinforcement or wire reinforcement certifying that the coated reinforcement conforms to the requirements in ASTM Designation: A 775/A 775M or A 884/A 884M respectively, and the provisions in Section 52-1.02B, "Epoxy-coated Reinforcement." The Certificate of Compliance shall include all of the certifications specified in ASTM Designation: A 775/A 775M or A 884/A 884M respectively. Section 52-1.07 "Placing," of the Standard Specifications is amended by deleting item C of the third paragraph. The eleventh paragraph in Section 52-1.07, "Placing," of the Standard Specifications is amended to read: • Attention is directed to the provisions in Section 7-1.09, "Public Safety." Whenever a portion of an assemblage of bar reinforcing steel that is not encased in concrete exceeds 6 m in height, the Contractor shall submit to the Engineer for approval, in accordance with the provisions in Section 5-1.02, "Plans and Working Drawings," working drawings and design calculations for the temporary support system to be used. The working drawings and design calculations shall be signed by an engineer who is registered as a Civil Engineer in the State of California. The temporary support system shall be designed to resist all expected loads and shall be adequate to prevent collapse or overturning of the assemblage. If the installation of forms or other work requires revisions to or temporary release of any portion of the temporary support system, the working drawings shall show the support system to be used during each phase of construction. The minimum horizontal wind load to be applied to the bar reinforcing steel assemblage, or to a combined assemblage of reinforcing steel and forms, shall be the sum of the products of the wind impact area and the applicable wind pressure value for each height zone. The wind impact area is the total projected area of the cage normal to the direction of the applied wind. Wind pressure values shall be determined from the following table: | Height Zone | Wind Pressure Value | | |-----------------------|---------------------|--| | (Meters above ground) | (Pa) | | | 0-9.0 | 960 | | | 9.1-15.0 | 1200 | | | 15.1-30.0 | 1440 | | | Over 30 | 1675 | | Section 52-1.08 "Splicing," of the Standard Specifications is amended to read: #### **52-1.08 SPLICING** - Splices of reinforcing bars shall consist of lap splices, service splices, or ultimate butt splices. - Splicing of reinforcing bars will not be permitted at a location designated on the plans as a "No-Splice Zone." At the option of the Contractor, reinforcing bars may be continuous at locations where splices are shown on the plans. The location of splices, except where shown on the plans, shall be determined by the Contractor using available commercial lengths where practicable. - Unless otherwise shown on the plans, splices in adjacent reinforcing bars at any particular section shall be staggered. The minimum distance between staggered lap splices or mechanical lap splices shall be the same as the length required for a lap splice in the largest bar. The minimum distance between staggered butt splices shall be 600 mm, measured between the midpoints of the splices along a line which is centered between the axes of the adjacent bars. # 52-1.08A Lap Splicing Requirements - Splices made by lapping shall consist of placing reinforcing bars in contact and wiring them together, maintaining the alignment of the bars and the minimum clearances. Should the Contractor elect to use a butt welded or mechanical splice at a location not designated on the plans as requiring a service or ultimate butt splice, this splice shall conform to the testing requirements for service splice. - Reinforcing bars shall not be spliced by lapping at locations where the concrete section is not sufficient to provide a minimum clear distance of 50 mm between the splice and the nearest adjacent bar. The clearance to the surface of the concrete specified in Section 52-1.07, "Placing," shall not be reduced. - Reinforcing bars Nos. 43 and 57 shall not be spliced by lapping. - Where ASTM Designations: A 615/A 615M, Grade 420 or A 706/A 706M reinforcing bars are required, the length of lap splices shall be as follows: Reinforcing bars No. 25 or smaller shall be lapped at least 45 diameters of the smaller bar Contract No. 07-195904 joined; and reinforcing bars Nos. 29, 32, and 36 shall be lapped at least 60 diameters of the smaller bar joined, except when otherwise shown on the plans. - Where ASTM Designation: A 615/A 615M, Grade 280 reinforcing bars are permitted, the length of lap splices shall be as follows: Reinforcing bars No. 25 or smaller shall be lapped at least 30 diameters of the smaller bar joined; and reinforcing bars Nos. 29, 32, and 36 shall be lapped at least 45 diameters of the smaller bar joined, except when otherwise shown on the plans. - Splices in bundled bars shall conform to the following: - A In bundles of 2 bars, the length of the lap splice shall be the same as the length of a single bar lap splice. - B. In bundles of 3 bars, the length of the lap splice shall be 1.2 times the length of a single bar lap splice. - Welded wire fabric shall be lapped such that the overlap between the outermost cross wires is not less than the larger of: - A. 150 mm, - B. The spacing of the cross wires plus 50 mm, or - C. The
numerical value of the longitudinal wire size (MW-Size Number) times 370 divided by the spacing of the longitudinal wires in millimeters. # 52-1.08B Service Splicing and Ultimate Butt Splicing Requirements • Service splices and ultimate butt splices shall be either butt welded or mechanical splices, shall be used at the locations shown on the plans, and shall conform to the requirements of these specifications and the special provisions. #### 52-1.08B(1) Mechanical Splices - Mechanical splices to be used in the work shall be on the Department's current prequalified list before use. The prequalified list can be obtained from the Department's internet site listed in the special provisions or by contacting the Transportation Laboratory directly. - When tested in conformance with the requirements in California Test 670, the total slip shall not exceed the values listed in the following table: | Reinforcing Bar Number | Total Slip (µm) | |------------------------|-----------------| | 13 | 250 | | 16 | 250 | | 19 | 250 | | 22 | 350 | | 25 | 350 | | 29 | 350 | | 32 | 450 | | 36 | 450 | | 43 | 600 | | 57 | 750 | - Slip requirements shall not apply to mechanical lap splices, splices that are welded, or splices that are used on hoops. - Splicing procedures shall be in conformance with the manufacturer's recommendations, except as modified in this section. Splices shall be made using the manufacturer's standard equipment, jigs, clamps, and other required accessories. - Splice devices shall have a clear coverage of not less than 40 mm measured from the surface of the concrete to the outside of the splice device. Stirrups, ties, and other reinforcement shall be adjusted or relocated, and additional reinforcement shall be placed, if necessary, to provide the specified clear coverage to reinforcement. - The Contractor shall furnish the following information for each shipment of splice material in conformance with the provisions in Section 6-1.07, "Certificates of Compliance:" - A. The type or series identification of the splice material including tracking information for traceability. - B. The bar grade and size number to be spliced. - C. A copy of the manufacturer's product literature giving complete data on the splice material and installation procedures. - D. A statement that the splicing systems and materials used in conformance with the manufacturer's installation procedures will develop the required tensile strengths, based on the nominal bar area, and will conform to the total slip requirements and the other requirements in these specifications. - E. A statement that the splice material conforms to the type of mechanical splice in the Department's current prequalified list. # 52-1.08B(2) Butt Welded Splices - Except for resistance butt welds, butt welded splices of reinforcing bars shall be complete joint penetration butt welds conforming to the requirements in AWS D 1.4, and these specifications. - Welders and welding procedures shall be qualified in conformance with the requirements in AWS D 1.4. - Only the joint details and dimensions as shown in Figure 3.2, "Direct Butt Joints," of AWS D 1.4, shall be used for making complete joint penetration butt welds of bar reinforcement. Split pipe backing shall not be used. - Butt welds shall be made with multiple weld passes using a stringer bead without an appreciable weaving motion. The maximum stringer bead width shall be 2.5 times the diameter of the electrode and slagging shall be performed between each weld pass. Weld reinforcement shall not exceed 4 mm in convexity. - Electrodes used for welding shall meet the minimum Charpy V-notch impact requirement of 27°J at -20°C. - For welding of bars conforming to the requirements of ASTM Designation: A 615/A 615M, Grade 280 or Grade 420, the requirements of Table 5.2, "Minimum Preheat and Interpass Temperatures," of AWS D 1.4 are superseded by the following: The minimum preheat and interpass temperatures shall be 200°C for Grade 280 bars and 300°C for Grade 420 bars. Immediately after completing the welding, at least 150 mm of the bar on each side of the splice shall be covered by an insulated wrapping to control the rate of cooling. The insulated wrapping shall remain in place until the bar has cooled below 90°C. - When welding different grades of reinforcing bars, the electrode shall conform to Grade 280 bar requirements and the preheat shall conform to the Grade 420 bar requirements. - In the event that any of the specified preheat, interpass, and post weld cooling temperatures are not met, all weld and heat affected zone metal shall be removed and the splice rewelded. - Welding shall be protected from air currents, drafts, and precipitation to prevent loss of heat or loss of arc shielding. The method of protecting the welding area from loss of heat or loss of arc shielding shall be subject to approval by the Engineer. - Reinforcing bars shall not be direct butt spliced by thermite welding. - Procedures to be used in making welded splices in reinforcing bars, and welders employed to make splices in reinforcing bars, shall be qualified by tests performed by the Contractor on sample splices of the type to be used, before making splices to be used in the work. # 52-1.08B(3) Resistance Butt Welds - Shop produced resistance butt welds shall be produced by a fabricator who is approved by the Transportation Laboratory. The list of approved fabricators can be obtained from the Department's internet site or by contacting the Transportation Laboratory directly. - Before manufacturing hoops using resistance butt welding, the Contractor shall submit to the Engineer the manufacturer's Quality Control (QC) manual for the fabrication of hoops. As a minimum, the QC manual shall include the following: - A. The pre-production procedures for the qualification of material and equipment. - B. The methods and frequencies for performing QC procedures during production. - C. The calibration procedures and calibration frequency for all equipment. - D. The welding procedure specification (WPS) for resistance welding. - E. The method for identifying and tracking lots. ## 52-1.08C Service Splice and Ultimate Butt Splice Testing Requirements • The Contractor shall designate in writing a splicing Quality Control Manager (QCM). The QCM shall be responsible directly to the Contractor for 1) the quality of all service and ultimate butt splicing including the inspection of materials and workmanship performed by the Contractor and all subcontractors; and 2) submitting, receiving, and approving all correspondence, required submittals, and reports regarding service and ultimate splicing to and from the Engineer. - The QCM shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project. The QCM may be an employee of the Contractor. - Testing on prequalification and production sample splices shall be performed at the Contractor's expense, at an independent qualified testing laboratory. The laboratory shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors who will provide other services or materials for the project, and shall have the following: - A. Proper facilities, including a tensile testing machine capable of breaking the largest size of reinforcing bar to be tested with minimum lengths as shown in this section. - B. A device for measuring the total slip of the reinforcing bars across the splice to the nearest 25 μm, that, when placed parallel to the longitudinal axis of the bar is able to simultaneously measure movement across the splice at 2 locations 180 degrees apart. - C. Operators who have received formal training for performing the testing requirements of ASTM Designation: A 370 and California Test 670. - D. A record of annual calibration of testing equipment performed by an independent third party that has 1) standards that are traceable to the National Institute of Standards and Technology, and 2) a formal reporting procedure, including published test forms. - The Contractor shall provide samples for quality assurance testing in conformance with the provisions in these specifications and the special provisions. - Prequalification and production sample splices shall be 1) a minimum length of 1.5 meters for reinforcing bars No. 25 or smaller, and 2 meters for reinforcing bars No. 29 or larger, with the splice located at mid-point; and 2) suitably identified before shipment with weatherproof markings that do not interfere with the Engineer's tamper-proof markings or seals. Splices that show signs of tampering will be rejected. - Shorter length sample splice bars may be furnished if approved in writing by the Engineer. - The Contractor shall ensure that sample splices are properly secured and transported to the testing laboratory in such a manner that no alterations to the physical conditions occur during transportation. Sample splices shall be tested in the same condition as received. No modifications to the sample splices shall be made before testing. - Each set or sample splice, as defined herein, shall be identified as representing either a prequalification or production test sample splice. - For the purpose of production testing, a lot of either service splices or ultimate butt splices is defined as 1) 150, or fraction thereof, of the same type of mechanical splices used for each bar size and each bar deformation pattern that is used in the work, or 2) 150, or fraction thereof, of complete joint penetration butt welded splices or resistance butt welded splices for each bar size used in the work. If different diameters of hoop reinforcement are shown on the plans, separate lots shall be used for each different hoop diameter. - Whenever a lot of splices is rejected, the rejected lot and subsequent lots of splices shall not be used in the work until 1) the QCM performs a
complete review of the Contractor's quality control process for these splices, 2) a written report is submitted to the Engineer describing the cause of failure for the splices in this lot and provisions for preventing similar failures in future lots, and 3) the Engineer has provided the Contractor with written notification that the report is acceptable. The Engineer shall have 3 working days after receipt of the report to provide notification to the Contractor. In the event the Engineer fails to provide notification within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in providing notification, the Contractor will be compensated for any resulting loss, and an extension of time will be granted in the same manner as provided for in Section 8-1.09, "Right of Way Delays." # 52-1.08C(1) Splice Prequalification Report - Before using any service splices or ultimate butt splices in the work, the Contractor shall submit a Splice Prequalification Report. The report shall include splice material information, names of the operators who will be performing the splicing, and descriptions of the positions, locations, equipment, and procedures that will be used in the work. - The Splice Prequalification Report shall also include certifications from the fabricator for prequalifications of operators and procedures based on sample tests performed no more than 2 years before submitting the report. Each operator shall be certified by performing 2 sample splices for each bar size of each splice type that the operator will be performing in the work. For deformation-dependent types of splice devices, each operator shall be certified by performing 2 additional samples for each bar size and deformation pattern that will be used in the work. - Prequalification sample splices shall be tested by an independent qualified testing laboratory and shall conform to the appropriate production test criteria and slip requirements specified herein. When epoxy-coated reinforcement is required, resistance butt welded sample splices shall have the weld flash removed by the same procedure as will be used in the work, before coating and testing. The Splice Prequalification Report shall include the certified test results for all prequalification sample splices. • The QCM shall review and approve the Splice Prequalification Report before submitting it to the Engineer for approval. The Contractor shall allow 2 weeks for the review and approval of a complete report before performing any service splicing or ultimate butt splicing in the work. In the event the Engineer fails to complete the review within the time allowed, and in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays." # 52-1.08C(2) Service Splice Test Criteria • Service production and quality assurance sample splices shall be tensile tested in conformance with the requirements in ASTM Designation: A 370 and California Test 670 and shall develop a minimum tensile strength of not less than 550 MPa. # 52-1.08C(2)(a) Production Test Requirements for Service Splices - Production tests shall be performed by the Contractor's independent laboratory for all service splices used in the work. A production test shall consist of testing 4 sample splices prepared for each lot of completed splices. The samples shall be prepared by the Contractor using the same splice material, position, operators, location, and equipment, and following the same procedure as used in the work. - At least one week before testing, the Contractor shall notify the Engineer in writing of the date when and the location where the testing of the samples will be performed. - The 4 samples from each production test shall be securely bundled together and identified with a completed sample identification card before shipment to the independent laboratory. The card will be furnished by the Engineer. Bundles of samples containing fewer than 4 samples of splices shall not be tested. - Before performing any tensile tests on production test sample splices, one of the 4 samples shall be tested for, and shall conform to, the requirements for total slip. Should this sample not meet the total slip requirements, one retest, in which the 3 remaining samples are tested for total slip, will be allowed. Should any of the 3 remaining samples not conform to the total slip requirements, all splices in the lot represented by this production test will be rejected. - If 3 or more sample splices from a production test conform to the provisions in this Section 52-1.08C(2), "Service Splice Test Criteria," all splices in the lot represented by this production test will be considered acceptable, provided each of the 4 samples develop a minimum tensile strength of not less than 420 MPa. - Should only 2 sample splices from a production test conform to the provisions in this Section 52-1.08C(2), "Service Splice Test Criteria," one additional production test shall be performed on the same lot of splices. This additional production test shall consist of testing 4 samples splices that have been randomly selected by the Engineer and removed by the Contractor from the actual completed lot of splices. Should any of the 4 splices from this additional test fail to conform to these provisions, all splices in the lot represented by these production tests will be rejected. - If only one sample splice from a production test conforms to the provisions in this Section 52-1.08C(2), "Service Splice Test Criteria," all splices in the lot represented by this production test will be rejected. - If a production test for a lot fails, the Contractor shall repair or replace all reinforcing bars from which sample splices were removed before the Engineer selects additional splices from this lot for further testing. # 52-1.08C(2)(b) Quality Assurance Test Requirements for Service Splices - For the first production test performed, and for at least one, randomly selected by the Engineer, of every 5 subsequent production tests, or portion thereof, the Contractor shall concurrently prepare 4 additional service quality assurance sample splices. These service quality assurance sample splices shall be prepared in the same manner as specified herein for service production sample splices. - These 4 additional quality assurance sample splices shall be shipped to the Transportation Laboratory for quality assurance testing. The 4 sample splices shall be securely bundled together and identified by location and contract number with weatherproof markings before shipment. Bundles containing fewer than 4 samples of splices will not be tested. Sample splices not accompanied by the supporting documentation required in Section 52-1.08B(1), for mechanical splices, or in Section 52-1.08B(3), for resistance butt welds, will not be tested. - Quality assurance testing will be performed in conformance with the requirements for service production sample splices in Section 52-1.08C(2)(a), "Production Test Requirements for Service Splices." #### 52-1.08C(3) Ultimate Butt Splice Test Criteria - Ultimate production and quality assurance sample splices shall be tensile tested in conformance with the requirements described in ASTM Designation: A 370 and California Test 670. - A minimum of one control bar shall be removed from the same bar as, and adjacent to, all ultimate production, and quality assurance sample splices. Control bars shall be 1) a minimum length of one meter for reinforcing bars No. 25 or Contract No. 07-195904 smaller and 1.5 meters for reinforcing bars No. 29 or larger, and 2) suitably identified before shipment with weatherproof markings that do not interfere with the Engineer's tamper-proof markings or seals. The portion of adjacent bar remaining in the work shall also be identified with weatherproof markings that correspond to its adjacent control bar. - Each sample splice and its associated control bar shall be identified and marked as a set. Each set shall be identified as representing a prequalification, production, or quality assurance sample splice. - The portion of hoop reinforcing bar, removed to obtain a sample splice and control bar, shall be replaced using a prequalified ultimate mechanical butt splice, or the hoop shall be replaced in kind. - Reinforcing bars, other than hoops, from which sample splices are removed, shall be repaired using ultimate mechanical butt splices conforming to the provisions in Section 52-1.08C(1), "Splice Prequalification Report," or the bars shall be replaced in kind. These bars shall be repaired or replaced such that no splices are located in any "No Splice Zone" shown on the plans. - Ultimate production and quality assurance sample splices shall rupture in the reinforcing bar either: 1) outside of the affected zone or 2) within the affected zone, provided that the sample splice has achieved at least 95 percent of the ultimate tensile strength of the control bar associated with the sample splice. In addition, necking of the bar, as defined in California Test 670, shall be evident at rupture regardless of whether the bar breaks inside or outside the affected zone. - The affected zone is the portion of the reinforcing bar where any properties of the bar, including the physical, metallurgical, or material characteristics, have been altered by fabrication or installation of the splice. - The ultimate tensile strength shall be determined for all control bars by tensile testing the bars to rupture, regardless of where each sample splice ruptures. If 2 control bars are tested for one sample splice, the bar with the lower ultimate tensile strength shall be considered the control bar. # 52-1.08C(3)(a) Production
Test Requirements for Ultimate Butt Splices - Production tests shall be performed for all ultimate butt splices used in the work. A production test shall consist of testing 4 sets of sample splices and control bars removed from each lot of completed splices, except when quality assurance tests are performed. - After the splices in a lot have been completed, and the bars have been epoxy-coated when required, the QCM shall notify the Engineer in writing that the splices in this lot conform to the specifications and are ready for testing. Except for hoops, sample splices will be selected by the Engineer at the job site. Sample splices for hoops will be selected by the Engineer either at the job site or a fabrication facility. - After notification has been received, the Engineer will randomly select the 4 sample splices to be removed from the lot and place tamper-proof markings or seals on them. The Contractor shall select the adjacent control bar for each sample splice bar, and the Engineer will place tamper-proof markings or seals on them. These ultimate production sample splices and control bars shall be removed by the Contractor, and tested by an independent qualified testing laboratory. - At least one week before testing, the Contractor shall notify the Engineer in writing of the date when and the location where the testing of the samples will be performed. - A sample splice or control bar from any set will be rejected if a tamper-proof marking or seal is disturbed before testing. - The 4 sets from each production test shall be securely bundled together and identified with a completed sample identification card before shipment to the independent laboratory. The card will be furnished by the Engineer. Bundles of samples containing fewer than 4 sets of splices shall not be tested. - Before performing any tensile tests on production test sample splices, one of the 4 sample splices shall be tested for, and shall conform to, the requirements for total slip. Should this sample splice not meet these requirements, one retest, in which the 3 remaining sample splices are tested for total slip, will be allowed. Should any of the 3 remaining sample splices not conform to these requirements, all splices in the lot represented by this production test will be rejected. - If 3 or more sample splices from a production test conform to the provisions in Section 52-1.08C(3), "Ultimate Butt Splice Test Criteria," all splices in the lot represented by this production test will be considered acceptable. - Should only 2 sample splices from a production test conform to the provisions in Section 52-1.08C(3), "Ultimate Butt Splice Test Criteria," one additional production test shall be performed on the same lot of splices. Should any of the 4 sample splices from this additional test fail to conform to these provisions, all splices in the lot represented by these production tests will be rejected. - If only one sample splice from a production test conforms to the provisions in Section 52-1.08C(3), "Ultimate Butt Splice Test Criteria," all splices in the lot represented by this production test will be rejected. - If a production test for a lot fails, the Contractor shall repair or replace all reinforcing bars from which sample splices were removed, complete in place, before the Engineer selects additional splices from this lot for further testing. - Production tests will not be required on repaired splices from a lot, regardless of the type of prequalified ultimate mechanical butt splice used to make the repair. However, should an additional production test be required, the Engineer may select any repaired splice for the additional production test. # 52-1.08C(3)(b) Quality Assurance Test Requirements for Ultimate Butt Splices - For the first production test performed, and for at least one, randomly selected by the Engineer, of every 5 subsequent production tests, or portion thereof, the Contractor shall concurrently prepare 4 additional ultimate quality assurance sample splices along with associated control bars. - Each time 4 additional ultimate quality assurance sample splices are prepared, 2 of these quality assurance sample splice and associated control bar sets and 2 of the production sample splice and associated control bar sets, together, shall conform to the requirements for ultimate production sample splices in Section 52-1.08C(3)(a),"Production Test Requirements for Ultimate Butt Splices." - The 2 remaining quality assurance sample splice and associated control bar sets, along with the 2 remaining production sample splice and associated control bar sets shall be shipped to the Transportation Laboratory for quality assurance testing. The 4 sets shall be securely bundled together and identified by location and contract number with weatherproof markings before shipment. Bundles containing fewer than 4 sets will not be tested. - Quality assurance testing will be performed in conformance with the requirements for ultimate production sample splices in Section 52-1.08C(3)(a), "Production Test Requirements for Ultimate Butt Splices." # **52-1.08C(3)(c)** Nondestructive Splice Tests - When the specifications allow for welded sample splices to be taken from other than the completed lot of splices, the Contractor shall meet the following additional requirements. - Except for resistance butt welded splices, radiographic examinations shall be performed on 25 percent of all complete joint penetration butt welded splices from a production lot. The size of a production lot will be a maximum of 150 splices. The Engineer will select the splices which will compose the production lot and also the splices within each production lot to be radiographically examined. - All required radiographic examinations of complete joint penetration butt welded splices shall be performed by the Contractor in conformance with the requirements in AWS D 1.4 and these specifications. - Before radiographic examination, welds shall conform to the requirements in Section 4.4, "Quality of Welds," of AWS D 1.4. - Should more than 12 percent of the splices which have been radiographically examined in any production lot be defective, an additional 25 percent of the splices, selected by the Engineer from the same production lot, shall be radiographically examined. Should more than 12 percent of the cumulative total of splices tested from the same production lot be defective, all remaining splices in the lot shall be radiographically examined. - Additional radiographic examinations performed due to the identification of defective splices shall be at the Contractor's expense. - All defects shall be repaired in conformance with the requirements in AWS D 1.4. - The Contractor shall notify the Engineer in writing 48 hours before performing any radiographic examinations. - The radiographic procedure used shall conform to the requirements in AWS D1.1, AWS D1.4, and the following: Two exposures shall be made for each complete joint penetration butt welded splice. For each of the 2 exposures, the radiation source shall be centered on each bar to be radiographed. The first exposure shall be made with the radiation source placed at zero degrees from the top of the weld and perpendicular to the weld root and identified with a station mark of "0." The second exposure shall be at 90 degrees to the "0" station mark and shall be identified with a station mark of "90." When obstructions prevent a 90 degree placement of the radiation source for the second exposure, and when approved in writing by the Engineer, the source may be rotated, around the centerline of the reinforcing bar, a maximum of 25 degrees. For field produced complete joint penetration butt welds, no more than one weld shall be radiographed during one exposure. For shop produced complete joint penetration butt welds, if more than one weld is to be radiographed during one exposure, the angle between the root line of each weld and the direction to the radiation source shall be not less than 65 degrees. Radiographs shall be made by either X-ray or gamma ray. Radiographs made by X-ray or gamma rays shall have densities of not less than 2.3 nor more than 3.5 in the area of interest. A tolerance of 0.05 in density is allowed for densitometer variations. Gamma rays shall be from the iridium 192 isotope and the emitting specimen shall not exceed 4.45 mm in the greatest diagonal dimension. The radiographic film shall be placed perpendicular to the radiation source at all times; parallel to the root line of the weld unless source placement determines that the film must be turned; and as close to the root of the weld as possible. The minimum source to film distance shall be maintained so as to ensure that all radiographs maintain a maximum geometric unsharpness of 0.020 at all times, regardless of the size of the reinforcing bars. Penetrameters shall be placed on the source side of the bar and perpendicular to the radiation source at all times. One penetrameter shall be placed in the center of each bar to be radiographed, perpendicular to the weld root, and adjacent to the weld. Penetrameter images shall not appear in the weld area. When radiography of more than one weld is being performed per exposure, each exposure shall have a minimum of one penetrameter per bar, or 3 penetrameters per exposure. When 3 penetrameters per exposure are used, one penetrameter shall be placed on each of the 2 outermost bars of the exposure, and the remaining penetrameter shall be placed on a centrally located bar. An allowable weld buildup of 4 mm may be added to the total material thickness when determining the proper penetrameter selection. No image quality indicator equivalency will be accepted. Wire penetrameters or penetrameter blocks shall not be used. Penetrameters shall be sufficiently shimmed using a radiographically identical material. Penetrameter image densities shall be a minimum of 2.0 and a maximum of 3.6. Radiographic film shall be Class
1, regardless of the size of reinforcing bars. Radiographs shall be free of film artifacts and processing defects, including, but not limited to, streaks, scratches, pressure marks or marks made for the purpose of identifying film or welding indications. Each splice shall be clearly identified on each radiograph and the radiograph identification and marking system shall be established between the Contractor and the Engineer before radiographic inspection begins. Film shall be identified by lead numbers only; etching, flashing or writing in identifications of any type will not be permitted. Each piece of film identification information shall be legible and shall include, as a minimum, the following information: Contractor's name, date, name of nondestructive testing firm, initials of radiographer, contract number, part number and weld number. The letter "R" and repair number shall be placed directly after the weld number to designate a radiograph of a repaired weld Radiographic film shall be developed within a time range of one minute less to one minute more than the film manufacturer's recommended maximum development time. Sight development will not be allowed. Processing chemistry shall be done with a consistent mixture and quality, and processing rinses and tanks shall be clean to ensure proper results. Records of all developing processes and any chemical changes to the developing processes shall be kept and furnished to the Engineer upon request. The Engineer may request, at any time, that a sheet of unexposed film be processed in the presence of the Engineer to verify processing chemical and rinse quality. The results of all radiographic interpretations shall be recorded on a signed certification and a copy kept with the film packet. Technique sheets prepared in conformance with the requirements in ASME Boiler and Pressure Vessels Code, Section V, Article 2 Section T-291 shall also contain the developer temperature, developing time, fixing duration and all rinse times. # **52-1.08D** Reporting Test Results - A Production Test Report for all testing performed on each lot shall be prepared by the independent testing laboratory performing the testing and submitted to the QCM for review and approval. The report shall be signed by an engineer who represents the laboratory and is registered as a Civil Engineer in the State of California. The report shall include, as a minimum, the following information for each test: contract number, bridge number, lot number and location, bar size, type of splice, length of mechanical splice, length of test specimen, physical condition of test sample splice and any associated control bar, any notable defects, total measured slip, ultimate tensile strength of each splice, and for ultimate butt splices, limits of affected zone, location of visible necking area, ultimate tensile strength and 95 percent of this ultimate tensile strength for each control bar, and a comparison between 95 percent of the ultimate tensile strength of each control bar and the ultimate tensile strength of its associated splice. - The QCM must review, approve, and forward each Production Test Report to the Engineer for review before the splices represented by the report are encased in concrete. The Engineer will have 3 working days to review each Production Test Report and respond in writing after a complete report has been received. Should the Contractor elect to encase any splices before receiving notification from the Engineer, it is expressly understood that the Contractor will not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection. Should the Contractor elect to wait to encase splices pending notification by the Engineer, and in the event the Engineer fails to complete the review and provide notification within the time allowed, and if, in the opinion of the Engineer, the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays." - Quality assurance test results for each bundle of 4 sets or 4 samples of splices will be reported in writing to the Contractor within 3 working days after receipt of the bundle by the Transportation Laboratory. In the event that more than one bundle is received on the same day, 2 additional working days shall be allowed for providing test results for each additional bundle received. A test report will be made for each bundle received. Should the Contractor elect to encase splices before receiving notification from the Engineer, it is expressly understood that the Contractor will not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection. Should the Contractor elect to wait to encase splices pending notification by the Engineer, and in the event the Engineer fails to complete the review within the time allowed, and in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays." Section 52-1.11, "Payment," of the Standard Specifications is amended by adding the following paragraph after the seventh paragraph: • If a portion or all of the reinforcing steel is epoxy-coated more than 480 air line kilometers from both Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impracticable and extremely difficult to ascertain and determine the actual increase in these expenses, it is agreed that payment to the Contractor for furnishing the epoxy-coated reinforcement will be reduced \$5000 for each epoxy-coating facility located more than 480 air line kilometers from both Sacramento and Los Angeles and an additional \$3000 (\$8000 total) for each epoxy-coating facility located more than 4800 air line kilometers from both Sacramento and Los Angeles. #### **SECTION 55: STEEL STRUCTURES** Issue Date: December 31, 2001 Section 55-3.14, "Bolted Connections," of the Standard Specifications is amended by adding the following after the ninth paragraph: • If a torque multiplier is used in conjunction with a calibrated wrench as a method for tightening fastener assemblies to the required tension, both the multiplier and the wrench shall be calibrated together as a system. The same length input and output sockets and extensions that will be used in the work shall also be included in the calibration of the system. The manufacturer's torque multiplication ratio shall be adjusted during calibration of the system, such that when this adjusted ratio is multiplied by the actual input calibrated wrench reading, the product is a calculated output torque that is within 2 percent of the true output torque. When this system is used in the work to perform any installation tension testing, rotational capacity testing, fastener tightening, or tension verification, it shall be used, intact as calibrated. The sixth paragraph of Section 55-4.02, "Payment," of the Standard Specifications is amended to read: • If a portion or all of the structural steel is fabricated more than 480 air line kilometers from both Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impracticable and extremely difficult to ascertain and determine the actual increase in these expenses, it is agreed that payment to the Contractor for furnishing the structural steel from each fabrication site located more than 480 air line kilometers from both Sacramento and Los Angeles will be reduced \$5000 or by an amount computed at \$0.044 per kilogram of structural steel fabricated, whichever is greater, or in the case of each fabrication site located more than 4800 air line kilometers from both Sacramento and Los Angeles, payment will be reduced \$8000 or by \$0.079 per kilogram of structural steel fabricated, whichever is greater. # **SECTION 56: SIGNS** Issue Date: November 2, 2004 Section 56-1.01, "Description," of the Standard Specifications is amended by deleting the third paragraph. Section 56-1.02A, "Bars, Plates and Shapes," of the Standard Specifications is amended to read: # 56-1.02A Bars, Plates, Shapes, and Structural Tubing - Bars, plates, and shapes shall be structural steel conforming to the requirements in ASTM Designation: A 36/A 36M, except, at the option of the Contractor, the light fixture mounting channel shall be continuous-slot steel channel conforming to the requirements in ASTM Designation: A 1011/A 1011M, Designation SS, Grade 33[230], or aluminum Alloy 6063-T6 extruded aluminum conforming to the requirements in ASTM Designation: B 221 or B 221M. - Structural tubing shall be structural steel conforming to the requirements in ASTM Designation: A 500, Grade B. - \bullet Removable sign panel frames shall be constructed of structural steel conforming to the requirements in ASTM Designation: A 36/A 36M. Section 56-1.02B, "Sheets," of the Standard Specifications is amended to read: #### 56-1.02B Sheets - Sheets shall be carbon-steel sheets conforming to the requirements in ASTM Designation: A 1011/A 1011M, Designation SS, Grade 33[230]. - Ribbed sheet metal for box beam-closed truss sign structures shall be fabricated from galvanized sheet steel conforming to the requirements in ASTM Designation: A 653/A 653M, Designation SS, Grade 33[230]. Sheet metal panels shall be G 165 coating designation in conformance
with the requirements in ASTM Designation: A 653/A 653M. Section 56-1.02F, "Steel Walkway Gratings," of the Standard Specifications is amended to read: ## 56-1.02F Steel Walkway Gratings - Steel walkway gratings shall be furnished and installed in conformance with the details shown on the plans and the following provisions: - A. Gratings shall be the standard product of an established grating manufacturer. - B. Material for gratings shall be structural steel conforming to the requirements in ASTM Designation: A 1011/A 1011M, Designation CS, Type B. - C. For welded type gratings, each joint shall be full resistance welded under pressure, to provide a sound, completely beaded joint. - D. For mechanically locked gratings, the method of fabrication and interlocking of the members shall be approved by the Engineer, and the fabricated grating shall be equal in strength to the welded type. - E. Gratings shall be accurately fabricated and free from warps, twists, or other defects affecting their appearance or serviceability. Ends of all rectangular panels shall be square. The tops of the bearing bars and cross members shall be in the same plane. Gratings distorted by the galvanizing process shall be straightened. The sixth through the thirteenth paragraphs in Section 56-1.03, "Fabrication," of the Standard Specifications are amended to read: - High-strength bolted connections, where shown on the plans, shall conform to the provisions in Section 55-3.14, "Bolted Connections," except that only fastener assemblies consisting of a high-strength bolt, nut, hardened washer, and direct tension indicator shall be used. - High-strength fastener assemblies, and any other bolts, nuts, and washers attached to sign structures shall be zinc-coated by the mechanical deposition process. - Nuts for high-strength bolts designated as snug-tight shall not be lubricated. - An alternating snugging and tensioning pattern for anchor bolts and high-strength bolted splices shall be used. Once tensioned, high-strength fastener components and direct tension indicators shall not be reused. - For bolt diameters less than 10 mm, the diameter of the bolt hole shall be not more than 0.80-mm larger than the nominal bolt diameter. For bolt diameters greater than or equal to 10 mm, the diameter of the bolt hole shall be not more than 1.6 mm larger than the nominal bolt diameter. - Sign structures shall be fabricated into the largest practical sections prior to galvanizing. - Ribbed sheet metal panels for box beam closed truss sign structures shall be fastened to the truss members by cap screws or bolts as shown on the plans, or by 4.76 mm stainless steel blind rivets conforming to Industrial Fasteners Institute, Standard IFI-114, Grade 51. The outside diameter of the large flange rivet head shall be not less than 15.88 mm in diameter. Web splices in ribbed sheet metal panels may be made with similar type blind rivets of a size suitable for the thickness of material being connected. - Spalling or chipping of concrete structures shall be repaired by the Contractor at the Contractor's expense. - Overhead sign supports shall have an aluminum identification plate permanently attached near the base, adjacent to the traffic side on one of the vertical posts, using either stainless steel rivets or stainless steel screws. As a minimum, the information on the plate shall include the name of the manufacturer, the date of manufacture and the contract number. The fifth paragraph of Section 56-2.02B, "Wood Posts," of the Standard Specifications is amended to read: • Douglas fir and Hem-Fir posts shall be treated in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," and in conformance with AWPA Use Category System: UC4A, Commodity Specification A. Posts shall be incised and the minimum retention of preservative shall be as specified in AWPA Standards. #### **SECTION 57: TIMBER STRUCTURES** Issue Date: October 12, 2004 The second paragraph of Section 57-1.02A, "Structural Timber and Lumber," of the Standard Specifications is amended to read: • When preservative treatment of timber and lumber is required, the treatment shall conform to the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," and AWPA's Use Category 4B. The type of treatment to be used will be shown on the plans or specified in the special provisions. # SECTION 58: PRESERVATIVE TREATMENT OF LUMBER, TIMBER AND PILING Issue Date: November 2, 2004 The first paragraph of Section 58-1.02, "Treatment and Retention," of the Standard Specifications is amended to read: • Unless otherwise permitted by the Engineer or otherwise specified in the special provisions, the timber, lumber and piling shall be pressure treated after all millwork is completed. The preservatives, treatment and results of treatment shall be in conformance with AWPA Standards U1-03, "User Specification for Treated Wood," and T1-03, "Processing and Treatment." Except as provided below, treatment of lumber and timber shall conform to the specified AWPA Use Category. The type of treatment to be used shall be one of those named in the special provisions, on the plans, or elsewhere in these specifications. The second paragraph of Section 58-1.02, "Treatment and Retention," of the Standard Specifications is deleted. # **SECTION 59: PAINTING** Issue Date: December 31, 2001 Section 59-2.01, "General," of the Standard Specifications is amended by adding the following paragraphs after the first paragraph: - Unless otherwise specified, no painting Contractors or subcontractors will be permitted to commence work without having the following current "SSPC: The Society for Protective Coatings" (formerly the Steel Structures Painting Council) certifications in good standing: - A. For cleaning and painting structural steel in the field, certification in conformance with the requirements in Qualification Procedure No. 1, "Standard Procedure For Evaluating Painting Contractors (Field Application to Complex Industrial Structures)" (SSPC-QP 1). - B. For removing paint from structural steel, certification in conformance with the requirements in Qualification Procedure No. 2, "Standard Procedure For Evaluating Painting Contractors (Field Removal of Hazardous Coatings from Complex Structures)" (SSPC-QP 2). - C. For cleaning and painting structural steel in a permanent painting facility, certification in conformance with the requirements in Qualification Procedure No. 3, "Standard Procedure For Evaluating Qualifications of Shop Painting Applicators" (SSPC-QP 3). The AISC's Sophisticated Paint Endorsement (SPE) quality program will be considered equivalent to SSPC-QP 3. The third paragraph of Section 59-2.03, "Blast Cleaning," of the Standard Specifications is amended to read: • Exposed steel or other metal surfaces to be blast cleaned shall be cleaned in conformance with the requirements in Surface Preparation Specification No. 6, "Commercial Blast Cleaning," of the "SSPC: The Society for Protective Coatings." Blast cleaning shall leave all surfaces with a dense, uniform, angular anchor pattern of not less than 35 μ m as measured in conformance with the requirements in ASTM Designation: D 4417. The first paragraph of Section 59-2.06, "Hand Cleaning," of the Standard Specifications is amended to read: • Dirt, loose rust and mill scale, or paint which is not firmly bonded to the surfaces shall be removed in conformance with the requirements in Surface Preparation Specification No. 2, "Hand Tool Cleaning," of the "SSPC: The Society for Protective Coatings." Edges of old remaining paint shall be feathered. The fourth paragraph of Section 59-2.12, "Painting," of the Standard Specifications is amended to read: • The dry film thickness of the paint will be measured in place with a calibrated Type 2 magnetic film thickness gage in conformance with the requirements of specification SSPC-PA2 of the "SSPC: The Society for Protective Coatings." # **SECTION 75: MISCELLANEOUS METAL** Issue Date: November 2, 2004 The table in the tenth paragraph of Section 75-1.02, "Miscellaneous Iron and Steel," of the Standard Specifications is amended to read: | Material | Specification | | | |------------------------------|---|--|--| | Steel bars, plates and | ASTM Designation: A 36/A 36M or A 575, | | | | | A 576 (AISI or M Grades 1016 through 1030) | | | | shapes | for general applications: | | | | | | | | | Bolts and studs | ASTM Designation: A 307 | | | | Headed anchor bolts | ASTM Designation: A 307, Grade B, including | | | | N. 1 1 1 1 | S1 supplementary requirements | | | | Nonheaded anchor | ASTM Designation: A 307, Grade C, including | | | | bolts | S1 supplementary requirements and S1.6 of | | | | | AASHTO Designation: M 314 supplementary | | | | | requirements | | | | | or AASHTO Designation: M 314, Grade 36 or | | | | 771 | 55, including S1 supplementary requirements | | | | High-strength bolts | ASTM Designation: A 449, Type 1 | | | | and studs, threaded | | | | | rods, and nonheaded | | | | | anchor bolts | 4 CT 1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C | | | | Nuts | ASTM Designation: A 563, including | | | | | Appendix X1* | | | | Washers | ASTM Designation: F 844 | | | | | oth steel fastener assemblies for use in structural | | | | steel joints: | | | | | Bolts | ASTM Designation: A 325, Type 1 | | | | Tension control bolts | ASTM Designation: F 1852, Type 1 | | | | Nuts | ASTM Designation: A 563, including | | | | | Appendix X1* | | | | Hardened washers | ASTM Designation: F 436, Type 1, Circular, | | | | | including S1 supplementary requirements | | | | Direct tension | ASTM Designation: F 959, Type 325, | | | | indicators | zinc-coated | | | | Stainless steel fasteners (A | lloys 304 & 316) for general applications: | | | | Bolts, screws, studs, | ASTM Designation: F 593 or F 738M | | | | threaded rods, and | | | | | nonheaded anchor | | | | |
bolts | | | | | Nuts | ASTM Designation: F 594 or F 836M | | | | Washers | ASTM Designation: A 240/A 240M and | | | | | ANSI B 18.22M | | | | Carbon-steel castings | ASTM Designation: A 27/A 27M, Grade 65-35 | | | | | [450-240], Class 1 | | | | Malleable iron castings | ASTM Designation: A 47, Grade 32510 or | | | | | A 47M, Grade 22010 | | | | Gray iron castings | ASTM Designation: A 48, Class 30B | | | | Ductile iron castings | ASTM Designation: A 536, Grade 65-45-12 | | | | Cast iron pipe | Commercial quality | | | | Steel pipe | Commercial quality, welded or extruded | | | | Other parts for general | Commercial quality | | | | applications | | | | | | ll he tightened heyond snug or wrench tight shall | | | ^{*} Zinc-coated nuts that will be tightened beyond snug or wrench tight shall be furnished with a dyed dry lubricant conforming to Supplementary Requirement S2 in ASTM Designation: A 563. The second paragraph in Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read: • Miscellaneous bridge metal shall consist of the following, except as further provided in Section 51-1.19, "Utility Facilities," and in the special provisions: - A. Bearing assemblies, equalizing bolts and expansion joint armor in concrete structures. - B. Expansion joint armor in steel structures. - C. Manhole frames and covers, frames and grates, ladder rungs, guard posts and access door assemblies. - D. Deck drains, area drains, retaining wall drains, and drainage piping, except drainage items identified as "Bridge Deck Drainage System" in the special provisions. The table in the eighteenth paragraph of Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read: | Stud Diameter | Sustained Tension Test Load | |---------------|-----------------------------| | (millimeters) | (kilonewtons) | | 29.01-33.00 | 137.9 | | 23.01-29.00 | 79.6 | | 21.01-23.00 | 64.1 | | * 18.01-21.00 | 22.2 | | 15.01-18.00 | 18.2 | | 12.01-15.00 | 14.2 | | 9.01-12.00 | 9.34 | | 6.00-9.00 | 4.23 | Maximum stud diameter permitted for mechanical expansion anchors. The table in the nineteenth paragraph of Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read: | Stud Diameter (millimeters) | Ultimate
Tensile Load
(kilonewtons) | |-----------------------------|---| | 30.01-33.00 | 112.1 | | 27.01-30.00 | 88.1 | | 23.01-27.00 | 71.2 | | 20.01-23.00 | 51.6 | | 16.01-20.00 | 32.0 | | 14.01-16.00 | 29.4 | | 12.00-14.00 | 18.7 | The table in the twenty-second paragraph of Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read: Installation Torque Values, (newton meters) | | Shell Type | Integral Stud Type Resin Capsule | | |---------------|------------|----------------------------------|-----------------------| | | Mechanical | Mechanical | Anchors | | Stud Diameter | Expansion | Expansion | and | | (millimeters) | Anchors | Anchors | Cast-in-Place Inserts | | 29.01-33.00 | _ | _ | 540 | | 23.01-29.00 | _ | _ | 315 | | 21.01-23.00 | _ | _ | 235 | | 18.01-21.00 | 110 | 235 | 200 | | 15.01-18.00 | 45 | 120 | 100 | | 12.01-15.00 | 30 | 65 | 40 | | 9.01-12.00 | 15 | 35 | 24 | | 6.00-9.00 | 5 | 10 | _ | The third paragraph in Section 75-1.035, "Bridge Joint Restrainer Units," of the Standard Specifications is amended to read: • Cables shall be 19 mm preformed, 6 x 19, wire strand core or independent wire rope core (IWRC), galvanized, and in conformance with the requirements in Federal Specification RR-W-410D, right regular lay, manufactured of improved plow steel with a minimum breaking strength of 200 kN. Two certified copies of mill test reports of each manufactured length of cable used shall be furnished to the Engineer. The second paragraph in Section 75-1.05, "Galvanizing," of the Standard Specifications is amended to read: At the option of the Contractor, material thinner than 3.2 mm shall be galvanized either before fabrication in conformance with the requirements of ASTM Designation: A 653/A 653M, Coating Designation Z600, or after fabrication in conformance with the requirements of ASTM Designation: A 123, except that the weight of zinc coating shall average not less than 365 g per square meter of actual surface area with no individual specimen having a coating weight of less than 305 g per square meter. #### **SECTION 80: FENCES** Issue Date: October 12, 2004 The second paragraph of Section 80-3.01B(2), "Treated Wood Posts and Braces," of the Standard Specifications is amended to read: • Posts and braces to be treated shall be pressure treated in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," and AWPA Use Category System: UC4A, Commodity Specification A or B. #### **SECTION 83: RAILINGS AND BARRIERS** Issue Date: November 2, 2004 The first paragraph of Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications is amended to read: • The rail elements, backup plates, terminal sections, end and return caps, bolts, nuts and other fittings shall conform to the requirements in AASHTO Designation: M 180, except as modified in this Section 83-1.02B and as specified in Section 83-1.02. The rail elements, backup plates, terminal sections, end and return caps shall conform to Class A, Type 1 W-Beam guard railing as shown in AASHTO Designation: M 180. The edges and center of the rail element shall contact each post block. Rail element joints shall be lapped not less than 316 mm and bolted. The rail metal, in addition to conforming to the requirements in AASHTO Designation: M 180, shall withstand a cold bend, without cracking, of 180 degrees around a mandrel of a diameter equal to 2.5 times the thickness of the plate. The ninth paragraph in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications is amended to read: • The grades and species of wood posts and blocks shall be No. 1 timbers (also known as No. 1 structural) Douglas fir or No. 1 timbers Southern yellow pine. Wood posts and blocks shall be graded in conformance with the provisions in Section 57-2, "Structural Timber," of the Standard Specifications, except allowances for shrinkage after mill cutting shall in no case exceed 5 percent of the American Lumber Standards minimum sizes, at the time of installation. The eleventh paragraph in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications is amended to read: • After fabrication, wood posts and blocks shall be pressure treated in conformance with Section 58, "Preservative Treatment of Lumber, Timber and Piling," and AWPA Use Category System: UC4A, Commodity Specification A. The twelfth paragraph in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications is amended to read: - If copper naphthenate, ammoniacal copper arsenate, chromated copper arsenate, ammoniacal copper zinc arsenate, ammoniacal copper quat or copper azole is used to treat the wood posts and blocks, the bolt holes shall be treated as follows: - A. Before the bolts are inserted, bolt holes shall be filled with a grease, recommended by the manufacturer for corrosion protection, which will not melt or run at a temperature of 65°C. The twenty-fourth paragraph of Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications is amended to read: • End anchor assemblies and rail tensioning assemblies for metal beam guard railing shall be constructed as shown on the plans and shall conform to the following provisions: An end anchor assembly (Type SFT) for metal beam guard railing shall consist of an anchor cable, an anchor plate, a wood post, a steel foundation tube, a steel soil plate and hardware. An end anchor assembly (Type CA) for metal beam guard railing shall consist of an anchor cable, an anchor plate, a single anchor rod or double anchor rods, hardware and one concrete anchor. A rail tensioning assembly for metal beam guard railing shall consist of an anchor cable, an anchor plate, and hardware. The anchor plate, metal plates, steel foundation tubes and steel soil plate shall be fabricated of steel conforming to the requirements in ASTM Designation: A 36/A 36M. The anchor rods shall be fabricated of steel conforming to the requirements in ASTM Designation: A 36/A 36M, A 441 or A 572, or ASTM Designation: A 576, Grades 1018, 1019, 1021 or 1026. The eyes shall be hot forged or formed with full penetration welds. After fabrication, anchor rods with eyes that have been formed with any part of the eye below 870°C during the forming operation or with eyes that have been closed by welding shall be thermally stress relieved prior to galvanizing. The completed anchor rod, after galvanizing, shall develop a strength of 220 kN. In lieu of built-up fabrication of anchor plates as shown on the plans, anchor plates may be press-formed from steel plate, with or without welded seams. All bolts and nuts shall conform to the requirements in ASTM Designation: A 307, unless otherwise specified in the special provisions or shown on the plans. Anchor cable shall be 19-mm preformed, 6 x 19, wire strand core or independent wire rope core (IWRC), galvanized in conformance with the requirements in Federal Specification RR-W-410D, right regular lay, manufactured of improved plow steel with a minimum breaking strength of 200 kN. Two certified copies of mill test reports of each manufactured length of cable used shall be furnished to the Engineer. The overall length of each cable anchor assembly shall be as shown on the plans, but shall be a minimum of 2 m. Where shown on the plans, cable clips and a cable thimble shall be used to attach cable to the anchor rod. Thimbles shall be commercial quality, galvanized steel. Cable clips shall be commercial quality drop forged galvanized steel. The swaged fitting shall be machined from hot-rolled bars of steel conforming to AISI
Designation: C 1035, and shall be annealed suitable for cold swaging. The swaged fitting shall be galvanized before swaging. A lock pin hole to accommodate a 6-mm, plated, spring steel pin shall be drilled through the head of the swage fitting to retain the stud in proper position. The manufacturer's identifying mark shall be stamped on the body of the swage fitting. The 25-mm nominal diameter stud shall conform to the requirements in ASTM Designation: A 449 after galvanizing. Prior to galvanizing, a 10-mm slot for the locking pin shall be milled in the stud end. The swaged fittings, stud and nut assembly shall develop the specified breaking strength of the cable. The cable assemblies shall be shipped as a complete unit including stud and nut. Clevises shall be drop forged galvanized steel and shall develop the specified breaking strength of the cable. One sample of cable properly fitted with swaged fitting and right hand thread stud at both ends as specified above, including a clevis when shown on the plans, one meter in total length, shall be furnished the Engineer for testing. The portion of the anchor rod to be buried in earth shall be coated with a minimum 0.5-mm thickness of coal tar enamel conforming to AWWA Standard: C203 or a coal tar epoxy conforming to the requirements in Steel Structures Painting Council Paint Specification No. 16, Coal-Tar Epoxy-Polymide Black Paint or Corps of Engineers Specification, Formula C-200a, Coal-Tar Epoxy Paint. Metal components of the anchor assembly shall be fabricated in conformance with good shop practice and shall be hot-dip galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing." Anchor cables shall be tightened after the concrete anchor has cured for at least 5 days. Concrete used to construct anchors for end anchor assemblies shall be Class 3 or minor concrete conforming to the provisions in Section 90, "Portland Cement Concrete." Concrete shall be placed against undisturbed material of the excavated holes for end anchors. The top 300 mm of holes shall be formed, if required by the Engineer. Reinforcing steel in concrete anchors for end anchor assemblies shall conform to the provisions in Section 52, "Reinforcement." The second paragraph in Section 83-1.02D, "Steel Bridge Railing," of the Standard Specifications is amended to read: • Structural shapes, tubing, plates, bars, bolts, nuts, and washers shall be structural steel conforming to the provisions in Section 55-2, "Materials." Other fittings shall be commercial quality. The second and third paragraphs in Section 83-1.02E, "Cable Railing," of the Standard Specifications are replaced with the following paragraph: • Pipe for posts and braces shall be standard steel pipe or pipe that conforms to the provisions in Section 80-4.01A, "Posts and Braces." The fourteenth paragraph in Section 83-1.02I, "Chain Link Railing," of the Standard Specifications is amended to read: • Chain link fabric shall be either 11-gage Type I zinc coated fabric conforming to the requirements in AASHTO Designation: M 181 or 11-gage Type IV polyvinyl chloride (PVC) coated fabric conforming to the requirements in Federal Specification RR-F-191/1D. The second paragraph of Section 83-1.03, "Measurement," of the Standard Specifications is amended to read: • Except for metal beam guard railing within the pay limits of a terminal system end treatment or transition railing (Type WB), metal beam guard railing will be measured by the meter along the face of the rail element from end post to end post of the completed railing at each installation. The point of measurement at each end post will be the center of the bolt attaching the rail element to the end post. The seventh paragraph of Section 83-1.03, "Measurement," of the Standard Specifications is amended to read: • The quantities of end anchor assemblies (Type SFT or Type CA) and rail tensioning assemblies will be measured as units determined from actual count. An end anchor assembly (Type CA) with 2 cables attached to one concrete anchor will be counted as one terminal anchor assembly (Type CA) for measurement and payment. The eighth paragraph of Section 83-1.03, "Measurement," of the Standard Specifications is amended to read: • The quantities of return and end caps and the various types of terminal sections for metal beam guard railing will be determined as units from actual count. The third paragraph of Section 83-1.04, "Payment," of the Standard Specifications is amended to read: • The contract unit prices paid for end anchor assembly (Type SFT), end anchor assembly (Type CA), and rail tensioning assembly shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all work involved in constructing the end anchor assemblies, complete in place, including drilling anchor plate bolt holes in rail elements, driving steel foundation tubes, excavating for concrete anchor holes and disposing of surplus material, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer. The fourth paragraph of Section 83-1.04, "Payment," of the Standard Specifications is amended to read: • The contract unit prices paid for return caps, end caps, and the various types of terminal sections for metal beam guard railing shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing terminal sections, return and end caps, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer. The second paragraph of Section 83-2.02B, "Thrie Beam Barrier," of the Standard Specifications is amended to read: • Rail elements, backup plates, terminal connectors, terminal sections, and return caps shall conform to Class A, Type 1 thrie beam guard railing as shown in AASHTO Designation: M 180. The fourteenth paragraph of Section 83-2.02B, "Thrie Beam Barrier," of the Standard Specifications is amended to read: • All metal work shall be fabricated in the shop, and no punching, cutting or welding will be permitted in the field. Rail elements shall be lapped so that the exposed ends will not face approaching traffic. Terminal sections and return caps shall be installed in conformance with the manufacturer's recommendation. The first paragraph of Section 83-2.03, "Measurement," of the Standard Specifications is amended to read: • Except for single thrie beam barrier within the pay limits of transition railing (Type STB), single thrie beam barrier will be measured by the meter from end post to end post along the face of the rail element of the installed barrier. Single thrie beam barriers constructed on each side of piers under structures or other obstructions will be measured for payment along each line of the installed barrier. The second paragraph of Section 83-2.03, "Measurement," of the Standard Specifications is amended to read: • Except for double thrie beam barrier within the pay limits of transition railing (Type DTB), double thrie beam barrier will be measured by the meter from end post to end post along the center line of the installed barrier. The fifth paragraph of Section 83-2.03, "Measurement," of the Standard Specifications is amended to read: • The quantity of return caps, terminal connectors and the various types of terminal sections for single and double thrie beam barriers will be determined as units from actual count. The sixth paragraph of Section 83-2.03, "Measurement," of the Standard Specifications is amended to read: • The quantity of end anchor assemblies will be paid for as units determined from actual count. The first paragraph of Section 83-2.04, "Payment," of the Standard Specifications is amended to read: • The various types of thrie beam barrier, measured as specified in Section 83-2.03, "Measurement," will be paid for at the contract price per meter for single or double thrie beam barrier, whichever applies, and the contract unit price or prices for end anchor assemblies, return caps, terminal connectors and the various types of terminal sections. The second paragraph of Section 83-2.04, "Payment," of the Standard Specifications is amended to read: • The above prices and payments shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in constructing the barrier, complete in place, including drilling holes for wood posts, driving posts, backfilling the space around posts, excavating and backfilling end anchor assembly holes, connecting thrie beam barrier to concrete surfaces and disposing of surplus excavated material, and for furnishing, placing, removing and disposing of the temporary railing for closing the gap between existing barrier and the barrier being constructed as shown on the plans, and as specified in these specifications and the special provisions, and as directed by the Engineer. # **SECTION 85: PAVEMENT MARKERS** Issue Date: May 16, 2003 The second through fifth paragraphs in Section 85-1.03, "Sampling, Tolerances and Packaging," of the Standard Specifications are amended to read: # Sampling - Twenty markers selected at random will constitute a representative sample for each lot of markers. - The lot size shall not exceed 25000 markers. # **Tolerances** • Three test specimens will be randomly selected from the sample for each test and tested in conformance with these specifications. Should any one of the 3 specimens fail to conform with the requirements in these specifications, 6 additional specimens will be tested. The failure of any one of these 6 specimens shall be cause for rejection of the entire lot or shipment represented by the sample. • The entire sample of retroreflective pavement markers will be tested for reflectance. The failure of 10 percent or more of the original sampling shall be
cause for rejection. Section 85-1.04, "Non-Reflective Pavement Markers," of the Standard Specifications is amended to read: #### 85-1.04 Non-Reflective Pavement Markers - Non-reflective pavement markers (Types A and AY) shall be, at the option of the Contractor, either ceramic or plastic conforming to these specifications. - The top surface of the marker shall be convex with a gradual change in curvature. The top, bottom and sides shall be free of objectionable marks or discoloration that will affect adhesion or appearance. - The bottom of markers shall have areas of integrally formed protrusions or indentations, which will increase the effective bonding surface area of adhesive. The bottom surface of the marker shall not deviate more than 1.5 mm from a flat surface. The areas of protrusion shall have faces parallel to the bottom of the marker and shall project approximately one mm from the bottom. The second through fourth paragraphs of Section 85-1.04A, "Non-Reflective Pavement Markers (Ceramic)," of the Standard Specifications are deleted. The table in the fifth paragraph in Section 85-1.04A, "Non-Reflective Pavement Markers (Ceramic)," of the Standard Specifications is amended to read: # **Testing** • Tests shall be performed in conformance with the requirements in California Test 669. | Test | Test Description | Requirement | |------|--|---------------| | | 1 | 4.8 MPa, min. | | a | Bond strength | | | b | Glaze thickness | 180 μm, min. | | c | Hardness | 6 Moh, min. | | d | Luminance factor, Type A, white markers only, | 75, min. | | | glazed surface | | | e | Yellowness index, Type A, white markers only, | 7, max. | | | glazed surface | | | f | Color-yellow, Type AY, yellow markers only. | Pass | | | The chromaticity coordinates shall be within a | | | | color box defined in CTM 669 | | | g | Compressive strength | 6700 N, min. | | h | Water absorption | 2.0 %, max. | | i | Artificial weathering, 500 hours exposure, | 20, max. | | | yellowness index | | Section 85-1.04B, "Non-Reflective Pavement Markers (Plastic)," of the Standard Specifications is amended to read: #### 85-1.04B Non-Reflective Pavement Markers (Plastic) - Plastic non-reflective pavement markers Types A and AY shall be, at the option of the Contractor, either polypropylene or acrylonitrile-butadiene-styrene (ABS) plastic type. - Plastic markers shall conform to the testing requirements specified in Section 85-1.04A, "Non-Reflective Pavement Markers (Ceramic)," except that Tests a, b, c, and h shall not apply. The plastic markers shall not be coated with substances that interfere with the ability of the adhesive bonding to the marker. The sixth and seventh paragraphs in Section 85-1.05, "Retroreflective Pavement Markers," of the Standard Specifications are amended to read: # **Testing** Tests shall be performed in conformance with the requirements in California Test 669. | Test Description | Requirement | | | | |---|------------------------------|--------------|------|--| | Bond strength ^a | 3.4 MPa, min. | | | | | Compressive strength ^b | 8 | 8900 N, min. | | | | Abrasion resistance, marker must meet the | Pass | | | | | respective specific intensity minimum | | | | | | requirements after abrasion. | | | | | | Water Soak Resistance | No delamination of the body | | | | | | or lens system of the marker | | | | | | nor loss of reflectance | | | | | | Specific Intensity | | | | | Reflectance | Clear | Yellow | Red | | | 0° Incidence Angle, min. | 3.0 | 1.5 | 0.75 | | | 20° Incidence Angle, min. | 1.2 | 0.60 | 0.30 | | | After one year field evaluation | 0.30 | 0.15 | 0.08 | | | Films of the modern bedress films material union to machine 2.4 MDs about a matient | | | | | a Failure of the marker body or filler material prior to reaching 3.4 MPa shall constitute a failing bond strength test. • Pavement markers to be placed in pavement recesses shall conform to the above requirements for retroreflective pavement markers except that the minimum compressive strength requirement shall be 5338 N. The eighth paragraph of Section 85-1.05, "Retroreflective Pavement Markers" of the Standard Specifications is deleted. The eighth paragraph in Section 85-1.06, "Replacement," of the Standard Specifications is amended to read: • Epoxy adhesive shall not be used to apply non-reflective plastic pavement markers. # SECTION 86: SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS Issue Date: November 2, 2004 The first paragraph of Section 86-2.03, "Foundations," of the Standard Specifications is amended to read: • Except for concrete for cast-in-drilled-hole concrete pile foundations, portland cement concrete shall conform to Section 90-10, "Minor Concrete." The fifth paragraph of Section 86-2.03, "Foundations," of the Standard Specifications is amended to read: • Reinforced cast-in-drilled-hole concrete pile foundations for traffic signal and lighting standards shall conform to the provisions in Section 49, "Piling," with the following exceptions: 1) Material resulting from drilling holes shall be disposed of in conformance with the provisions in Section 86-2.01, "Excavating and Backfilling," and 2) Concrete filling for cast-in-drilled-hole concrete piles will not be considered as designated by compressive strength. The seventh paragraph of Section 86-2.03, "Foundations," of the Standard Specifications is amended to read: • Forms shall be true to line and grade. Tops of foundations for posts and standards, except special foundations, shall be finished to curb or sidewalk grade or as directed by the Engineer. Forms shall be rigid and securely braced in place. Conduit ends and anchor bolts shall be placed in proper position and to proper height, and anchor bolts shall be held in place by means of rigid top and bottom templates. The bottom template shall be made of steel. The bottom template shall provide proper spacing and alignment of the anchor bolts near their bottom embedded end. The bottom template shall be installed before placing footing concrete. Anchor bolts shall not be installed more than 1:40 from vertical. Section 86-2.03, "Foundations," of the Standard Specifications is amended by deleting the eighth paragraph. The twelfth paragraph of Section 86-2.03, "Foundations," of the Standard Specifications is amended to read: b Deformation of the marker of more than 3 mm at a load of less than 8900 N or delamination of the shell and the filler material of more than 3 mm regardless of the load required to break the marker shall be cause for rejection of the markers as specified in Section 85-1.03, "Sampling, Tolerances and Packaging." • Plumbing of the standards shall be accomplished by adjusting the leveling nuts before placing the mortar or before the foundation is finished to final grade. Shims or other similar devices shall not be used for plumbing or raking of posts, standards, or pedestals. After final adjustments of both top nuts and leveling nuts on anchorage assemblies have been made, firm contact shall exist between all bearing surfaces of the anchor bolt nuts, washers, and the base plates. The first paragraph of Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications is amended to read: #### 86-2.04 STANDARDS, STEEL PEDESTALS, AND POSTS • Standards for traffic signals and lighting, and steel pedestals for cabinets and other similar equipment, shall be located as shown on the plans. Bolts, nuts and washers, and anchor bolts for use in signal and lighting support structures shall conform to the provisions in Section 55-2, "Materials." Except when bearing-type connections or slipbases are specified, high-strength bolted connections shall conform to the provisions in Section 55-3.14, "Bolted Connections." Welding, nondestructive testing (NDT) of welds, and acceptance and repair criteria for NDT of steel members shall conform to the requirements of AWS D1.1 and the contract special provisions. The second paragraph of Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications is amended to read: • On each lighting standard except Type 1, one rectangular corrosion resistant metal identification tag shall be permanently attached above the hand hole, near the base of the standard, using stainless steel rivets. On each signal pole support, two corrosion resistant metal identification tags shall be attached, one above the hand hole near the base of the vertical standard and one on the underside of the signal mast arm near the arm plate. As a minimum, the information on each identification tag shall include the name of the manufacturer, the date of manufacture, the identification number as shown on the plans, the contract number, and a unique identification code assigned by the fabricator. This number shall be traceable to a particular contract and the welds on that component, and shall be readable after the support structure is coated and installed. The lettering shall be a minimum of 7 mm high. The information may be either depressed or raised, and shall be legible. The fourth paragraph of Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications is amended to read: • Ferrous metal parts of standards, with shaft length of 4.6 m and longer, shall conform to the details shown on the plans, the provisions in Section 55-2, "Materials," except as otherwise noted, and the following requirements: Except as otherwise specified, standards shall be fabricated from sheet steel of weldable grade having a minimum yield strength, after fabrication, of 276 MPa. Certified test reports which verify conformance to the minimum yield strength requirements shall be submitted to the Engineer. The test reports may be the mill test reports for the as-received steel or, when the as-received steel has a lower yield strength than required, the Contractor shall provide
supportive test data which provides assurance that the Contractor's method of cold forming will consistently increase the tensile properties of the steel to meet the specified minimum yield strength. The supportive test data shall include tensile properties of the steel after cold forming for specific heats and thicknesses. When a single-ply 8-mm thick pole is specified, a 2-ply pole with equivalent section modulus may be substituted. Standards may be fabricated of full-length sheets or shorter sections. Each section shall be fabricated from not more than 2 pieces of sheet steel. Where 2 pieces are used, the longitudinal welded seams shall be directly opposite one another. When the sections are butt-welded together, the longitudinal welded seams on adjacent sections shall be placed to form continuous straight seams from base to top of standard. Butt-welded circumferential joints of tubular sections requiring CJP groove welds shall be made using a metal sleeve backing ring inside each joint. The sleeve shall be 3-mm nominal thickness, or thicker, and manufactured from steel having the same chemical composition as the steel in the tubular sections to be joined. When the sections to be joined have different specified minimum yield strengths, the steel in the sleeve shall have the same chemical composition as the tubular section having the higher minimum yield strength. The width of the metal sleeve shall be consistent with the type of NDT chosen and shall be a minimum width of 25 mm. The sleeve shall be centered at the joint and be in contact with the tubular section at the point of the weld at time of fit-up. Welds shall be continuous. The weld metal at the transverse joint shall extend to the sleeve, making the sleeve an integral part of the joint. During fabrication, longitudinal seams on vertical tubular members of cantilevered support structures shall be centered on and along the side of the pole that the pole plate is located. Longitudinal seams on horizontal tubular members, including signal and luminaire arms, shall be within +/-45 degrees of the bottom of the arm. The longitudinal seam welds in steel tubular sections may be made by the electric resistance welding process. Longitudinal seam welds shall have 60 percent minimum penetration, except that within 150 mm of circumferential welds, longitudinal seam welds shall be CJP groove welds. In addition, longitudinal seam welds on lighting support structures having telescopic pole segment splices shall be CJP groove welds on the female end for a length on each end equal to the designated slip fit splice length plus 150 mm. Exposed circumferential welds, except fillet and fatigue-resistant welds, shall be ground flush (-0, +2mm) with the base metal prior to galvanizing or painting. Circumferential welds and base plate-to-pole welds may be repaired only one time without written permission from the Engineer. Exposed edges of the plates that make up the base assembly shall be finished smooth and exposed corners of the plates shall be broken unless otherwise shown on the plans. Shafts shall be provided with slip-fitter shaft caps. Flatness of surfaces of 1) base plates that are to come in contact with concrete, grout, or washers and leveling nuts; 2) plates in high-strength bolted connections; 3) plates in joints where cap screws are used to secure luminaire and signal arms; and 4) plates used for breakaway slip base assemblies shall conform to the requirements in ASTM A6. Standards shall be straight, with a permissive variation not to exceed 25 mm measured at the midpoint of a 9-m or 11-m standard and not to exceed 20 mm measured at the midpoint of a 5-m through 6-m standard. Variation shall not exceed 25 mm at a point 4.5 m above the base plate for Type 35 and Type 36 standards. Zinc-coated nuts used on fastener assemblies having a specified preload (obtained by specifying a prescribed tension, torque value, or degree of turn) shall be provided with a colored lubricant that is clean and dry to the touch. The color of the lubricant shall be in contrast to the zinc coating on the nut so that the presence of the lubricant is visually obvious. In addition, either the lubricant shall be insoluble in water, or fastener components shall be shipped to the job site in a sealed container. No holes shall be made in structural members unless the holes are shown on the plans or are approved in writing by the Engineer. Standards with an outside diameter of 300 mm or less shall be round. Standards with an outside diameter greater than 300 mm shall be round or multisided. Multisided standards shall have a minimum of 12 sides which shall be convex and shall have a minimum bend radius of 100 mm. Mast arms for standards shall be fabricated from material as specified for standards, and shall conform to the dimensions shown on the plans. The cast steel option for slip bases shall be fabricated from material conforming to the requirements in ASTM Designation: A 27/A 27M, Grade 70-40. Other comparable material may be used if written permission is given by the Engineer. The casting tolerances shall be in conformance with the Steel Founder's Society of America recommendations (green sand molding). One casting from each lot of 50 castings or less shall be subject to radiographic inspection, in conformance with the requirements in ASTM Designation: E 94. The castings shall comply with the acceptance criteria severity level 3 or better for the types and categories of discontinuities in conformance with the requirements in ASTM Designations: E 186 and E 446. If the one casting fails to pass the inspection, 2 additional castings shall be radiographed. Both of these castings shall pass the inspection, or the entire lot of 50 will be rejected. Material certifications, consisting of physical and chemical properties, and radiographic films of the castings shall be filed at the manufacturer's office. These certifications and films shall be available for inspection upon request. High-strength bolts, nuts, and flat washers used to connect slip base plates shall conform to the requirements in ASTM Designation: A 325 or A 325M and shall be galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing." Plate washers shall be fabricated by saw cutting and drilling steel plate conforming to the requirements in AISI Designation: 1018, and be galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing." Prior to galvanizing, burrs and sharp edges shall be removed and holes shall be chamfered sufficiently on each side to allow the bolt head to make full contact with the washer without tension on the bolt. High-strength cap screws shown on the plans for attaching arms to standards shall conform to the requirements in ASTM Designation: A 325, A 325M, or A 449, and shall comply with the mechanical requirements in ASTM Designation: A 325 or A 325M after galvanizing. The cap screws shall be galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing." The threads of the cap screws shall be coated with a colored lubricant that is clean and dry to the touch. The color of the lubricant shall be in contrast to the color of the zinc coating on the cap screw so that presence of the lubricant is visually obvious. In addition, either the lubricant shall be insoluble in water, or fastener components shall be shipped to the job site in a sealed container. Unless otherwise specified, bolted connections attaching signal or luminaire arms to poles shall be considered slip critical. Galvanized faying surfaces on plates on luminaire and signal arms and matching plate surfaces on poles shall be roughened by hand using a wire brush prior to assembly and shall conform to the requirements for Class C surface conditions for slip-critical connections in "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts," a specification approved by the Research Council on Structural Connections (RCSC) of the Engineering Foundation. For faying surfaces required to be painted, the paint shall be an approved type, brand, and thickness that has been tested and approved according to the RCSC Specification as a Class B coating. Samples of fastener components will be randomly taken from each production lot by the Engineer and submitted, along with test reports required by appropriate ASTM fastener specifications, for QA testing and evaluation. Sample sizes for each fastener component shall be as determined by the Engineer. The seventh paragraph of Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications is amended to read: • To avoid interference of arm plate-to-tube welds with cap screw heads, and to ensure cap screw heads can be turned using conventional installation tools, fabricators shall make necessary adjustments to details prior to fabrication and properly locate the position of arm tubes on arm plates during fabrication. The sixth and seventh paragraphs of 86-2.12, "Wood Poles," of the Standard Specifications are amended to read: - After fabrication, wood poles shall be pressure treated in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," and AWPA Use Category System: UC4B, Commodity Specification D. - Wood poles, when specified in the special provisions to be painted, shall be treated with waterborne wood preservatives. The first paragraph of Section 86-4.06, "Pedestrian Signal Faces" of the Standard Specifications is amended to read: • Message symbols for pedestrian signal faces shall be white WALKING PERSON and Portland orange UPRAISED HAND conforming to the requirements in the Institute of Transportation Engineers Standards: "Pedestrian Traffic Control Signal Indications," "Manual on Uniform Traffic Control Devices," and "MUTCD California Supplement." The height of each symbol shall be not less than 250 mm and the width of each symbol shall be not less than 165 mm. The tenth
paragraph of Section 86-4.07, "Light Emitting Diode Pedestrian Signal Face 'Upraised Hand' Module" of the Standard Specifications is amended to read: • The luminance of the "UPRAISED HAND" symbol shall be 3750 cd/m² minimum. The color of "UPRAISED HAND" shall be Portland orange conforming to the requirements of the Institute of Transportation Engineers Standards: "Pedestrian Traffic Control Signal Indications," "Manual on Uniform Traffic Control Devices," and "MUTCD California Supplement." The height of each symbol shall be not less than 250 mm and the width of each symbol shall be not less than 165 mm. Section 86-8.01, "Payment," of the Standard Specifications is amended by adding the following paragraph after the first paragraph: • If a portion or all of the poles for signal, lighting and electrical systems pursuant to Standard Specification Section 86, "Signals, Lighting and Electrical Systems," is fabricated more than 480 air line kilometers from both-Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impracticable and extremely difficult to ascertain and determine the actual increase in such expenses, it is agreed that payment to the Contractor for furnishing such items from each fabrication site located more than 480 air line kilometers from both Sacramento and Los Angeles will be reduced \$5000; in addition, in the case where a fabrication site is located more than 4800 air line kilometers from both Sacramento and Los Angeles, payment will be reduced an additional \$3000 per each fabrication site (\$8000 total per site). #### **SECTION 88: ENGINEERING FABRIC** Issue Date: January 15, 2002 Section 88-1.02, "Pavement Reinforcing Fabric," of the Standard Specifications is amended to read: • Pavement reinforcing fabric shall be 100 percent polypropylene staple fiber fabric material, needle-punched, thermally bonded on one side, and conform to the following: | Specification | Requirement | |---|-------------| | Weight, grams per square meter | | | ASTM Designation: D 5261 | 140 | | Grab tensile strength | | | (25-mm grip), kilonewtons, min. in each direction | | | ASTM Designation: D 4632 | 0.45 | | Elongation at break, percent min. | | | ASTM Designation: D 4632 | 50 | | Asphalt retention by fabric, grams per square meter. (Residual Minimum) | | | ASTM Designation: D 6140 | 900 | Note: Weight, grab, elongation and asphalt retention are based on Minimum Average Roll Value (MARV) # **SECTION 90: PORTLAND CEMENT CONCRETE** Issue Date: November 2, 2004 Section 90, "Portland Cement Concrete," of the Standard Specifications is amended to read: # SECTION 90: PORTLAND CEMENT CONCRETE 90-1 GENERAL #### 90-1.01 DESCRIPTION - Portland cement concrete shall be composed of cementitious material, fine aggregate, coarse aggregate, admixtures if used, and water, proportioned and mixed as specified in these specifications. - The Contractor shall determine the mix proportions for concrete in conformance with these specifications. Unless otherwise specified, cementitious material shall be a combination of cement and mineral admixture. Cementitious material shall be either: - 1. "Type IP (MS) Modified" cement; or - 2. A combination of "Type II Modified" portland cement and mineral admixture; or - 3. A combination of Type V portland cement and mineral admixture. - Type III portland cement shall be used only as allowed in the special provisions or with the approval of the Engineer. - Class 1 concrete shall contain not less than 400 kg of cementitious material per cubic meter. - Class 2 concrete shall contain not less than 350 kg of cementitious material per cubic meter. - Class 3 concrete shall contain not less than 300 kg of cementitious material per cubic meter. - Class 4 concrete shall contain not less than 250 kg of cementitious material per cubic meter. - Minor concrete shall contain not less than 325 kg of cementitious material per cubic meter unless otherwise specified in these specifications or the special provisions. - Unless otherwise designated on the plans or specified in these specifications or the special provisions, the amount of cementitious material used per cubic meter of concrete in structures or portions of structures shall conform to the following: | Use | Cementitious Material Content (kg/m3) | |--|---------------------------------------| | Concrete designated by compressive strength: | | | Deck slabs and slab spans of bridges | 400 min., 475 max. | | Roof sections of exposed top box culverts | 400 min., 475 max. | | Other portions of structures | 350 min., 475 max. | | Concrete not designated by compressive strength: | | | Deck slabs and slab spans of bridges | 400 min. | | Roof sections of exposed top box culverts | 400 min. | | Prestressed members | 400 min. | | Seal courses | 400 min. | | Other portions of structures | 350 min. | | Concrete for precast members | 350 min., 550 max. | - Whenever the 28-day compressive strength shown on the plans is greater than 25 MPa, the concrete shall be designated by compressive strength. If the plans show a 28-day compressive strength that is 28 MPa or greater, an additional 14 days will be allowed to obtain the specified strength. The 28-day compressive strengths shown on the plans that are 25 MPa or less are shown for design information only and are not a requirement for acceptance of the concrete. - Concrete designated by compressive strength shall be proportioned such that the concrete will attain the strength shown on the plans or specified in the special provisions. - Before using concrete for which the mix proportions have been determined by the Contractor, or in advance of revising those mix proportions, the Contractor shall submit in writing to the Engineer a copy of the mix design. - Compliance with cementitious material content requirements will be verified in conformance with procedures described in California Test 518 for cement content. For testing purposes, mineral admixture shall be considered to be cement. Batch proportions shall be adjusted as necessary to produce concrete having the specified cementitious material content. - If any concrete has a cementitious material, portland cement, or mineral admixture content that is less than the minimum required, the concrete shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place and the Contractor shall pay to the State \$0.55 for each kilogram of cementitious material, portland cement, or mineral admixture that is less than the minimum required. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract. The deductions will not be made unless the difference between the contents required and those actually provided exceeds the batching tolerances permitted by Section 90-5, "Proportioning." No deductions will be made based on the results of California Test 518. - The requirements of the preceding paragraph shall not apply to minor concrete or commercial quality concrete. #### 90-2 MATERIALS ## 90-2.01 CEMENT - Unless otherwise specified, cement shall be either "Type IP (MS) Modified" cement, "Type II Modified" portland cement or Type V portland cement. - "Type IP (MS) Modified" cement shall conform to the requirements for Type IP (MS) cement in ASTM Designation: C 595, and shall be comprised of an intimate and uniform blend of Type II cement and not more than 35 percent by mass of mineral admixture. The type and minimum amount of mineral admixture used in the manufacture of "Type IP (MS) Modified" cement shall be in conformance with the provisions in Section 90-4.08, "Required Use of Mineral Admixtures." - "Type II Modified" portland cement shall conform to the requirements for Type II portland cement in ASTM Designation: C 150-02a. - In addition, "Type IP (MS) Modified" cement and "Type II Modified" portland cement shall conform to the following requirements: - A. The cement shall not contain more than 0.60-percent by mass of alkalies, calculated as the percentage of Na₂O plus 0.658 times the percentage of K₂O, when determined by either direct intensity flame photometry or by the atomic absorption method. The instrument and procedure used shall be qualified as to precision and accuracy in conformance with the requirements in ASTM Designation: C 114; - B. The autoclave expansion shall not exceed 0.50-percent; and - C. Mortar, containing the cement to be used and Ottawa sand, when tested in conformance with California Test 527, shall not expand in water more than 0.010 percent and shall not contract in air more than 0.048 percent, except that when cement is to be used for precast prestressed concrete piling, precast prestressed concrete members, or steam cured concrete products, the mortar shall not contract in air more than 0.053 percent. - Type III and Type V portland cements shall conform to the requirements in ASTM Designation: C 150-02a and the additional requirements listed above for "Type II Modified" portland cement, except that when tested in conformance with California Test 527, mortar containing Type III portland cement shall not contract in air more than 0.075 percent. - Cement used in the manufacture of cast-in-place concrete for exposed surfaces of like elements of a structure shall be from the same cement mill. - Cement shall be protected from exposure to moisture until used. Sacked cement shall be piled to permit access for tally, inspection, and identification of each shipment. - Adequate facilities shall be provided to assure that cement meeting the provisions specified in this Section 90-2.01 shall be kept separate from other cement in order to prevent any but the specified cement from entering the work. Safe and suitable facilities for sampling cement shall be provided at
the weigh hopper or in the feed line immediately in advance of the hopper, in conformance with California Test 125. - If cement is used prior to sampling and testing as provided in Section 6-1.07, "Certificates of Compliance," and the cement is delivered directly to the site of the work, the Certificate of Compliance shall be signed by the cement manufacturer or supplier of the cement. If the cement is used in ready-mixed concrete or in precast concrete products purchased as such by the Contractor, the Certificate of Compliance shall be signed by the manufacturer of the concrete or product. - Cement furnished without a Certificate of Compliance shall not be used in the work until the Engineer has had sufficient time to make appropriate tests and has approved the cement for use. #### 90-2.02 AGGREGATES - Aggregates shall be free from deleterious coatings, clay balls, roots, bark, sticks, rags, and other extraneous material. - Natural aggregates shall be thoroughly and uniformly washed before use. - The Contractor, at the Contractor's expense, shall provide safe and suitable facilities, including necessary splitting devices for obtaining samples of aggregates, in conformance with California Test 125. - Aggregates shall be of such character that it will be possible to produce workable concrete within the limits of water content provided in Section 90-6.06, "Amount of Water and Penetration." - Aggregates shall have not more than 10 percent loss when tested for soundness in conformance with the requirements in California Test 214. The soundness requirement for fine aggregate will be waived, provided that the durability index, D_f , of the fine aggregate is 60, or greater, when tested for durability in conformance with California Test 229. - If the results of any one or more of the Cleanness Value, Sand Equivalent, or aggregate grading tests do not meet the requirements specified for "Operating Range" but all meet the "Contract Compliance" requirements, the placement of concrete shall be suspended at the completion of the current pour until tests or other information indicate that the next material to be used in the work will comply with the requirements specified for "Operating Range." - If the results of either or both the Cleanness Value and coarse aggregate grading tests do not meet the requirements specified for "Contract Compliance," the concrete that is represented by the tests shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place, and the Contractor shall pay to the State \$4.60 per cubic meter for paving concrete and \$7.20 per cubic meter for all other concrete for the concrete represented by these tests and left in place. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract. - If the results of either or both the Sand Equivalent and fine aggregate grading tests do not meet the requirements specified for "Contract Compliance," the concrete which is represented by the tests shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place, and the Contractor shall pay to the State \$4.60 per cubic meter for paving concrete and \$7.20 per cubic meter for all other concrete for the concrete represented by these tests and left in place. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract. - The 2 preceding paragraphs apply individually to the "Contract Compliance" requirements for coarse aggregate and fine aggregate. When both coarse aggregate and fine aggregate do not conform to the "Contract Compliance" requirements, both paragraphs shall apply. The payments specified in those paragraphs shall be in addition to any payments made in conformance with the provisions in Section 90-1.01, "Description." - No single Cleanness Value, Sand Equivalent or aggregate grading test shall represent more than 250 m³ of concrete or one day's pour, whichever is smaller. - When the source of an aggregate is changed, the Contractor shall adjust the mix proportions and submit in writing to the Engineer a copy of the mix design before using the aggregates. # 90-2.02A Coarse Aggregate - Coarse aggregate shall consist of gravel, crushed gravel, crushed rock, crushed air-cooled iron blast furnace slag or combinations thereof. Crushed air-cooled blast furnace slag shall not be used in reinforced or prestressed concrete. - Coarse aggregate shall conform to the following quality requirements: | Tests | California
Test | Requirements | |---|--------------------|--------------| | Loss in Los Angeles Rattler (after 500 revolutions) | 211 | 45% max. | | Cleanness Value | | | | Operating Range | 227 | 75 min. | | Contract Compliance | 227 | 71 min. | - In lieu of the above Cleanness Value requirements, a Cleanness Value "Operating Range" limit of 71, minimum, and a Cleanness Value "Contract Compliance" limit of 68, minimum, will be used to determine the acceptability of the coarse aggregate if the Contractor furnishes a Certificate of Compliance, as provided in Section 6-1.07, "Certificates of Compliance," certifying that: - 1. coarse aggregate sampled at the completion of processing at the aggregate production plant had a Cleanness Value of not less than 82 when tested by California Test 227; and - 2. prequalification tests performed in conformance with the requirements in California Test 549 indicated that the aggregate would develop a relative strength of not less than 95 percent and would have a relative shrinkage not greater than 105 percent, based on concrete. # 90-2.02B Fine Aggregate - Fine aggregate shall consist of natural sand, manufactured sand produced from larger aggregate or a combination thereof. Manufactured sand shall be well graded. - Fine aggregate shall conform to the following quality requirements: | California | | |------------|---------------------------| | Test | Requirements | | 213 | Satisfactory ^a | | 515 | 95%, min. | | | | | 217 | 75, min. | | 217 | 71, min. | | | Test 213 515 217 | - a Fine aggregate developing a color darker than the reference standard color solution may be accepted if it is determined by the Engineer, from mortar strength tests, that a darker color is acceptable. - In lieu of the above Sand Equivalent requirements, a Sand Equivalent "Operating Range" limit of 71 minimum and a Sand Equivalent "Contract Compliance" limit of 68 minimum will be used to determine the acceptability of the fine aggregate if the Contractor furnishes a Certificate of Compliance, as provided in Section 6-1.07, "Certificates of Compliance," certifying that: - 1. fine aggregate sampled at the completion of processing at the aggregate production plant had a Sand Equivalent value of not less than 82 when tested by California Test 217; and - 2. prequalification tests performed in conformance with California Test 549 indicated that the aggregate would develop a relative strength of not less than 95 percent and would have a relative shrinkage not greater than 105 percent, based on concrete. # 90-2.03 WATER • In conventionally reinforced concrete work, the water for curing, for washing aggregates, and for mixing shall be free from oil and shall not contain more than 1000 parts per million of chlorides as Cl, when tested in conformance with California Test 422, nor more than 1300 parts per million of sulfates as SO₄, when tested in conformance with California Test 417. In prestressed concrete work, the water for curing, for washing aggregates, and for mixing shall be free from oil and shall not contain more than 650 parts per million of chlorides as Cl, when tested in conformance with California Test 422, nor more than 1300 parts per million of sulfates as SO₄, when tested in conformance with California Test 417. In no case shall the water contain an amount of impurities that will cause either: 1) a change in the setting time of cement of more than 25 percent when tested in conformance with the requirements in ASTM Designation: C 191 or ASTM Designation: C 266 or 2) a reduction in the compressive strength of mortar at 14 days of more than 5 percent, when tested in conformance with the requirements in ASTM Designation: C 109, when compared to the results obtained with distilled water or deionized water, tested in conformance with the requirements in ASTM Designation: C 109. - In non-reinforced concrete work, the water for curing, for washing aggregates and for mixing shall be free from oil and shall not contain more than 2000 parts per million of chlorides as Cl, when tested in conformance with California Test 422, or more than 1500 parts per million of sulfates as SO₄, when tested in conformance with California Test 417. - In addition to the above provisions, water for curing concrete shall not contain impurities in a sufficient amount to cause discoloration of the concrete or produce etching of the surface. - Water reclaimed from mixer wash-out operations may be used in mixing concrete. The water shall not contain coloring agents or more than 300 parts per million of alkalis ($Na_2O + 0.658 K_2O$) as determined on the filtrate. The specific gravity of the water shall not exceed 1.03 and shall not vary more than ± 0.010 during a day's operations. ### 90-2.04 ADMIXTURE MATERIALS - Admixture materials shall conform to the requirements in the following ASTM Designations: - A. Chemical Admixtures—ASTM Designation: C 494. - B. Air-entraining Admixtures—ASTM Designation: C 260. - C. Calcium Chloride—ASTM Designation: D 98. - D. Mineral Admixtures—Coal fly ash; raw or calcined natural pozzolan as specified in ASTM Designation: C 618; silica fume conforming to the requirements in ASTM Designation: C 1240, with reduction of mortar expansion of 80 percent, minimum, using the cement from the proposed mix design.
- Unless otherwise specified in the special provisions, mineral admixtures shall be used in conformance with the provisions in Section 90-4.08, "Required Use of Mineral Admixtures." ### 90-3 AGGREGATE GRADINGS ### 90-3.01 **GENERAL** - Before beginning concrete work, the Contractor shall submit in writing to the Engineer the gradation of the primary aggregate nominal sizes that the Contractor proposes to furnish. If a primary coarse aggregate or the fine aggregate is separated into 2 or more sizes, the proposed gradation shall consist of the gradation for each individual size, and the proposed proportions of each individual size, combined mathematically to indicate one proposed gradation. The proposed gradation shall meet the grading requirements shown in the table in this section, and shall show the percentage passing each of the sieve sizes used in determining the end result. - The Engineer may waive, in writing, the gradation requirements in this Section 90-3.01 and in Sections 90-3.02, "Coarse Aggregate Grading," 90-3.03, "Fine Aggregate Grading," and 90-3.04, "Combined Aggregate Gradings," if, in the Engineer's opinion, furnishing the gradation is not necessary for the type or amount of concrete work to be constructed. - Gradations proposed by the Contractor shall be within the following percentage passing limits: | Primary Aggregate Nominal Size | Sieve Size | Limits of Proposed Gradation | |--------------------------------|------------|------------------------------| | 37.5-mm x 19-mm | 25-mm | 19 - 41 | | 25-mm x 4.75-mm | 19-mm | 52 - 85 | | 25-mm x 4.75-mm | 9.5-mm | 15 - 38 | | 12.5-mm x 4.75-mm | 9.5-mm | 40 - 78 | | 9.5-mm x 2.36-mm | 9.5-mm | 50 - 85 | | Fine Aggregate | 1.18-mm | 55 - 75 | | Fine Aggregate | 600-μm | 34 - 46 | | Fine Aggregate | 300-μm | 16 - 29 | • Should the Contractor change the source of supply, the Contractor shall submit in writing to the Engineer the new gradations before their intended use. ### 90-3.02 COARSE AGGREGATE GRADING • The grading requirements for coarse aggregates are shown in the following table for each size of coarse aggregate: | | Percentage Passing Primary Aggregate Nominal Sizes | | | | | | | | |-------------|--|------------|-----------------|------------|-------------------|------------|------------------|------------| | | 37.5-mn | n x 19-mm | 25-mm x 4.75-mm | | 12.5-mm x 4.75-mm | | 9.5-mm x 2.36-mm | | | | Operating | Contract | Operating | Contract | Operating | Contract | Operating | Contract | | Sieve Sizes | Range | Compliance | Range | Compliance | Range | Compliance | Range | Compliance | | 50-mm | 100 | 100 | — | _ | _ | | | | | 37.5-mm | 88-100 | 85-100 | 100 | 100 | | _ | | | | 25-mm | $x \pm 18$ | $X \pm 25$ | 88-100 | 86-100 | | | | | | 19-mm | 0-17 | 0-20 | $X \pm 15$ | $X \pm 22$ | 100 | 100 | | | | 12.5-mm | _ | | | | 82-100 | 80-100 | 100 | 100 | | 9.5-mm | 0-7 | 0-9 | $X \pm 15$ | $X \pm 22$ | $X \pm 15$ | $X \pm 22$ | $X \pm 15$ | $X \pm 20$ | | 4.75-mm | | | 0-16 | 0-18 | 0-15 | 0-18 | 0-25 | 0-28 | | 2.36-mm | | _ | 0-6 | 0-7 | 0-6 | 0-7 | 0-6 | 0-7 | - In the above table, the symbol X is the gradation that the Contractor proposes to furnish for the specific sieve size as provided in Section 90-3.01, "General." - Coarse aggregate for the 37.5-mm, maximum, combined aggregate grading as provided in Section 90-3.04, "Combined Aggregate Gradings," shall be furnished in 2 or more primary aggregate nominal sizes. Each primary aggregate nominal size may be separated into 2 sizes and stored separately, provided that the combined material conforms to the grading requirements for that particular primary aggregate nominal size. - When the 25-mm, maximum, combined aggregate grading as provided in Section 90-3.04, "Combined Aggregate Gradings," is to be used, the coarse aggregate may be separated into 2 sizes and stored separately, provided that the combined material shall conform to the grading requirements for the 25-mm x 4.75-mm primary aggregate nominal size. #### 90-3.03 FINE AGGREGATE GRADING • Fine aggregate shall be graded within the following limits: | | Percentage Passing | | | | |-------------|--------------------|---------------------|--|--| | Sieve Sizes | Operating Range | Contract Compliance | | | | 9.5-mm | 100 | 100 | | | | 4.75-mm | 95-100 | 93-100 | | | | 2.36-mm | 65-95 | 61-99 | | | | 1.18-mm | X ± 10 | $X \pm 13$ | | | | 600-μm | X ± 9 | X ± 12 | | | | 300-μm | $X \pm 6$ | X ± 9 | | | | 150-μm | 2-12 | 1-15 | | | | 75-μm | 0-8 | 0-10 | | | - In the above table, the symbol X is the gradation that the Contractor proposes to furnish for the specific sieve size as provided in Section 90-3.01, "General." - In addition to the above required grading analysis, the distribution of the fine aggregate sizes shall be such that the difference between the total percentage passing the 1.18-mm sieve and the total percentage passing the 600- μ m sieves shall be between 10 and 40, and the difference between the percentage passing the 600- μ m and 300- μ m sieves shall be between 10 and 40. - Fine aggregate may be separated into 2 or more sizes and stored separately, provided that the combined material conforms to the grading requirements specified in this Section 90-3.03. ### 90-3.04 COMBINED AGGREGATE GRADINGS - Combined aggregate grading limits shall be used only for the design of concrete mixes. Concrete mixes shall be designed so that aggregates are combined in proportions that shall produce a mixture within the grading limits for combined aggregates as specified herein. - The combined aggregate grading, except when otherwise specified in these specifications or the special provisions, shall be either the 37.5-mm, maximum grading, or the 25-mm, maximum grading, at the option of the Contractor. Grading Limits of Combined Aggregates | | Percentage Passing | | | | |-------------|--------------------|------------|--------------|-------------| | Sieve Sizes | 37.5-mm Max. | 25-mm Max. | 12.5-mm Max. | 9.5-mm Max. | | 50-mm | 100 | _ | _ | _ | | 37.5-mm | 90-100 | 100 | _ | | | 25-mm | 50-86 | 90-100 | _ | | | 19-mm | 45-75 | 55-100 | 100 | | | 12.5-mm | _ | | 90-100 | 100 | | 9.5-mm | 38-55 | 45-75 | 55-86 | 50 - 100 | | 4.75-mm | 30-45 | 35-60 | 45-63 | 45 - 63 | | 2.36-mm | 23-38 | 27-45 | 35-49 | 35 - 49 | | 1.18-mm | 17-33 | 20-35 | 25-37 | 25 - 37 | | 600-μm | 10-22 | 12-25 | 15-25 | 15 - 25 | | 300-μm | 4-10 | 5-15 | 5-15 | 5 - 15 | | 150-μm | 1-6 | 1-8 | 1-8 | 1 - 8 | | 75-μm | 0-3 | 0-4 | 0-4 | 0 - 4 | • Changes from one grading to another shall not be made during the progress of the work unless permitted by the Engineer. ### 90-4 ADMIXTURES ### **90-4.01 GENERAL** - Admixtures used in portland cement concrete shall conform to and be used in conformance with the provisions in this Section 90-4 and the special provisions. Admixtures shall be used when specified or ordered by the Engineer and may be used at the Contractor's option as provided herein. - Chemical admixtures and air-entraining admixtures containing chlorides as Cl in excess of one percent by mass of admixture, as determined by California Test 415, shall not be used in prestressed or reinforced concrete. - Calcium chloride shall not be used in concrete except when otherwise specified. - Mineral admixture used in concrete for exposed surfaces of like elements of a structure shall be from the same source and of the same percentage. - Admixtures shall be uniform in properties throughout their use in the work. Should it be found that an admixture as furnished is not uniform in properties, its use shall be discontinued. - If more than one admixture is used, the admixtures shall be compatible with each other so that the desirable effects of all admixtures used will be realized. ### **90-4.02 MATERIALS** Admixture materials shall conform to the provisions in Section 90–2.04, "Admixture Materials." ### 90-4.03 ADMIXTURE APPROVAL - No admixture brand shall be used in the work unless it is on the Department's current list of approved brands for the type of admixture involved. - Admixture brands will be considered for addition to the approved list if the manufacturer of the admixture submits to the Transportation Laboratory a sample of the admixture accompanied by certified test results demonstrating that the admixture complies with the requirements in the appropriate ASTM Designation and these specifications. The sample shall be sufficient to permit performance of all required tests. Approval of admixture brands will be dependent upon a determination as to compliance with the requirements, based on the certified test results submitted, together with tests the Department may elect to perform. - When the Contractor proposes to use an admixture of a brand and type on the current list of approved admixture brands, the Contractor shall furnish a Certificate of Compliance from the manufacturer, as provided in Section 6-1.07, "Certificates of Compliance," certifying that the admixture furnished is the same as that previously approved. If a previously approved admixture is not accompanied by a Certificate of Compliance, the admixture shall not be used in the work until the Engineer has had sufficient time to make the appropriate tests and has approved the admixture for use. The Engineer may take samples for testing at any time, whether or not the admixture has been accompanied by a Certificate of Compliance. - If a mineral admixture is delivered directly to the site of the work, the Certificate of Compliance shall be signed by the manufacturer or supplier of the mineral admixture. If the mineral admixture is used in ready-mix concrete or in precast concrete products purchased as such by the Contractor, the Certificate of Compliance shall be signed by the manufacturer of the concrete or product. # 90-4.04 REQUIRED USE OF CHEMICAL ADMIXTURES AND CALCIUM CHLORIDE - When the use of a chemical admixture or calcium chloride is
specified, the admixture shall be used at the dosage specified, except that if no dosage is specified, the admixture shall be used at the dosage normally recommended by the manufacturer of the admixture. - Calcium chloride shall be dispensed in liquid, flake, or pellet form. Calcium chloride dispensed in liquid form shall conform to the provisions for dispensing liquid admixtures in Section 90-4.10, "Proportioning and Dispensing Liquid Admixtures." ### 90-4.05 OPTIONAL USE OF CHEMICAL ADMIXTURES - The Contractor will be permitted to use Type A or F, water-reducing; Type B, retarding; or Type D or G, water-reducing and retarding admixtures as described in ASTM Designation: C 494 to conserve cementitious material or to facilitate any concrete construction application subject to the following conditions: - A. When a water-reducing admixture or a water-reducing and retarding admixture is used, the cementitious material content specified or ordered may be reduced by a maximum of 5 percent by mass, except that the resultant cementitious material content shall be not less than 300 kilograms per cubic meter; and - B. When a reduction in cementitious material content is made, the dosage of admixture used shall be the dosage used in determining approval of the admixture. - Unless otherwise specified, a Type C accelerating chemical admixture conforming to the requirements in ASTM Designation: C 494, may be used in portland cement concrete. Inclusion in the mix design submitted for approval will not be required provided that the admixture is added to counteract changing conditions that contribute to delayed setting of the portland cement concrete, and the use or change in dosage of the admixture is approved in writing by the Engineer. # 90-4.06 REQUIRED USE OF AIR-ENTRAINING ADMIXTURES • When air-entrainment is specified or ordered by the Engineer, the air-entraining admixture shall be used in amounts to produce a concrete having the specified air content as determined by California Test 504. # 90-4.07 OPTIONAL USE OF AIR-ENTRAINING ADMIXTURES • When air-entrainment has not been specified or ordered by the Engineer, the Contractor will be permitted to use an air-entraining admixture to facilitate the use of any construction procedure or equipment provided that the average air content, as determined by California Test 504, of 3 successive tests does not exceed 4 percent, and no single test value exceeds 5.5 percent. If the Contractor elects to use an air-entraining admixture in concrete for pavement, the Contractor shall so indicate at the time the Contractor designates the source of aggregate as provided in Section 40-1.015, "Cement Content." # 90-4.08 REQUIRED USE OF MINERAL ADMIXTURES - Unless otherwise specified, mineral admixture shall be combined with cement to make cementitious material. - The calcium oxide content shall not exceed 10 percent when determined in conformance with the requirements in ASTM Designation: C 114. The available alkali content (as sodium oxide equivalent) shall not exceed 1.5 percent when determined in conformance with the requirements in ASTM Designation: C 311, or the total alkali content (as sodium oxide equivalent) shall not exceed 5.0 percent when determined in conformance with the requirements in ASTM Designation: D 4326. - The amounts of cement and mineral admixture used in cementitious material shall be sufficient to satisfy the minimum cementitious material content requirements specified in Section 90-1.01, "Description," or Section 90-4.05, "Optional Use of Chemical Admixtures," and shall conform to the following: - A. The minimum amount of cement shall not be less than 75 percent by mass of the specified minimum cementitious material content: - B. The minimum amount of mineral admixture to be combined with cement shall be determined using one of the following criteria: - 1. When the calcium oxide content of a mineral admixture is equal to or less than 2 percent by mass, the amount of mineral admixture shall not be less than 15 percent by mass of the total amount of cementitious material to be used in the mix: - 2. When the calcium oxide content of a mineral admixture is greater than 2 percent, the amount of mineral admixture shall not be less than 25 percent by mass of the total amount of cementitious material to be used in the mix. - 3. When a mineral admixture that conforms to the provisions for silica fume in Section 90-2.04, "Admixture Materials," is used, the amount of mineral admixture shall not be less than 10 percent by mass of the total amount of cementitious material to be used in the mix - C. The total amount of mineral admixture shall not exceed 35 percent by mass of the total amount of cementitious material to be used in the mix. Where Section 90-1.01, "Description," specifies a maximum cementitious content in kilograms per cubic meter, the total mass of cement and mineral admixture per cubic meter shall not exceed the specified maximum cementitious material content. ### 90-4.09 BLANK # 90-4.10 PROPORTIONING AND DISPENSING LIQUID ADMIXTURES - Chemical admixtures and air-entraining admixtures shall be dispensed in liquid form. Dispensers for liquid admixtures shall have sufficient capacity to measure at one time the prescribed quantity required for each batch of concrete. Each dispenser shall include a graduated measuring unit into which liquid admixtures are measured to within ± 5 percent of the prescribed quantity for each batch. Dispensers shall be located and maintained so that the graduations can be accurately read from the point at which proportioning operations are controlled to permit a visual check of batching accuracy prior to discharge. Each measuring unit shall be clearly marked for the type and quantity of admixture. - Each liquid admixture dispensing system shall be equipped with a sampling device consisting of a valve located in a safe and readily accessible position such that a sample of the admixture may be withdrawn slowly by the Engineer. - If more than one liquid admixture is used in the concrete mix, each liquid admixture shall have a separate measuring unit and shall be dispensed by injecting equipment located in such a manner that the admixtures are not mixed at high concentrations and do not interfere with the effectiveness of each other. When air-entraining admixtures are used in conjunction with other liquid admixtures, the air-entraining admixture shall be the first to be incorporated into the mix. - When automatic proportioning devices are required for concrete pavement, dispensers for liquid admixtures shall operate automatically with the batching control equipment. The dispensers shall be equipped with an automatic warning system in good operating condition that will provide a visible or audible signal at the point at which proportioning operations are controlled when the quantity of admixture measured for each batch of concrete varies from the preselected dosage by more than 5 percent, or when the entire contents of the measuring unit are not emptied from the dispenser into each batch of concrete. - Unless liquid admixtures are added to premeasured water for the batch, their discharge into the batch shall be arranged to flow into the stream of water so that the admixtures are well dispersed throughout the batch, except that air-entraining admixtures may be dispensed directly into moist sand in the batching bins provided that adequate control of the air content of the concrete can be maintained. - Liquid admixtures requiring dosages greater than 2.5 L/m³ shall be considered to be water when determining the total amount of free water as specified in Section 90-6.06, "Amount of Water and Penetration." - Special admixtures, such as "high range" water reducers that may contribute to a high rate of slump loss, shall be measured and dispensed as recommended by the admixture manufacturer and as approved by the Engineer. # 90-4.11 STORAGE, PROPORTIONING, AND DISPENSING OF MINERAL ADMIXTURES - Mineral admixtures shall be protected from exposure to moisture until used. Sacked material shall be piled to permit access for tally, inspection and identification for each shipment. - Adequate facilities shall be provided to assure that mineral admixtures meeting the specified requirements are kept separate from other mineral admixtures in order to prevent any but the specified mineral admixtures from entering the work. Safe and suitable facilities for sampling mineral admixtures shall be provided at the weigh hopper or in the feed line immediately in advance of the hopper. - Mineral admixtures shall be incorporated into concrete using equipment conforming to the requirements for cement weigh hoppers, and charging and discharging mechanisms in ASTM Designation: C 94, in Section 90-5.03, "Proportioning," and in this Section 90-4.11. - When concrete is completely mixed in stationary paving mixers, the mineral admixture shall be weighed in a separate weigh hopper conforming to the provisions for cement weigh hoppers and charging and discharging mechanisms in Section 90-5.03A, "Proportioning for Pavement," and the mineral admixture and cement shall be introduced simultaneously into the mixer proportionately with the aggregate. If the mineral admixture is not weighed in a separate weigh hopper, the Contractor shall provide certification that the stationary mixer is capable of mixing the cement, admixture, aggregates and water uniformly prior to discharge. Certification shall contain the following: - A. Test results for 2 compressive strength test cylinders of concrete taken within the first one-third and 2 compressive strength test cylinders of concrete taken within the last one-third of the concrete discharged from a single batch from the stationary paving mixer. Strength tests and cylinder preparation will be in conformance with the provisions of Section 90-9, "Compressive Strength;" - B. Calculations demonstrating that the difference in the averages of 2
compressive strengths taken in the first one-third is no greater than 7.5 percent different than the averages of 2 compressive strengths taken in the last one-third of the concrete discharged from a single batch from the stationary paving mixer. Strength tests and cylinder preparation will be in conformance with the provisions of Section 90-9, "Compressive Strength;" and - C. The mixer rotation speed and time of mixing prior to discharge that are required to produce a mix that meets the requirements above. ### 90-5 PROPORTIONING #### 90-5.01 STORAGE OF AGGREGATES - Aggregates shall be stored or stockpiled in such a manner that separation of coarse and fine particles of each size shall be avoided and also that the various sizes shall not become intermixed before proportioning. - Aggregates shall be stored or stockpiled and handled in a manner that shall prevent contamination by foreign materials. In addition, storage of aggregates at batching or mixing facilities that are erected subsequent to the award of the contract and that furnish concrete to the project shall conform to the following: - A. Intermingling of the different sizes of aggregates shall be positively prevented. The Contractor shall take the necessary measures to prevent intermingling. The preventive measures may include, but are not necessarily limited to, physical separation of stockpiles or construction of bulkheads of adequate length and height; and - B. Contamination of aggregates by contact with the ground shall be positively prevented. The Contractor shall take the necessary measures to prevent contamination. The preventive measures shall include, but are not necessarily limited to, placing aggregates on wooden platforms or on hardened surfaces consisting of portland cement concrete, asphalt concrete, or cement treated material. - In placing aggregates in storage or in moving the aggregates from storage to the weigh hopper of the batching plant, any method that may cause segregation, degradation, or the combining of materials of different gradings that will result in any size of aggregate at the weigh hopper failing to meet the grading requirements, shall be discontinued. Any method of handling aggregates that results in excessive breakage of particles shall be discontinued. The use of suitable devices to reduce impact of falling aggregates may be required by the Engineer. # 90-5.02 PROPORTIONING DEVICES - Weighing, measuring, or metering devices used for proportioning materials shall conform to the requirements in Section 9-1.01, "Measurement of Quantities," and this Section 90-5.02. In addition, automatic weighing systems shall comply with the requirements for automatic proportioning devices in Section 90-5.03A, "Proportioning for Pavement." Automatic devices shall be automatic to the extent that the only manual operation required for proportioning the aggregates, cement, and mineral admixture for one batch of concrete is a single operation of a switch or starter. - Proportioning devices shall be tested at the expense of the Contractor as frequently as the Engineer may deem necessary to ensure their accuracy. - Weighing equipment shall be insulated against vibration or movement of other operating equipment in the plant. When the plant is in operation, the mass of each batch of material shall not vary from the mass designated by the Engineer by more than the tolerances specified herein. - Equipment for cumulative weighing of aggregate shall have a zero tolerance of ± 0.5 percent of the designated total batch mass of the aggregate. For systems with individual weigh hoppers for the various sizes of aggregate, the zero tolerance shall be ± 0.5 percent of the individual batch mass designated for each size of aggregate. Equipment for cumulative weighing of cement and mineral admixtures shall have a zero tolerance of ± 0.5 percent of the designated total batch mass of the cement and mineral admixture. Equipment for weighing cement or mineral admixture separately shall have a zero tolerance of ± 0.5 percent of their designated individual batch masses. Equipment for measuring water shall have a zero tolerance of ± 0.5 percent of its designated mass or volume. - The mass indicated for any batch of material shall not vary from the preselected scale setting by more than the following: - A. Aggregate weighed cumulatively shall be within 1.0 percent of the designated total batch mass of the aggregate. Aggregates weighed individually shall be within 1.5 percent of their respective designated batch masses; and - B. Cement shall be within 1.0 percent of its designated batch mass. When weighed individually, mineral admixture shall be within 1.0 percent of its designated batch mass. When mineral admixture and cement are permitted to be weighed cumulatively, cement shall be weighed first to within 1.0 percent of its designated batch mass, and the total for cement and mineral admixture shall be within 1.0 percent of the sum of their designated batch masses; and - C. Water shall be within 1.5 percent of its designated mass or volume. - Each scale graduation shall be approximately 0.001 of the total capacity of the scale. The capacity of scales for weighing cement, mineral admixture, or cement plus mineral admixture and aggregates shall not exceed that of commercially available scales having single graduations indicating a mass not exceeding the maximum permissible mass variation above, except that no scale shall be required having a capacity of less than 500 kg, with 0.5-kg graduations. # 90-5.03 PROPORTIONING - Proportioning shall consist of dividing the aggregates into the specified sizes, each stored in a separate bin, and combining them with cement, mineral admixture, and water as provided in these specifications. Aggregates shall be proportioned by mass. - At the time of batching, aggregates shall have been dried or drained sufficiently to result in a stable moisture content such that no visible separation of water from aggregate will take place during transportation from the proportioning plant to the point of mixing. In no event shall the free moisture content of the fine aggregate at the time of batching exceed 8 percent of its saturated, surface-dry mass. - Should separate supplies of aggregate material of the same size group, but of different moisture content or specific gravity or surface characteristics affecting workability, be available at the proportioning plant, withdrawals shall be made from one supply exclusively and the materials therein completely exhausted before starting upon another. - Bulk "Type IP (MS) Modified" cement shall be weighed in an individual hopper and shall be kept separate from the aggregates until the ingredients are released for discharge into the mixer. - Bulk cement and mineral admixture may be weighed in separate, individual weigh hoppers or may be weighed in the same weigh hopper and shall be kept separate from the aggregates until the ingredients are released for discharge into the mixer. If the cement and mineral admixture are weighed cumulatively, the cement shall be weighed first. - When cement and mineral admixtures are weighed in separate weigh hoppers, the weigh systems for the proportioning of the aggregate, the cement, and the mineral admixture shall be individual and distinct from all other weigh systems. Each weigh system shall be equipped with a hopper, a lever system, and an indicator to constitute an individual and independent material weighing device. The cement and the mineral admixture shall be discharged into the mixer simultaneously with the aggregate. - The scales and weigh hoppers for bulk weighing cement, mineral admixture, or cement plus mineral admixture shall be separate and distinct from the aggregate weighing equipment. - For batches with a volume of one cubic meter or more, the batching equipment shall conform to one of the following combinations: - A. Separate boxes and separate scale and indicator for weighing each size of aggregate. - B. Single box and scale indicator for all aggregates. - C. Single box or separate boxes and automatic weighing mechanism for all aggregates. - In order to check the accuracy of batch masses, the gross mass and tare mass of batch trucks, truck mixers, truck agitators, and non-agitating hauling equipment shall be determined when ordered by the Engineer. The equipment shall be weighed at the Contractor's expense on scales designated by the Engineer. # 90-5.03A Proportioning for Pavement - Aggregates and bulk cement, mineral admixture, and cement plus mineral admixture for use in pavement shall be proportioned by mass by means of automatic proportioning devices of approved type conforming to these specifications. - The Contractor shall install and maintain in operating condition an electronically actuated moisture meter that will indicate, on a readily visible scale, changes in the moisture content of the fine aggregate as it is batched within a sensitivity of 0.5 percent by mass of the fine aggregate. - The batching of cement, mineral admixture, or cement plus mineral admixture and aggregate shall be interlocked so that a new batch cannot be started until all weigh hoppers are empty, the proportioning devices are within zero tolerance, and the discharge gates are closed. The interlock shall permit no part of the batch to be discharged until all aggregate hoppers and the cement and mineral admixture hoppers or the cement plus mineral admixture hopper are charged with masses that are within the tolerances specified in Section 90-5.02, "Proportioning Devices." - When interlocks are required for cement and mineral admixture charging mechanisms and cement and mineral admixtures are weighed cumulatively, their charging mechanisms shall be interlocked to prevent the introduction of mineral admixture until the mass of cement in the cement weigh hopper is within the tolerances specified in Section 90-5.02, "Proportioning Devices." - The discharge
gate on the cement and mineral admixture hoppers or the cement plus mineral admixture hopper shall be designed to permit regulating the flow of cement, mineral admixture, or cement plus mineral admixture into the aggregate as directed by the Engineer. - When separate weigh boxes are used for each size of aggregate, the discharge gates shall permit regulating the flow of each size of aggregate as directed by the Engineer. - Material discharged from the several bins shall be controlled by gates or by mechanical conveyors. The means of withdrawal from the several bins, and of discharge from the weigh box, shall be interlocked so that not more than one bin can discharge at a time, and so that the weigh box cannot be tripped until the required quantity from each of the several bins has been deposited therein. Should a separate weigh box be used for each size of aggregate, all may be operated and discharged simultaneously. - When the discharge from the several bins is controlled by gates, each gate shall be actuated automatically so that the required mass is discharged into the weigh box, after which the gate shall automatically close and lock. - The automatic weighing system shall be designed so that all proportions required may be set on the weighing controller at the same time. ### 90-6 MIXING AND TRANSPORTING # 90-6.01 GENERAL - Concrete shall be mixed in mechanically operated mixers, except that when permitted by the Engineer, batches not exceeding 0.25 m³ may be mixed by hand methods in conformance with the provisions in Section 90-6.05, "Hand-Mixing." - Equipment having components made of aluminum or magnesium alloys that would have contact with plastic concrete during mixing, transporting, or pumping of portland cement concrete shall not be used. - Concrete shall be homogeneous and thoroughly mixed, and there shall be no lumps or evidence of undispersed cement, mineral admixture, or cement plus mineral admixture. - Uniformity of concrete mixtures will be determined by differences in penetration as determined by California Test 533, or slump as determined by ASTM Designation: C 143, and by variations in the proportion of coarse aggregate as determined by California Test 529. - When the mix design specifies a penetration value, the difference in penetration, determined by comparing penetration tests on 2 samples of mixed concrete from the same batch or truck mixer load, shall not exceed 10 mm. When the mix design specifies a slump value, the difference in slump, determined by comparing slump tests on 2 samples of mixed concrete from the same batch or truck mixer load, shall not exceed the values given in the table below. Variation in the proportion of coarse aggregate will be determined by comparing the results of tests of 2 samples of mixed concrete from the same batch or truck mixer load and the difference between the 2 results shall not exceed 100 kg per cubic meter of concrete. | Average Slump | Maximum Permissible Difference | |-------------------------------|--------------------------------| | Less than 100-mm | 25-mm | | 100-mm to 150-mm | 38-mm | | Greater than 150-mm to 225-mm | 50-mm | • The Contractor, at the Contractor's expense, shall furnish samples of the freshly mixed concrete and provide satisfactory facilities for obtaining the samples. # 90-6.02 MACHINE MIXING - Concrete mixers may be of the revolving drum or the revolving blade type, and the mixing drum or blades shall be operated uniformly at the mixing speed recommended by the manufacturer. Mixers and agitators that have an accumulation of hard concrete or mortar shall not be used. - The temperature of mixed concrete, immediately before placing, shall be not less than 10°C or more than 32°C. Aggregates and water shall be heated or cooled as necessary to produce concrete within these temperature limits. Neither aggregates nor mixing water shall be heated to exceed 65°C. If ice is used to cool the concrete, discharge of the mixer will not be permitted until all ice is melted. - The batch shall be so charged into the mixer that some water will enter in advance of cementitious materials and aggregates. All water shall be in the drum by the end of the first one-fourth of the specified mixing time. - Cementitious materials shall be batched and charged into the mixer by means that will not result either in loss of cementitious materials due to the effect of wind, in accumulation of cementitious materials on surfaces of conveyors or hoppers, or in other conditions that reduce or vary the required quantity of cementitious material in the concrete mixture. - Paving and stationary mixers shall be operated with an automatic timing device. The timing device and discharge mechanism shall be interlocked so that during normal operation no part of the batch will be discharged until the specified mixing time has elapsed. - The total elapsed time between the intermingling of damp aggregates and all cementitious materials and the start of mixing shall not exceed 30 minutes. - The size of batch shall not exceed the manufacturer's guaranteed capacity. - When producing concrete for pavement or base, suitable batch counters shall be installed and maintained in good operating condition at jobsite batching plants and stationary mixers. The batch counters shall indicate the exact number of batches proportioned and mixed. - Concrete shall be mixed and delivered to the jobsite by means of one of the following combinations of operations: - A. Mixed completely in a stationary mixer and the mixed concrete transported to the point of delivery in truck agitators or in non-agitating hauling equipment (central-mixed concrete). - B. Mixed partially in a stationary mixer, and the mixing completed in a truck mixer (shrink-mixed concrete). - C. Mixed completely in a truck mixer (transit-mixed concrete). - D. Mixed completely in a paving mixer. - Agitators may be truck mixers operating at agitating speed or truck agitators. Each mixer and agitator shall have attached thereto in a prominent place a metal plate or plates on which is plainly marked the various uses for which the equipment is designed, the manufacturer's guaranteed capacity of the drum or container in terms of the volume of mixed concrete and the speed of rotation of the mixing drum or blades. - Truck mixers shall be equipped with electrically or mechanically actuated revolution counters by which the number of revolutions of the drum or blades may readily be verified. - When shrink-mixed concrete is furnished, concrete that has been partially mixed at a central plant shall be transferred to a truck mixer and all requirements for transit-mixed concrete shall apply. No credit in the number of revolutions at mixing speed shall be allowed for partial mixing in a central plant. # 90-6.03 TRANSPORTING MIXED CONCRETE - Mixed concrete may be transported to the delivery point in truck agitators or truck mixers operating at the speed designated by the manufacturer of the equipment as agitating speed, or in non-agitating hauling equipment, provided the consistency and workability of the mixed concrete upon discharge at the delivery point is suitable for adequate placement and consolidation in place, and provided the mixed concrete after hauling to the delivery point conforms to the provisions in Section 90-6.01, "General." - Truck agitators shall be loaded not to exceed the manufacturer's guaranteed capacity and shall maintain the mixed concrete in a thoroughly mixed and uniform mass during hauling. - Bodies of non-agitating hauling equipment shall be constructed so that leakage of the concrete mix, or any part thereof, will not occur at any time. - Concrete hauled in open-top vehicles shall be protected during hauling against rain or against exposure to the sun for more than 20 minutes when the ambient temperature exceeds 24°C. - No additional mixing water shall be incorporated into the concrete during hauling or after arrival at the delivery point, unless authorized by the Engineer. If the Engineer authorizes additional water to be incorporated into the concrete, the drum shall be revolved not less than 30 revolutions at mixing speed after the water is added and before discharge is commenced. - The rate of discharge of mixed concrete from truck mixer-agitators shall be controlled by the speed of rotation of the drum in the discharge direction with the discharge gate fully open. - When a truck mixer or agitator is used for transporting concrete to the delivery point, discharge shall be completed within 1.5 hours or before 250 revolutions of the drum or blades, whichever occurs first, after the introduction of the cement to the aggregates. Under conditions contributing to quick stiffening of the concrete, or when the temperature of the concrete is 30°C or above, the time allowed may be less than 1.5 hours. - When non-agitating hauling equipment is used for transporting concrete to the delivery point, discharge shall be completed within one hour after the addition of the cement to the aggregates. Under conditions contributing to quick stiffening of the concrete, or when the temperature of the concrete is 30°C or above, the time between the introduction of cement to the aggregates and discharge shall not exceed 45 minutes. - Each load of concrete delivered at the jobsite shall be accompanied by a weighmaster certificate showing the mix identification number, non-repeating load number, date and time at which the materials were batched, the total amount of water added to the load, and for transit-mixed concrete, the reading of the revolution counter at the time the truck mixer is charged with cement. This weighmaster certificate shall also show the actual scale masses (kilograms) for the ingredients batched. Theoretical or target batch masses shall not be used as a substitute for actual scale masses. - Weighmaster certificates shall be provided in printed form, or if approved by the Engineer, the data may be submitted in
electronic media. Electronic media shall be presented in a tab-delimited format on a 90 mm diskette with a capacity of at least 1.4 megabytes. Captured data, for the ingredients represented by each batch shall be "line feed, carriage return" (LFCR) and "one line, separate record" with allowances for sufficient fields to satisfy the amount of data required by these specifications. - The Contractor may furnish a weighmaster certificate accompanied by a separate certificate that lists the actual batch masses or measurements for a load of concrete provided that both certificates are imprinted with the same non-repeating load number that is unique to the contract and delivered to the jobsite with the load. - Weighmaster certificates furnished by the Contractor shall conform to the provisions in Section 9-1.01, "Measurement of Quantities." # 90-6.04 TIME OR AMOUNT OF MIXING - Mixing of concrete in paving or stationary mixers shall continue for the required mixing time after all ingredients, except water and admixture, if added with the water, are in the mixing compartment of the mixer before any part of the batch is released. Transfer time in multiple drum mixers shall not be counted as part of the required mixing time. - The required mixing time, in paving or stationary mixers, of concrete used for concrete structures, except minor structures, shall be not less than 90 seconds or more than 5 minutes, except that when directed by the Engineer in writing, the requirements of the following paragraph shall apply. - The required mixing time, in paving or stationary mixers, except as provided in the preceding paragraph, shall be not less than 50 seconds or more than 5 minutes. - The minimum required revolutions at the mixing speed for transit-mixed concrete shall not be less than that recommended by the mixer manufacturer, but in no case shall the number of revolutions be less than that required to consistently produce concrete conforming to the provisions for uniformity in Section 90-6.01, "General." ### **90-6.05 HAND-MIXING** • Hand-mixed concrete shall be made in batches of not more than 0.25 m³ and shall be mixed on a watertight, level platform. The proper amount of coarse aggregate shall be measured in measuring boxes and spread on the platform and the fine aggregate shall be spread on this layer, the 2 layers being not more than 0.3 meters in total depth. On this mixture shall be spread the dry cement and mineral admixture and the whole mass turned no fewer than 2 times dry; then sufficient clean water shall be added, evenly distributed, and the whole mass again turned no fewer than 3 times, not including placing in the carriers or forms. ### 90-6.06 AMOUNT OF WATER AND PENETRATION • The amount of water used in concrete mixes shall be regulated so that the penetration of the concrete as determined by California Test 533 or the slump of the concrete as determined by ASTM Designation: C 143 is within the "Nominal" values shown in the following table. When the penetration or slump of the concrete is found to exceed the nominal values listed, the mixture of subsequent batches shall be adjusted to reduce the penetration or slump to a value within the nominal range shown. Batches of concrete with a penetration or slump exceeding the maximum values listed shall not be used in the work. When Type F or Type G chemical admixtures are added to the mix, the penetration requirements shall not apply and the slump shall not exceed 225 mm after the chemical admixtures are added. | Type of Work | Non | ninal | Maximum | | | |------------------------------------|-------------|---------|-------------|-------|--| | | Penetration | Slump | Penetration | Slump | | | | (mm) | (mm) | (mm) | (mm) | | | Concrete Pavement | 0-25 | _ | 40 | _ | | | Non-reinforced concrete facilities | 0-35 | | 50 | | | | Reinforced concrete structures | | | | | | | Sections over 300-mm thick | 0-35 | | 65 | | | | Sections 300-mm thick or less | 0-50 | | 75 | | | | Concrete placed under water | | 150-200 | | 225 | | | Cast-in-place concrete piles | 65-90 | 130-180 | 100 | 200 | | - The amount of free water used in concrete shall not exceed 183 kg/m^3 , plus 20 kg for each required 100 kg of cementitious material in excess of 325 kg/m^3 . - The term free water is defined as the total water in the mixture minus the water absorbed by the aggregates in reaching a saturated surface-dry condition. - Where there are adverse or difficult conditions that affect the placing of concrete, the above specified penetration and free water content limitations may be exceeded providing the Contractor is granted permission by the Engineer in writing to increase the cementitious material content per cubic meter of concrete. The increase in water and cementitious material shall be at a ratio not to exceed 30 kg of water per added 100 kg of cementitious material per cubic meter. The cost of additional cementitious material and water added under these conditions shall be at the Contractor's expense and no additional compensation will be allowed therefor. - The equipment for supplying water to the mixer shall be constructed and arranged so that the amount of water added can be measured accurately. Any method of discharging water into the mixer for a batch shall be accurate within 1.5 percent of the quantity of water required to be added to the mix for any position of the mixer. Tanks used to measure water shall be designed so that water cannot enter while water is being discharged into the mixer and discharge into the mixer shall be made rapidly in one operation without dribbling. All equipment shall be arranged so as to permit checking the amount of water delivered by discharging into measured containers. ### 90-7 CURING CONCRETE ### 90-7.01 METHODS OF CURING Newly placed concrete shall be cured by the methods specified in this Section 90-7.01 and the special provisions. #### 90-7.01A Water Method - The concrete shall be kept continuously wet by the application of water for a minimum curing period of 7 days after the concrete has been placed. - When a curing medium consisting of cotton mats, rugs, carpets, or earth or sand blankets is to be used to retain the moisture, the entire surface of the concrete shall be kept damp by applying water with a nozzle that so atomizes the flow that a mist and not a spray is formed, until the surface of the concrete is covered with the curing medium. The moisture from the nozzle shall not be applied under pressure directly upon the concrete and shall not be allowed to accumulate on the concrete in a quantity sufficient to cause a flow or wash the surface. At the expiration of the curing period, the concrete surfaces shall be cleared of all curing mediums. - At the option of the Contractor, a curing medium consisting of white opaque polyethylene sheeting extruded onto burlap may be used to cure concrete structures. The polyethylene sheeting shall have a minimum thickness of $100 \mu m$, and shall be extruded onto 283.5 gram burlap. - At the option of the Contractor, a curing medium consisting of polyethylene sheeting may be used to cure concrete columns. The polyethylene sheeting shall have a minimum thickness of 250 µm achieved in a single layer of material. - If the Contractor chooses to use polyethylene sheeting or polyethylene sheeting on burlap as a curing medium as specified above, these mediums and any joints therein shall be secured as necessary to provide moisture retention and shall be within 75 mm of the concrete at all points along the surface being cured. When these mediums are used, the temperature of the concrete shall be monitored during curing. If the temperature of the concrete cannot be maintained below 60°C, this method of curing shall be discontinued, and one of the other curing methods allowed for the concrete shall be used. - When concrete bridge decks and flat slabs are to be cured without the use of a curing medium, the entire surface of the bridge deck or slab shall be kept damp by the application of water with an atomizing nozzle as specified in the preceding paragraph, until the concrete has set, after which the entire surface of the concrete shall be sprinkled continuously with water for a period of not less than 7 days. # 90-7.01B Curing Compound Method - Surfaces of the concrete that are exposed to the air shall be sprayed uniformly with a curing compound. - Curing compounds to be used shall be as follows: - 1. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class B, except the resin type shall be poly-alpha-methylstyrene. - 2. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class B. - 3. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class A. - 4. Non-pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 1, Class B. - 5. Non-pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 1, Class A. - 6. Non-pigmented curing compound with fugitive dye conforming to the requirements in ASTM Designation: C 309, Type 1-D, Class A. - The infrared scan for the dried vehicle from curing compound (1) shall match the infrared scan on file at the Transportation Laboratory. - The loss of water for each type of curing compound, when tested in conformance with the requirements in California Test 534, shall not be more than 0.15-kg/m² in 24 hours. - The curing compound to be used will be specified elsewhere in these specifications or in the special provisions. - When the use of curing compound is required or permitted elsewhere in these specifications or in the special provisions and no specific kind is specified, any of the curing compounds listed above may be used. - Curing compound shall be applied at a nominal rate of 3.7 m²/L, unless otherwise specified. - At any point, the application rate shall be within
$\pm 1.2 \text{ m}^2/\text{L}$ of the nominal rate specified, and the average application rate shall be within $\pm 0.5 \text{ m}^2/\text{L}$ of the nominal rate specified when tested in conformance with the requirements in California Test 535. Runs, sags, thin areas, skips, or holidays in the applied curing compound shall be evidence that the application is not satisfactory. - Curing compounds shall be applied using power operated spray equipment. The power operated spraying equipment shall be equipped with an operational pressure gage and a means of controlling the pressure. Hand spraying of small and irregular areas that are not reasonably accessible to mechanical spraying equipment, in the opinion of the Engineer, may be permitted. - The curing compound shall be applied to the concrete following the surface finishing operation, immediately before the moisture sheen disappears from the surface, but before any drying shrinkage or craze cracks begin to appear. In the event of any drying or cracking of the surface, application of water with an atomizing nozzle as specified in Section 90-7.01A, "Water Method," shall be started immediately and shall be continued until application of the compound is resumed or started; however, the compound shall not be applied over any resulting freestanding water. Should the film of compound be damaged from any cause before the expiration of 7 days after the concrete is placed in the case of structures and 72 hours in the case of pavement, the damaged portion shall be repaired immediately with additional compound. - At the time of use, compounds containing pigments shall be in a thoroughly mixed condition with the pigment uniformly dispersed throughout the vehicle. A paddle shall be used to loosen all settled pigment from the bottom of the container, and a power driven agitator shall be used to disperse the pigment uniformly throughout the vehicle. - Agitation shall not introduce air or other foreign substance into the curing compound. - The manufacturer shall include in the curing compound the necessary additives for control of sagging, pigment settling, leveling, de-emulsification, or other requisite qualities of a satisfactory working material. Pigmented curing compounds shall be manufactured so that the pigment does not settle badly, does not cake or thicken in the container, and does not become granular or curdled. Settlement of pigment shall be a thoroughly wetted, soft, mushy mass permitting the complete and easy vertical penetration of a paddle. Settled pigment shall be easily redispersed, with minimum resistance to the sideways manual motion of the paddle across the bottom of the container, to form a smooth uniform product of the proper consistency. - Curing compounds shall remain sprayable at temperatures above 4°C and shall not be diluted or altered after manufacture. - The curing compound shall be packaged in clean 1040-L totes, 210-L barrels - or 19-L pails shall be supplied from a suitable storage tank located at the jobsite. The containers shall comply with "Title 49, Code of Federal Regulations, Hazardous Materials Regulations." The 1040-L totes and the 210-L barrels shall have removable lids and airtight fasteners. The 19-L pails shall be round and have standard full open head and bail. Lids with bungholes shall not be permitted. Settling or separation of solids in containers, except tanks, must be completely redispersed with low speed mixing prior to use, in conformance with these specifications and the manufacturer's recommendations. Mixing shall be accomplished either manually by use of a paddle or by use of a mixing blade driven by a drill motor, at low speed. Mixing blades shall be the type used for mixing paint. On site storage tanks shall be kept clean and free of contaminants. Each tank shall have a permanent system designed to completely redisperse settled material without introducing air or other foreign substances. - Steel containers and lids shall be lined with a coating that will prevent destructive action by the compound or chemical agents in the air space above the compound. The coating shall not come off the container or lid as skins. Containers shall be filled in a manner that will prevent skinning. Plastic containers shall not react with the compound. - Each container shall be labeled with the manufacturer's name, kind of curing compound, batch number, volume, date of manufacture, and volatile organic compound (VOC) content. The label shall also warn that the curing compound containing pigment shall be well stirred before use. Precautions concerning the handling and the application of curing compound shall be shown on the label of the curing compound containers in conformance with the Construction Safety Orders and General Industry Safety Orders of the State of California. - Containers of curing compound shall be labeled to indicate that the contents fully comply with the rules and regulations concerning air pollution control in the State of California. - When the curing compound is shipped in tanks or tank trucks, a shipping invoice shall accompany each load. The invoice shall contain the same information as that required herein for container labels. - Curing compound will be sampled by the Engineer at the source of supply or at the jobsite or at both locations. - Curing compound shall be formulated so as to maintain the specified properties for a minimum of one year. The Engineer may require additional testing before use to determine compliance with these specifications if the compound has not been used within one year or whenever the Engineer has reason to believe the compound is no longer satisfactory. - Tests will be conducted in conformance with the latest ASTM test methods and methods in use by the Transportation Laboratory. # 90-7.01C Waterproof Membrane Method - The exposed finished surfaces of concrete shall be sprayed with water, using a nozzle that so atomizes the flow that a mist and not a spray is formed, until the concrete has set, after which the curing membrane shall be placed. The curing membrane shall remain in place for a period of not less than 72 hours. - Sheeting material for curing concrete shall conform to the requirements in AASHTO Designation: M 171 for white reflective materials. - The sheeting material shall be fabricated into sheets of such width as to provide a complete cover for the entire concrete surface. Joints in the sheets shall be securely cemented together in such a manner as to provide a waterproof joint. The joint seams shall have a minimum lap of 100 mm. - The sheets shall be securely weighted down by placing a bank of earth on the edges of the sheets or by other means satisfactory to the Engineer. - Should any portion of the sheets be broken or damaged before the expiration of 72 hours after being placed, the broken or damaged portions shall be immediately repaired with new sheets properly cemented into place. - Sections of membrane that have lost their waterproof qualities or have been damaged to such an extent as to render them unfit for curing the concrete shall not be used. ### 90-7.01D Forms-In-Place Method - Formed surfaces of concrete may be cured by retaining the forms in place. The forms shall remain in place for a minimum period of 7 days after the concrete has been placed, except that for members over 0.5-m in least dimension the forms shall remain in place for a minimum period of 5 days. - Joints in the forms and the joints between the end of forms and concrete shall be kept moisture tight during the curing period. Cracks in the forms and cracks between the forms and the concrete shall be resealed by methods subject to the approval of the Engineer. # 90-7.02 CURING PAVEMENT - The entire exposed area of the pavement, including edges, shall be cured by the waterproof membrane method, or curing compound method using curing compound (1) or (2) as the Contractor may elect. Should the side forms be removed before the expiration of 72 hours following the start of curing, the exposed pavement edges shall also be cured. If the pavement is cured by means of the curing compound method, the sawcut and all portions of the curing compound that have been disturbed by sawing operations shall be restored by spraying with additional curing compound. - Curing shall commence as soon as the finishing process provided in Section 40-1.10, "Final Finishing," has been completed. The method selected shall conform to the provisions in Section 90-7.01, "Methods of Curing." - When the curing compound method is used, the compound shall be applied to the entire pavement surface by mechanical sprayers. Spraying equipment shall be of the fully atomizing type equipped with a tank agitator that provides for continual agitation of the curing compound during the time of application. The spray shall be adequately protected against wind, and the nozzles shall be so oriented or moved mechanically transversely as to result in the minimum specified rate of coverage being applied uniformly on exposed faces. Hand spraying of small and irregular areas, and areas inaccessible to mechanical spraying equipment, in the opinion of the Engineer, will be permitted. When the ambient air temperature is above 15°C, the Contractor shall fog the surface of the concrete with a fine spray of water as specified in Section 90-7.01A, "Water Method." The surface of the pavement shall be kept moist between the hours of 10:00 a.m. and 4:30 p.m. on the day the concrete is placed. However, the fogging done after the curing compound has been applied shall not begin until the compound has set sufficiently to prevent displacement. Fogging shall be discontinued if ordered in writing by the Engineer. # 90-7.03 CURING STRUCTURES - Newly placed concrete for cast-in-place structures, other than highway bridge decks, shall be cured by the water method, the forms-in-place method, or, as permitted herein, by the curing compound method, in conformance with the
provisions in Section 90-7.01, "Methods of Curing." - The curing compound method using a pigmented curing compound may be used on concrete surfaces of construction joints, surfaces that are to be buried underground, and surfaces where only Ordinary Surface Finish is to be applied and on which a uniform color is not required and that will not be visible from a public traveled way. If the Contractor elects to use the curing compound method on the bottom slab of box girder spans, the curing compound shall be curing compound (1). - The top surface of highway bridge decks shall be cured by both the curing compound method and the water method. The curing compound shall be curing compound (1). - Concrete surfaces of minor structures, as defined in Section 51-1.02, "Minor Structures," shall be cured by the water method, the forms-in-place method or the curing compound method. - When deemed necessary by the Engineer during periods of hot weather, water shall be applied to concrete surfaces being cured by the curing compound method or by the forms-in-place method, until the Engineer determines that a cooling effect is no longer required. Application of water for this purpose will be paid for as extra work as provided in Section 4-1.03D, "Extra Work." ### 90-7.04 CURING PRECAST CONCRETE MEMBERS - Precast concrete members shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing." Curing shall be provided for the minimum time specified for each method or until the concrete reaches its design strength, whichever is less. Steam curing may also be used for precast members and shall conform to the following provisions: - A. After placement of the concrete, members shall be held for a minimum 4-hour presteaming period. If the ambient air temperature is below 10°C, steam shall be applied during the presteaming period to hold the air surrounding the member at a temperature between 10°C and 32°C. - B. To prevent moisture loss on exposed surfaces during the presteaming period, members shall be covered as soon as possible after casting or the exposed surfaces shall be kept wet by fog spray or wet blankets. - C. Enclosures for steam curing shall allow free circulation of steam about the member and shall be constructed to contain the live steam with a minimum moisture loss. The use of tarpaulins or similar flexible covers will be permitted, provided they are kept in good repair and secured in such a manner as to prevent the loss of steam and moisture. - D. Steam at the jets shall be at low pressure and in a saturated condition. Steam jets shall not impinge directly on the concrete, test cylinders, or forms. During application of the steam, the temperature rise within the enclosure shall not exceed 22°C per hour. The curing temperature throughout the enclosure shall not exceed 65°C and shall be maintained at a constant level for a sufficient time necessary to develop the required transfer strength. Control cylinders shall be covered to prevent moisture loss and shall be placed in a location where temperature is representative of the average temperature of the enclosure. - E. Temperature recording devices that will provide an accurate, continuous, permanent record of the curing temperature shall be provided. A minimum of one temperature recording device per 60 m of continuous bed length will be required for checking temperature. - F. Members in pretension beds shall be detensioned immediately after the termination of steam curing while the concrete and forms are still warm, or the temperature under the enclosure shall be maintained above 15°C until the stress is transferred to the concrete. - G. Curing of precast concrete will be considered completed after termination of the steam curing cycle. # 90-7.05 CURING PRECAST PRESTRESSED CONCRETE PILES - Newly placed concrete for precast prestressed concrete piles shall be cured in conformance with the provisions in Section 90-7.04, "Curing Precast Concrete Members," except that piles in a corrosive environment shall be cured as follows: - A. Piles shall be either steam cured or water cured. If water curing is used, the piles shall be kept continuously wet by the application of water in conformance with the provisions in Section 90-7.01A, "Water Method." - B. If steam curing is used, the steam curing provisions in Section 90-7.04, "Curing Precast Concrete Members," shall apply except that the piles shall be kept continuously wet for their entire length for a period of not less than 3 days, including the holding and steam curing periods. # 90-7.06 CURING SLOPE PROTECTION - Concrete slope protection shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing." - Concreted-rock slope protection shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing," or with a blanket of earth kept wet for 72 hours, or by sprinkling with a fine spray of water every 2 hours during the daytime for a period of 3 days. # 90-7.07 CURING MISCELLANEOUS CONCRETE WORK • Exposed surfaces of curbs shall be cured by pigmented curing compounds as specified in Section 90-7.01B, "Curing Compound Method." - Concrete sidewalks, gutter depressions, island paving, curb ramps, driveways, and other miscellaneous concrete areas shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing." - Shotcrete shall be cured for at least 72 hours by spraying with water, or by a moist earth blanket, or by any of the methods provided in Section 90-7.01, "Methods of Curing." - Mortar and grout shall be cured by keeping the surface damp for 3 days. - After placing, the exposed surfaces of sign structure foundations, including pedestal portions, if constructed, shall be cured for at least 72 hours by spraying with water, or by a moist earth blanket, or by any of the methods provided in Section 90-7.01, "Methods of Curing." ### 90-8 PROTECTING CONCRETE #### 90-8.01 **GENERAL** - In addition to the provisions in Section 7-1.16, "Contractor's Responsibility for the Work and Materials," the Contractor shall protect concrete as provided in this Section 90-8. - Concrete shall not be placed on frozen or ice-coated ground or subgrade nor on ice-coated forms, reinforcing steel, structural steel, conduits, precast members, or construction joints. - Under rainy conditions, placing of concrete shall be stopped before the quantity of surface water is sufficient to damage surface mortar or cause a flow or wash of the concrete surface, unless the Contractor provides adequate protection against damage. - Concrete that has been frozen or damaged by other causes, as determined by the Engineer, shall be removed and replaced by the Contractor at the Contractor's expense. # 90-8.02 PROTECTING CONCRETE STRUCTURES • Structure concrete and shotcrete used as structure concrete shall be maintained at a temperature of not less than 7°C for 72 hours after placing and at not less than 4°C for an additional 4 days. When required by the Engineer, the Contractor shall submit a written outline of the proposed methods for protecting the concrete. # 90-8.03 PROTECTING CONCRETE PAVEMENT - Pavement concrete shall be maintained at a temperature of not less than 4°C for 72 hours. When required by the Engineer, the Contractor shall submit a written outline of the proposed methods for protecting the concrete. - Except as provided in Section 7-1.08, "Public Convenience," the Contractor shall protect concrete pavement against construction and other activities that abrade, scar, discolor, reduce texture depth, lower coefficient of friction, or otherwise damage the surface. Stockpiling, drifting, or excessive spillage of soil, gravel, petroleum products, and concrete or asphalt mixes on the surface of concrete pavement is prohibited unless otherwise specified in these specifications, the special provisions or permitted by the Engineer. - When ordered by the Engineer or shown on the plans or specified in the special provisions, pavement crossings shall be constructed for the convenience of public traffic. The material and work necessary for the construction of the crossings, and their subsequent removal and disposal, will be paid for at the contract unit prices for the items of work involved and if there are no contract items for the work involved, payment for pavement crossings will be made by extra work as provided in Section 4-1.03D, "Extra Work.". Where public traffic will be required to cross over the new pavement, Type III portland cement may be used in concrete, if permitted in writing by the Engineer. The pavement may be opened to traffic as soon as the concrete has developed a modulus of rupture of 3.8 MPa. The modulus of rupture will be determined by California Test 523. - No traffic or Contractor's equipment, except as hereinafter provided, will be permitted on the pavement before a period of 10 days has elapsed after the concrete has been placed, nor before the concrete has developed a modulus of rupture of at least 3.8 MPa. Concrete that fails to attain a modulus of rupture of 3.8 MPa within 10 days shall not be opened to traffic until directed by the Engineer. - Equipment for sawing weakened plane joints will be permitted on the pavement as specified in Section 40-1.08B, "Weakened Plane Joints." - When requested in writing by the Contractor, the tracks on one side of paving equipment will be permitted on the pavement after a modulus of rupture of 2.4 MPa has been attained, provided that: - A. Unit pressure exerted on the pavement by the paver shall not exceed 135 kPa; - B. Tracks with cleats, grousers, or similar protuberances shall be modified or shall travel on planks or equivalent protective material, so that the pavement is not damaged; and - C. No part of the track shall be closer than 0.3-m from the edge of pavement. - In case of visible cracking of, or other damage to the pavement, operation of
the paving equipment on the pavement shall be immediately discontinued. - Damage to the pavement resulting from early use of pavement by the Contractor's equipment as provided above shall be repaired by the Contractor at the Contractor's expense. - The State will furnish the molds and machines for testing the concrete for modulus of rupture, and the Contractor, at the Contractor's expense, shall furnish the material and whatever labor the Engineer may require. #### 90-9 COMPRESSIVE STRENGTH ### 90-9.01 **GENERAL** - Concrete compressive strength requirements consist of a minimum strength that shall be attained before various loads or stresses are applied to the concrete and, for concrete designated by strength, a minimum strength at the age of 28 days or at the age otherwise allowed in Section 90-1.01, "Description." The various strengths required are specified in these specifications or the special provisions or are shown on the plans. - The compressive strength of concrete will be determined from test cylinders that have been fabricated from concrete sampled in conformance with the requirements of California Test 539. Test cylinders will be molded and initially field cured in conformance with California Test 540. Test cylinders will be cured and tested after receipt at the testing laboratory in conformance with the requirements of California Test 521. A strength test shall consist of the average strength of 2 cylinders fabricated from material taken from a single load of concrete, except that, if any cylinder should show evidence of improper sampling, molding, or testing, that cylinder shall be discarded and the strength test shall consist of the strength of the remaining cylinder. - When concrete compressive strength is specified as a prerequisite to applying loads or stresses to a concrete structure or member, test cylinders for other than steam cured concrete will be cured in conformance with Method 1 of California Test 540. The compressive strength of concrete determined for these purposes will be evaluated on the basis of individual tests. - When concrete is designated by 28-day compressive strength rather than by cementitious material content, the concrete strength to be used as a basis for acceptance of other than steam cured concrete will be determined from cylinders cured in conformance with Method 1 of California Test 540. If the result of a single compressive strength test at the maximum age specified or allowed is below the specified strength but is 95 percent or more of the specified strength, the Contractor shall, at the Contractor's expense, make corrective changes, subject to approval of the Engineer, in the mix proportions or in the concrete fabrication procedures, before placing additional concrete, and shall pay to the State \$14 for each in-place cubic meter of concrete represented by the deficient test. If the result of a single compressive strength test at the maximum age specified or allowed is below 95 percent of the specified strength, but is 85 percent or more of the specified strength, the Contractor shall make the corrective changes specified above, and shall pay to the State \$20 for each in place cubic meter of concrete represented by the deficient test. In addition, such corrective changes shall be made when the compressive strength of concrete tested at 7 days indicates, in the judgment of the Engineer, that the concrete will not attain the required compressive strength at the maximum age specified or allowed. Concrete represented by a single test that indicates a compressive strength of less than 85 percent of the specified 28-day compressive strength will be rejected in conformance with the provisions in Section 6-1.04, "Defective Materials." - If the test result indicates that the compressive strength at the maximum curing age specified or allowed is below the specified strength, but is 85 percent or more of the specified strength, payments to the State as required above shall be made, unless the Contractor, at the Contractor's expense, obtains and submits evidence acceptable to the Engineer that the strength of the concrete placed in the work meets or exceeds the specified 28-day compressive strength. If the test result indicates a compressive strength at the maximum curing age specified or allowed below 85 percent, the concrete represented by that test will be rejected, unless the Contractor, at the Contractor's expense, obtains and submits evidence acceptable to the Engineer that the strength and quality of the concrete placed in the work are acceptable. If the evidence consists of tests made on cores taken from the work, the cores shall be obtained and tested in conformance with the requirements in ASTM Designation: C 42. - No single compressive strength test shall represent more than 250 m³. - When a precast concrete member is steam cured, the compressive strength of the concrete will be determined from test cylinders that have been handled and stored in conformance with Method 3 of California Test 540. The compressive strength of steam cured concrete will be evaluated on the basis of individual tests representing specific portions of production. When the concrete is designated by 28-day compressive strength rather than by cementitious material content, the concrete shall be considered to be acceptable whenever its compressive strength reaches the specified 28-day compressive strength provided that strength is reached in not more than the maximum number of days specified or allowed after the member is cast. - When concrete is specified by compressive strength, prequalification of materials, mix proportions, mixing equipment, and procedures proposed for use will be required prior to placement of the concrete. Prequalification shall be accomplished by the submission of acceptable certified test data or trial batch reports by the Contractor. Prequalification data shall be based on the use of materials, mix proportions, mixing equipment, procedures, and size of batch proposed for use in the work. - Certified test data, in order to be acceptable, shall indicate that not less than 90 percent of at least 20 consecutive tests exceed the specified strength at the maximum number of cure days specified or allowed, and none of those tests are less than 95 percent of specified strength. Strength tests included in the data shall be the most recent tests made on concrete of the proposed mix design and all shall have been made within one year of the proposed use of the concrete. - Trial batch test reports, in order to be acceptable, shall indicate that the average compressive strength of 5 consecutive concrete cylinders, taken from a single batch, at not more than 28 days (or the maximum age allowed) after molding shall be at least 4 MPa greater than the specified 28-day compressive strength, and no individual cylinder shall have a strength less than the specified strength at the maximum age specified or allowed. Data contained in the report shall be from trial batches that were produced within one year of the proposed use of specified strength concrete in the project. Whenever air-entrainment is required, the air content of trial batches shall be equal to or greater than the air content specified for the concrete without reduction due to tolerances. - Tests shall be performed in conformance with either the appropriate California Test methods or the comparable ASTM test methods. Equipment employed in testing shall be in good condition and shall be properly calibrated. If the tests are performed during the life of the contract, the Engineer shall be notified sufficiently in advance of performing the tests in order to witness the test procedures. - The certified test data and trial batch test reports shall include the following information: - A. Date of mixing. - B. Mixing equipment and procedures used. - C. The size of batch in cubic meters and the mass, type, and source of all ingredients used. - D. Penetration of the concrete. - E. The air content of the concrete if an air-entraining admixture is used. - F. The age at time of testing and strength of all concrete cylinders tested. - Certified test data and trial batch test reports shall be signed by an official of the firm that performed the tests. - When approved by the Engineer, concrete from trial batches may be used in the work at locations where concrete of a lower quality is required and the concrete will be paid for as the type or class of concrete required at that location. - After materials, mix proportions, mixing equipment, and procedures for concrete have been prequalified for use, additional prequalification by testing of trial batches will be required prior to making changes that, in the judgment of the Engineer, could result in a strength of concrete below that specified. - The Contractor's attention is directed to the time required to test trial batches and the Contractor shall be responsible for production of trial batches at a sufficiently early date so that the progress of the work is not delayed. - When precast concrete members are manufactured at the plant of an established manufacturer of precast concrete members, the mix proportions of the concrete shall be determined by the Contractor, and a trial batch and prequalification of the materials, mix proportions, mixing equipment, and procedures will not be required. # 90-10 MINOR CONCRETE # 90-10.01 GENERAL - Concrete for minor structures, slope paving, curbs, sidewalks and other concrete work, when designated as minor concrete on the plans, in the specifications, or in the contract item, shall conform to the provisions specified herein. - The Engineer, at the Engineer's discretion, will inspect and test the facilities, materials and methods for producing the concrete to ensure that minor concrete of the quality suitable for use in the work is obtained. ### **90-10.02 MATERIALS** • Minor concrete shall conform to the following requirements: ### 90-10.02A
Cementitious Material Cementitious material shall conform to the provisions in Section 90-1.01, "Description." # 90-10.02B Aggregate Aggregate shall be clean and free from deleterious coatings, clay balls, roots, and other extraneous materials. - The Contractor shall submit to the Engineer for approval, a grading of the combined aggregate proposed for use in the minor concrete. After acceptance of the grading, aggregate furnished for minor concrete shall conform to that grading, unless a change is authorized in writing by the Engineer. - The Engineer may require the Contractor to furnish periodic test reports of the aggregate grading furnished. The maximum size of aggregate used shall be at the option of the Contractor, but in no case shall the maximum size be larger than 37.5 mm or smaller than 19 mm. - The Engineer may waive, in writing, the gradation requirements in this Section 90-10.02B, if, in the Engineer's opinion, the furnishing of the gradation is not necessary for the type or amount of concrete work to be constructed. ### 90-10.02C Water • Water used for washing, mixing, and curing shall be free from oil, salts, and other impurities that would discolor or etch the surface or have an adverse affect on the quality of the concrete. ### 90-10.02D Admixtures • The use of admixtures shall conform to the provisions in Section 90-4, "Admixtures." ### 90-10.03 PRODUCTION - Cementitious material, water, aggregate, and admixtures shall be stored, proportioned, mixed, transported, and discharged in conformance with recognized standards of good practice that will result in concrete that is thoroughly and uniformly mixed, that is suitable for the use intended, and that conforms to requirements specified herein. Recognized standards of good practice are outlined in various industry publications such as are issued by American Concrete Institute, AASHTO, or the Department. - The cementitious material content of minor concrete shall conform to the provisions in Section 90-1.01, "Description." - The amount of water used shall result in a consistency of concrete conforming to the provisions in Section 90-6.06, "Amount of Water and Penetration." Additional mixing water shall not be incorporated into the concrete during hauling or after arrival at the delivery point, unless authorized by the Engineer. - Discharge of ready-mixed concrete from the transporting vehicle shall be made while the concrete is still plastic and before stiffening occurs. An elapsed time of 1.5 hours (one hour in non-agitating hauling equipment), or more than 250 revolutions of the drum or blades, after the introduction of the cementitious material to the aggregates, or a temperature of concrete of more than 32°C will be considered conditions contributing to the quick stiffening of concrete. The Contractor shall take whatever action is necessary to eliminate quick stiffening, except that the addition of water will not be permitted. - The required mixing time in stationary mixers shall be not less than 50 seconds or more than 5 minutes. - The minimum required revolutions at mixing speed for transit-mixed concrete shall be not less than that recommended by the mixer manufacturer, and shall be increased, if necessary, to produce thoroughly and uniformly mixed concrete. - Each load of ready-mixed concrete shall be accompanied by a weighmaster certificate that shall be delivered to the Engineer at the discharge location of the concrete, unless otherwise directed by the Engineer. The weighmaster certificate shall be clearly marked with the date and time of day when the load left the batching plant and, if hauled in truck mixers or agitators, the time the mixing cycle started. - A Certificate of Compliance conforming to the provisions in Section 6–1.07, "Certificates of Compliance," shall be furnished to the Engineer, prior to placing minor concrete from a source not previously used on the contract, stating that minor concrete to be furnished meets contract requirements, including minimum cementitious material content specified. # 90-10.04 CURING MINOR CONCRETE • Curing minor concrete shall conform to the provisions in Section 90-7, "Curing Concrete." ### 90-10.05 PROTECTING MINOR CONCRETE • Protecting minor concrete shall conform to the provisions in Section 90-8, "Protecting Concrete," except the concrete shall be maintained at a temperature of not less than 4°C for 72 hours after placing. # 90-10.06 MEASUREMENT AND PAYMENT • Minor concrete will be measured and paid for in conformance with the provisions specified in the various sections of these specifications covering concrete construction when minor concrete is specified in the specifications, shown on the plans, or indicated by contract item in the Engineer's Estimate. ### 90-11 MEASUREMENT AND PAYMENT #### 90-11.01 MEASUREMENT - Portland cement concrete will be measured in conformance with the provisions specified in the various sections of these specifications covering construction requiring concrete. - When it is provided that concrete will be measured at the mixer, the volume in cubic meters shall be computed as the total mass of the batch in kilograms divided by the density of the concrete in kilograms per cubic meter. The total mass of the batch shall be calculated as the sum of all materials, including water, entering the batch. The density of the concrete will be determined in conformance with the requirements in California Test 518. # 90-11.02 PAYMENT - Portland cement concrete will be paid for in conformance with the provisions specified in the various sections of these specifications covering construction requiring concrete. - Full compensation for furnishing and incorporating admixtures required by these specifications or the special provisions will be considered as included in the contract prices paid for the concrete involved and no additional compensation will be allowed therefor. - Should the Engineer order the Contractor to incorporate any admixtures in the concrete when their use is not required by these specifications or the special provisions, furnishing the admixtures and adding them to the concrete will be paid for as extra work as provided in Section 4-1.03D, "Extra Work." - Should the Contractor use admixtures in conformance with the provisions in Section 90-4.05, "Optional Use of Chemical Admixtures," or Section 90-4.07, "Optional Use of Air-entraining Admixtures," or should the Contractor request and obtain permission to use other admixtures for the Contractor's benefit, the Contractor shall furnish those admixtures and incorporate them into the concrete at the Contractor's expense and no additional compensation will be allowed therefor. # **END OF AMENDMENTS** # SECTION 2. PROPOSAL REQUIREMENTS AND CONDITIONS #### **2-1.01 GENERAL** The bidder's attention is directed to the provisions in Section 2, "Proposal Requirements and Conditions," of the Standard Specifications and these special provisions for the requirements and conditions which the bidder must observe in the preparation of the Proposal form and the submission of the bid. In addition to the subcontractors required to be listed in conformance with Section 2-1.054, "Required Listing of Proposed Subcontractors," of the Standard Specifications, each proposal shall have listed therein the portion of work that will be performed by each subcontractor listed. The proposal shall set forth the unit prices, item totals, TOTAL BID (A), the number of working days bid for completion of the work, except plant establishment, the product of the working days bid and the cost per day shown on the Engineer's Estimate (TOTAL BID (B)), and the "Total Basis for Comparison of Bids (A+B)," in clearly legible figures, in the respective spaces provided, and shall be signed by the bidder, who shall fill in the blanks on the proposal form as therein required. The Bidder's Bond form mentioned in the last paragraph in Section 2-1.07, "Proposal Guaranty," of the Standard Specifications will be found following the signature page of the Proposal. The amount of the bidder's security required in Section 2-1.07, "Proposal Guaranty," of the Standard Specifications shall be based on the "TOTAL BID (A)" set forth on the proposal form. Submit request for substitution of an "or equal" item, and the data substantiating the request to the Department of Transportation, Submit request for substitution of an "or equal" item, and the data substantiating the request to the Department of Transportation, Construction Division Chief, 801 South Grand Avenue, 4th Floor, Los Angeles, CA 90017, so that the request is received by the Department by close of business on the fourth day, not including Saturdays, Sundays and legal holidays, following bid opening. In conformance with Public Contract Code Section 7106, a Noncollusion Affidavit is included in the Proposal. Signing the Proposal shall also constitute signature of the Noncollusion Affidavit. The contractor, sub recipient or subcontractor shall not discriminate on the basis of race, color, national origin, or sex in the performance of this contract. The contractor shall carry out applicable requirements of 49 CFR part 26 in the award and administration of DOT-assisted contracts. Failure by the contractor to carry out these requirements is a material breach of this contract, which may result in the termination of this contract or such other remedy as the recipient deems appropriate. Each subcontract signed by the bidder must include this assurance. Failure of the bidder to fulfill the requirements of the Special Provisions for submittals required to be furnished after bid opening, including but not limited to DBE or DVBE submittals, or escrowed bid documents, where applicable, may subject the bidder to a determination of the bidder's responsibility in the event it is the apparent low bidder on a future public works contracts. ### 2-1.015 FEDERAL LOBBYING RESTRICTIONS Section 1352, Title 31, United States Code
prohibits Federal funds from being expended by the recipient or any lower tier subrecipient of a Federal-aid contract to pay for any person for influencing or attempting to influence a Federal agency or Congress in connection with the awarding of any Federal-aid contract, the making of any Federal grant or loan, or the entering into of any cooperative agreement. If any funds other than Federal funds have been paid for the same purposes in connection with this Federal-aid contract, the recipient shall submit an executed certification and, if required, submit a completed disclosure form as part of the bid documents. A certification for Federal-aid contracts regarding payment of funds to lobby Congress or a Federal agency is included in the Proposal. Standard Form - LLL, "Disclosure of Lobbying Activities," with instructions for completion of the Standard Form is also included in the Proposal. Signing the Proposal shall constitute signature of the Certification. The above-referenced certification and disclosure of lobbying activities shall be included in each subcontract and any lower-tier contracts exceeding \$100,000. All disclosure forms, but not certifications, shall be forwarded from tier to tier until received by the Engineer. The Contractor, subcontractors and any lower-tier contractors shall file a disclosure form at the end of each calendar quarter in which there occurs any event that requires disclosure or that materially affects the accuracy of the information contained in any disclosure form previously filed by the Contractor, subcontractors and any lower-tier contractors. An event that materially affects the accuracy of the information reported includes: - A. A cumulative increase of \$25,000 or more in the amount paid or expected to be paid for influencing or attempting to influence a covered Federal action; or - B. A change in the person(s) or individual(s) influencing or attempting to influence a covered Federal action; or, - C. A change in the officer(s), employee(s), or Member(s) contacted to influence or attempt to influence a covered Federal action. # 2-1.02 DISADVANTAGED BUSINESS ENTERPRISE (DBE) This project is subject to Part 26, Title 49, Code of Federal Regulations entitled "Participation by Disadvantaged Business Enterprises in Department of Transportation Financial Assistance Programs." The Regulations in their entirety are incorporated herein by this reference. Bidders shall be fully informed respecting the requirements of the Regulations and the Department's Disadvantaged Business Enterprise (DBE) program developed pursuant to the Regulations; particular attention is directed to the following matters: - A. A DBE must be a small business concern as defined pursuant to Section 3 of U.S. Small Business Act and relevant regulations promulgated pursuant thereto. - B. A DBE may participate as a prime contractor, subcontractor, joint venture partner with a prime or subcontractor, vendor of material or supplies, or as a trucking company. - C. A DBE bidder, not bidding as a joint venture with a non-DBE, will be required to document one or a combination of the following: - 1. The bidder will meet the goal by performing work with its own forces. - 2. The bidder will meet the goal through work performed by DBE subcontractors, suppliers or trucking companies. - 3. The bidder, prior to bidding, made adequate good faith efforts to meet the goal. - D. A DBE joint venture partner must be responsible for specific contract items of work, or portions thereof. Responsibility means actually performing, managing and supervising the work with its own forces. The DBE joint venture partner must share in the capital contribution, control, management, risks and profits of the joint venture. The DBE joint venturer must submit the joint venture agreement with the proposal or the DBE Information form required in the Section entitled "Submission of DBE Information" of these special provisions. - E. A DBE must perform a commercially useful function, i.e., must be responsible for the execution of a distinct element of the work and must carry out its responsibility by actually performing, managing and supervising the work. - F. DBEs must be certified by the California Unified Certification Program (CUCP). It is the contractor's responsibility to confirm that the firm is DBE certified as of the date of bid opening. Listings of DBEs certified by the CUCP are available from the following sources: - 1. The Department's DBE Directory, which is published quarterly. This Directory may be obtained from the Department of Transportation, Materiel Operations Branch, Publication Distribution Unit, 1900 Royal Oaks Drive, Sacramento, California 95815, Telephone: (916) 445-3520. - 2. The Department's web site at http://www.dot.ca.gov/hq/bep. - 3. The organizations listed in the Section entitled "DBE Goal for this Project" of these special provisions. - G. Credit for materials or supplies purchased from DBEs will be as follows: - 1. If the materials or supplies are obtained from a DBE manufacturer, 100 percent of the cost of the materials or supplies will count toward the DBE goal. A DBE manufacturer is a firm that operates or maintains a factory or establishment that produces, on the premises, the materials, supplies, articles, or equipment required under the contract and of the general character described by the specifications. - 2. If the materials or supplies are purchased from a DBE regular dealer, 60 percent of the cost of the materials or supplies will count toward the DBE goal. A DBE regular dealer is a firm that owns, operates, or maintains a store, warehouse, or other establishment in which the materials, supplies, articles or equipment of the general character described by the specifications and required under the contract are bought, kept in stock, and regularly sold or leased to the public in the usual course of business. To be a DBE regular dealer, the firm must be an established, regular business that engages, as its principal business and under its own name, in the purchase and sale or lease of the products in question. A person may be a DBE regular dealer in such bulk items as petroleum products, steel, cement, gravel, stone, or asphalt without owning, operating, or maintaining a place of business as provided in this paragraph G.2. if the person both owns and operates distribution equipment for the products. Any supplementing of regular dealers' own distribution equipment shall be by a long-term lease agreement and not on an ad hoc or contract-by-contract basis. Packagers, brokers, manufacturers' representatives, or other persons who arrange or expedite transactions are not DBE regular dealers within the meaning of this paragraph G.2. - 3. Credit for materials or supplies purchased from a DBE which is neither a manufacturer nor a regular dealer will be limited to the entire amount of fees or commissions charged for assistance in the procurement of the materials and supplies, or fees or transportation charges for the delivery of materials or supplies required on a job site, provided the fees are reasonable and not excessive as compared with fees charged for similar services. - H. Credit for DBE trucking companies will be as follows: - 1. The DBE must be responsible for the management and supervision of the entire trucking operation for which it is responsible on a particular contract, and there cannot be a contrived arrangement for the purpose of meeting the DBE goal. - 2. The DBE must itself own and operate at least one fully licensed, insured, and operational truck used on the contract. - 3. The DBE receives credit for the total value of the transportation services it provides on the contract using trucks its owns, insures, and operates using drivers it employs. - 4. The DBE may lease trucks from another DBE firm, including an owner-operator who is certified as a DBE. The DBE who leases trucks from another DBE receives credit for the total value of the transportation services the lessee DBE provides on the contract. - 5. The DBE may also lease trucks from a non-DBE firm, including an owner-operator. The DBE who leases trucks from a non-DBE is entitled to credit only for the fee or commission it receives as a result of the lease arrangement. The DBE does not receive credit for the total value of the transportation services provided by the lessee, since these services are not provided by a DBE. - 6. For the purposes of this paragraph H, a lease must indicate that the DBE has exclusive use of and control over the truck. This does not preclude the leased truck from working for others during the term of the lease with the consent of the DBE, so long as the lease gives the DBE absolute priority for use of the leased truck. Leased trucks must display the name and identification number of the DBE. - I. Noncompliance by the Contractor with the requirements of the regulations constitutes a breach of this contract and may result in termination of the contract or other appropriate remedy for a breach of this contract. - J. Bidders are encouraged to use services offered by financial institutions owned and controlled by DBEs. ### 2-1.02A DBE GOAL FOR THIS PROJECT The Department has established the following goal for Disadvantaged Business Enterprise (DBE) participation for this project: Disadvantaged Business Enterprise (DBE): 11 percent Bidders may use the services of the following firms to contact interested DBEs. These firms are available to assist DBEs in preparing bids for subcontracting or supplying materials. The following firms may be contacted for projects in the following locations: Districts 04, 05 (except San Luis Obispo and Santa Barbara Counties), 06 (except Kern County) and 10: See the Department's DBE database at: http://www.dot.ca.gov/hq/bep/ Districts 08 and 11: Padilla & Associates - San Diego 2725 Congress Street, Suite 1D San Diego, CA 92110 Telephone: (619) 725-0843 FAX No.: (619) 725-0854 Districts 07, 08,
and 12; in San Luis Obispo and Santa Barbara Counties in District 05; and in Kern County in District 06: Padilla & Associates - Commerce 5675 East Telegraph Rd., Suite A-260 Commerce, CA 90040 Telephone: (323) 728-8847 FAX No.: (323) 728-8867 Districts 01, 02, 03 and 09: See the Department's DBE database at: http://www.dot.ca.gov/hq/bep/ # 2-1.02B SUBMISSION OF DBE INFORMATION All bidders shall complete the "CALTRANS BIDDER - DBE INFORMATION" form included in the Proposal and submit it WITH THE BID. Failure to submit the "CALTRANS BIDDER - DBE INFORMATION" form with the bid will be grounds for finding the bid nonresponsive. The bidder shall submit written confirmation from each DBE that the DBE is participating in the contract, and include the confirmation with the submittal of the bid or submit it by the time specified for submittal of the GOOD FAITH EFFORT (GFE) DOCUMENTATION form. A copy of a DBE's quote will serve as written confirmation that the DBE is participating in the contract. Where the bidder has not met the designated DBE goal, it must submit good faith efforts (GFE) documentation to establish that, prior to the bid, it made adequate good faith efforts to meet the goal. Bidders are cautioned that even though their "CALTRANS BIDDER - DBE INFORMATION" form indicates they will meet the stated DBE goal, they should also submit their GFE documentation within the time specified herein, to protect their eligibility for award of the contract in the event the Department, in its review, finds that the goal has not been met. The apparent successful bidder (low bidder), the second low bidder and the third low bidder shall complete and submit the GOOD FAITH EFFORT (GFE) DOCUMENTATION form, if they have not met the goal, to the Department of Transportation, 1120 N Street, Room 0200, MS #26, Sacramento, California 95814 so the information is received by the Department no later than 4:00 p.m. ON THE FOURTH DAY, not including Saturdays, Sundays and legal holidays, following bid opening. GFE documentation sent by U.S. Postal Service certified mail with return receipt and certificate of mailing and mailed on or before the third day, not including Saturdays, Sundays and legal holidays, following bid opening will be accepted even if it is received after the fourth day following bid opening. Other bidders need not submit GFE documentation unless requested to do so by the Department. When a request is made by the Department, the GFE documentation of the other bidders shall be received by the Department within 4 days of the request, not including Saturdays, Sundays and legal holidays, unless a later time is authorized by the Department. If it is determined that GFE documentation is needed to determine a bidder's eligibility for award, failure of the bidder to have submitted the GFE documentation by the time specified herein will be grounds for finding the bid or proposal nonresponsive. It is the bidder's responsibility to make enough work available to DBEs and to select those portions of the work or material needs consistent with the available DBEs to meet the goal for DBE participation. The bidder's "CALTRANS BIDDER - DBE INFORMATION" form shall include the names, addresses and phone numbers of DBE firms that will participate, with a complete description of work or supplies to be provided by each, and the dollar value of each DBE transaction. When 100 percent of a contract item of work is not to be performed or furnished by a DBE, a description of the exact portion of that work to be performed or furnished by that DBE shall be included in the DBE information, including the planned location of that work. The work that a DBE prime contractor has committed to performing with its own forces as well as the work that it has committed to be performed by DBE subcontractors, suppliers and trucking companies will count toward the goal. The bidder's good faith effort (GFE) documentation shall establish that good faith efforts to meet the DBE goal have been made. In order to establish the bidder's good faith efforts to meet the DBE goal, the bidder should include the following information and supporting documents, as necessary: - A. Items of work the bidder has made available to DBE firms. Identify those items of work the bidder might otherwise perform with its own forces and those items that have been broken down into economically feasible units to facilitate DBE participation. For each item listed, show the dollar value and percentage of the total contract. It is the bidder's responsibility to demonstrate that sufficient work to meet the goal was made available to DBE firms. - B. The names of certified DBEs and the dates on which they were solicited to bid on the project. Include the items of work offered. Describe the methods used for following up initial solicitations to determine with certainty if the DBEs were interested, and the dates of the follow-up. Attach supporting documents such as copies of letters, memos, facsimiles sent, telephone logs, telephone billing statements, and other evidence of solicitation. Bidders are reminded to solicit certified DBEs through all reasonable and available means and provide sufficient time to allow DBEs to respond. - C. For each item of work made available, the DBEs that provided quotes, the selected firm and its status as a DBE, the price quote for each firm, and the name, address and telephone number for each firm. If the firm selected for the item is not a DBE, provide the reasons for the selection. - D. The names and dates of each publication in which a request for DBE participation for the project was placed by the bidder. Attach copies of the published advertisements. - E. The names of agencies, including the firms listed in Section 2-1.02A, "DBE Goal for this Project," and the dates on which they were contacted to provide assistance in contacting, recruiting and using DBE firms. If the agencies were contacted in writing, provide copies of supporting documents. - F. Descriptions of the efforts made to provide interested DBEs with adequate information about the plans, specifications and requirements of the contract to assist them in responding to a solicitation. Where the bidder has provided information, identify the name of the DBE assisted, the nature of the information provided, and date of contact. Provide copies of supporting documents, as appropriate. - G. Descriptions of any and all efforts made to assist interested DBEs in obtaining bonding, lines of credit, insurance, necessary equipment, supplies, and materials (excluding supplies and equipment which the DBE subcontractor purchases or leases from the prime contractor or its affiliate). Where such assistance was provided by the bidder, identify the name of the DBE assisted, nature of the assistance offered, and date. Provide copies of supporting documents, as appropriate. - H. Any additional data to support a demonstration of good faith efforts. # SECTION 3. AWARD AND EXECUTION OF CONTRACT The bidder's attention is directed to the provisions in Section 3, "Award and Execution of Contract," of the Standard Specifications and these special provisions for the requirements and conditions concerning award and execution of contract. Bid protests are to be delivered to the following address: Department of Transportation, MS 43, Attn: Office Engineer, 1727 30th Street, Sacramento, CA 95816 or by facsimile to the Office Engineer at (916) 227-6282. Bids will be compared on the basis of the Engineer's Estimate of the quantities of work to be done and the number of working days bid for completion of the work, except plant establishment. The award of the contract, if made, will be to the lowest responsible bidder whose proposal complies with all the requirements prescribed and who has met the goal for DBE participation or has demonstrated, to the satisfaction of the Department, adequate good faith efforts to do so. Meeting the goal for DBE participation or demonstrating, to the satisfaction of the Department, adequate good faith efforts to do so is a condition for being eligible for award of contract. The lowest bid will be determined on the basis of the "Total Basis for Comparison of Bids (A+B)" set forth in the proposal. The contract price for the awarded contract will be the "Total Bid (A)" set forth in the proposal. Bids in which the number of working days bid for completion of the work, except plant establishment, exceed 700 will be considered non-responsive and will be rejected. The contract shall be executed by the successful bidder and shall be returned together with the contract bonds, to the Department so that it is received within 10 days, not including Saturdays, Sundays and legal holidays, after the bidder has received the contract for execution. Failure to do so shall be just cause for forfeiture of the proposal guaranty. The executed contract documents shall be delivered to the following address: Department of Transportation MS 43, Attn: Office Engineer, 1727 30th Street, Sacramento, CA 95816. A "Payee Data Record" form will be included in the contract documents to be executed by the successful bidder. The purpose of the form is to facilitate the collection of taxpayer identification data. The form shall be completed and returned to the Department by the successful bidder with the executed contract and contract bonds. For the purposes of the form, payee shall be deemed to mean the successful bidder. The form is not to be completed for subcontractors or suppliers. Failure to complete and return the "Payee Data Record" form to the Department as provided herein will result in the retention of 31 percent of payments due the contractor and penalties of up to \$20,000. This retention of payments for failure to complete the "Payee Data Record" form is in addition to any other retention of payments due the Contractor. ### SECTION 4. BEGINNING OF WORK, TIME OF COMPLETION AND LIQUIDATED DAMAGES Attention is directed to the
provisions in Section 8-1.03, "Beginning of Work," in Section 8-1.06, "Time of Completion," and in Section 8-1.07, "Liquidated Damages," of the Standard Specifications and these special provisions. The Contractor shall furnish the Engineer with a statement from the vendor that the order for fiber optic cables, communication system routing equipment, communication and the electrical materials required for this contract has been received and accepted by the vendor; and the statement shall be furnished within 15 calendar days after the contract has been approved by the Attorney General, or the attorney appointed and authorized to represent the Department of Transportation. The statement shall give the date that the electrical materials will be shipped. If the Contractor has the necessary materials on hand, the Contractor will not be required to furnish the vendor's statement. The Contractor shall begin work within 15 calendar days after the contract has been approved by the Attorney General or the attorney appointed and authorized to represent the Department of Transportation. The work, except plant establishment work, shall be diligently prosecuted to completion before the expiration of **the NUMBER OF WORKING DAYS BID** beginning on the fifteenth calendar day after approval of the contract. Subparagraphs (a) and (c) of the second paragraph in Section 8-1.06, "Time of Completion," of the Standard Specifications shall not apply to this project. In addition to subparagraph (b) of the second paragraph in Section 8-1.06, "Time of Completion," of the Standard Specifications, Saturdays, and Sundays and days designated with "x" or "xx" in Table Z, "Lane Closure Restrictions for Designated Legal Holidays and Special Days" in "Maintaining Traffic" of these special provisions shall be considered exceptions to working days as defined in Section 8-1.06. The Contractor shall pay to the State of California the sum of \$37,500 per day, for each and every calendar day's delay in finishing the work, except plant establishment work, after expiration of the number of working days bid, until work requiring closure of lanes or shoulders on State Highway Routes 405 and 10 is complete. The Contractor shall pay to the State of California the sum of \$5,200 per day, for each and every calendar day's delay in finishing the work, except plant establishment work, after expiration of the number of working days bid, if no further lane or shoulder closures are required on State Highway Routes 405 and 10 to complete the remaining work. The Contractor shall diligently prosecute the plant establishment work to completion within the period of time specified in Section 10-2.04, "Highway Planting," of these special provisions. The Contractor shall pay to the State of California the sum of \$600 per day, for each and every calendar day's delay in completing the plant establishment work in excess of the number of working days specified. In no case will liquidated damages of more than \$37,500 per day be assessed. # INCENTIVE AND DISINCENTIVE Attention is directed to the details shown on the plans and to the provisions in "Order of Work" and "Maintaining Traffic" of these special provisions. Incentive payments and disincentive deductions shall conform to the following: A. If all work shown on the plans for the Olympic Blvd/Pico Off-ramp is completed and the Olympic Blvd/Pico Blvd Off-ramp is opened to public traffic prior to the 225th working day after the closure of the Olympic Blvd/Pico Off-ramp, the Contractor shall receive an incentive payment of \$5,000 per calendar day for each and every calendar day - prior to the 225th working day after the closure of the Olympic Blvd/Pico Blvd Off-ramp, to a maximum dollar amount of \$600,000. - B. If all work shown on the plans for the Olympic Blvd/Pico Blvd Off-ramp is not completed by the 225th working day after the closure of the Olympic Blvd/Pico Blvd Off-ramp, a disincentive deduction of \$5,000 per day will be deducted from any moneys due or that may become due to the Contractor under this contract for each and every calendar day's delay after the 225th working day until all work shown on the plans for the Olympic Blvd/Pico Blvd Off-ramp is completed and the Olympic Blvd/Pico Blvd Off-ramp is opened to the public. - C. Partial hours will be counted as one calendar day used by the Contractor for the purpose of calculating incentives and disincentives. ### **SECTION 5. GENERAL** #### SECTION 5-1. MISCELLANEOUS ### 5-1.01 PLANS AND WORKING DRAWINGS When the specifications require working drawings to be submitted to the Division of Structure Design, the drawings shall be submitted to: Division of Structure Design, Documents Unit, Mail Station 9, 1801 30th Street, Sacramento, CA 95816, Telephone 916 227-8252. ### 5-1.011 EXAMINATION OF PLANS, SPECIFICATIONS, CONTRACT, AND SITE OF WORK Attention is directed to "Differing Site Conditions" of these special provisions regarding physical conditions at the site which may differ from those indicated in "Materials Information," log of test borings or other geotechnical information obtained by the Department's investigation of site conditions. ### 5-1.012 DIFFERING SITE CONDITIONS Attention is directed to Section 5-1.116, "Differing Site Conditions," of the Standard Specifications. During the progress of the work, if subsurface or latent conditions are encountered at the site differing materially from those indicated in the "Materials Information," log of test borings, other geotechnical data obtained by the Department's investigation of subsurface conditions, or an examination of the conditions above ground at the site, the party discovering those conditions shall promptly notify the other party in writing of the specific differing conditions before they are disturbed and before the affected work is performed. The Contractor will be allowed 15 days from the notification of the Engineer's determination of whether or not an adjustment of the contract is warranted, in which to file a notice of potential claim in conformance with the provisions of Section 9-1.04, "Notice of Potential Claim," of the Standard Specifications and as specified herein; otherwise the decision of the Engineer shall be deemed to have been accepted by the Contractor as correct. The notice of potential claim shall set forth in what respects the Contractor's position differs from the Engineer's determination and provide any additional information obtained by the Contractor, including but not limited to additional geotechnical data. The notice of potential claim shall be accompanied by the Contractor's certification that the following were made in preparation of the bid: a review of the contract, a review of the "Materials Information," a review of the log of test borings and other records of geotechnical data to the extent they were made available to bidders prior to the opening of bids, and an examination of the conditions above ground at the site. Supplementary information, obtained by the Contractor subsequent to the filing of the notice of potential claim, shall be submitted to the Engineer in an expeditious manner. ### 5-1.013 LINES AND GRADES Attention is directed to Section 5-1.07, "Lines and Grades," of the Standard Specifications. Stakes or marks will be set by the Engineer in conformance with the requirements in Chapter 12, "Construction Surveys," of the Department's Surveys Manual. # 5-1.015 LABORATORY When a reference is made in the specifications to the "Laboratory," the reference shall mean Division of Engineering Services - Materials Engineering and Testing Services and Division of Engineering Services - Geotechnical Services of the Department of Transportation, or established laboratories of the various Districts of the Department, or other laboratories authorized by the Department to test materials and work involved in the contract. When a reference is made in the specifications to the "Transportation Laboratory," the reference shall mean Division of Engineering Services - Materials Engineering and Testing Services and Division of Engineering Services - Geotechnical Services, located at 5900 Folsom Boulevard, Sacramento, CA 95819, Telephone (916) 227-7000. # 5-1.017 CONTRACT BONDS Attention is directed to Section 3-1.02, "Contract Bonds," of the Standard Specifications and these special provisions. The payment bond shall be in a sum not less than one hundred percent of the total amount payable by the terms of the contract. ### 5-1.019 COST REDUCTION INCENTIVE Attention is directed to Section 5-1.14, "Cost Reduction Incentive," of the Standard Specifications. Prior to preparing a written cost reduction proposal, the Contractor shall request a meeting with the Engineer to discuss the proposal in concept. Items of discussion will also include permit issues, impact on other projects, impact on the project schedule, peer reviews, overall merit of the proposal, and review times required by the Department and other agencies. If a cost reduction proposal submitted by the Contractor, and subsequently approved by the Engineer, provides for a reduction in contract time, 50 percent of that contract time reduction shall be credited to the State by reducing the contract working days, not including plant establishment. Attention is directed to "Beginning of Work, Time of Completion and Liquidated Damages" of these special provisions regarding the working days. If a cost reduction proposal submitted by the Contractor, and subsequently approved by the Engineer, provides for a reduction in traffic congestion or avoids traffic congestion during construction, 60 percent of the estimated net savings in construction costs attributable to the cost reduction proposal will be paid to the Contractor. In addition to the requirements in Section 5-1.14, "Cost Reduction Incentive," of the Standard Specifications, the Contractor shall provide detailed comparisons of the traffic handling between the existing
contract and the proposed change, and estimates of the traffic volumes and congestion. # 5-1.02 LABOR NONDISCRIMINATION Attention is directed to the following Notice that is required by Chapter 5 of Division 4 of Title 2, California Code of Regulations. # NOTICE OF REQUIREMENT FOR NONDISCRIMINATION PROGRAM ### (GOV. CODE, SECTION 12990) Your attention is called to the "Nondiscrimination Clause", set forth in Section 7-1.01A(4), "Labor Nondiscrimination," of the Standard Specifications, which is applicable to all nonexempt State contracts and subcontracts, and to the "Standard California Nondiscrimination Construction Contract Specifications" set forth therein. The specifications are applicable to all nonexempt State construction contracts and subcontracts of \$5000 or more. #### 5-1.022 EXCLUSION OF RETENTION In conformance with 49 CFR, Part 26, Subpart B, Section 26.29 (b)(1), the retention of proceeds required by Public Contract Code Section 10261 shall not apply. In conformance with Public Contract Code 7200 (b), in subcontracts between the Contractor and a subcontractor and in subcontracts between a subcontractor and any subcontractor thereunder, retention proceeds shall not be withheld, and the exceptions provided in Public Contract Code 7200 (c) shall not apply. At the option of the Contractor, subcontractors may be required to furnish payment and performance bonds issued by an admitted surety insurer. The third paragraph of Section 9-1.06, "Partial Payments," of the Standard Specifications, and Section 9-1.065, "Payment of Withheld Funds," of the Standard Specifications shall not apply. # 5-1.023 UNSATISFACTORY PROGRESS If the number of working days charged to the contract exceeds 75 percent of the working days in the current time of completion and the percent working days elapsed exceeds the percent work completed by more than 15 percentage points, the Department will withhold 10 percent of the amount due on the current monthly estimate. The percent working days elapsed will be determined from the number of working days charged to the contract divided by the number of contract working days in the current time of completion, expressed as a percentage. The number of contract working days in the current time of completion shall consist of the original contract working days increased or decreased by time adjustment s approved by the Engineer. The percent work completed will be determined by the Engineer from the sum of payments made to date plus the amount due on the current monthly estimate, divided by the current total estimated value of the work, expressed as a percentage. When the percent of working days elapsed minus the percent of work completed is less than or equal to 15 percentage points, the funds withheld shall be returned to the Contractor with the next monthly progress payment. Funds kept or withheld from payment, due to the failure of the Contractor to comply with the provisions of the contract, will not be subject to the requirements of Public Contract Code 7107 or to the payment of interest pursuant to Public Contract Code Section 10261.5. ### 5-1.03 INTEREST ON PAYMENTS Interest shall be payable on progress payments, payments after acceptance, final payments, extra work payments, and claim payments as follows: - A. Unpaid progress payments, payment after acceptance, and final payments shall begin to accrue interest 30 days after the Engineer prepares the payment estimate. - B. Unpaid extra work bills shall begin to accrue interest 30 days after preparation of the first pay estimate following receipt of a properly submitted and undisputed extra work bill. To be properly submitted, the bill must be submitted within 7 days of the performance of the extra work and in conformance with the provisions in Section 9-1.03C, "Records," and Section 9-1.06, "Partial Payments," of the Standard Specifications. An undisputed extra work bill not submitted within 7 days of performance of the extra work will begin to accrue interest 30 days after the preparation of the second pay estimate following submittal of the bill. - C. The rate of interest payable for unpaid progress payments, payments after acceptance, final payments, and extra work payments shall be 10 percent per annum. - D. The rate of interest payable on a claim, protest or dispute ultimately allowed under this contract shall be 6 percent per annum. Interest shall begin to accrue 61 days after the Contractor submits to the Engineer information in sufficient detail to enable the Engineer to ascertain the basis and amount of said claim, protest or dispute. The rate of interest payable on any award in arbitration shall be 6 percent per annum if allowed under the provisions of Civil Code Section 3289. ### 5-1.04 PUBLIC SAFETY The Contractor shall provide for the safety of traffic and the public in conformance with the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications and these special provisions. The Contractor shall install temporary railing (Type K) between a lane open to public traffic and an excavation, obstacle or storage area when the following conditions exist: - A. Excavations.—The near edge of the excavation is 3.6 m or less from the edge of the lane, except: - 1. Excavations covered with sheet steel or concrete covers of adequate thickness to prevent accidental entry by traffic or the public. - 2. Excavations less than 0.3-m deep. - 3. Trenches less than 0.3-m wide for irrigation pipe or electrical conduit, or excavations less than 0.3-m in diameter. - 4. Excavations parallel to the lane for the purpose of pavement widening or reconstruction. - 5. Excavations in side slopes, where the slope is steeper than 1:4 (vertical:horizontal). - 6. Excavations protected by existing barrier or railing. - B. Temporarily Unprotected Permanent Obstacles.—The work includes the installation of a fixed obstacle together with a protective system, such as a sign structure together with protective railing, and the Contractor elects to install the obstacle prior to installing the protective system; or the Contractor, for the Contractor's convenience and with permission of the Engineer, removes a portion of an existing protective railing at an obstacle and does not replace such railing complete in place during the same day. - C. Storage Areas.—Material or equipment is stored within 3.6 m of the lane and the storage is not otherwise prohibited by the provisions of the Standard Specifications and these special provisions. The approach end of temporary railing (Type K), installed in conformance with the provisions in this section "Public Safety" and in Section 7-1.09, "Public Safety," of the Standard Specifications, shall be offset a minimum of 4.6 m from the edge of the traffic lane open to public traffic. The temporary railing shall be installed on a skew toward the edge of the traffic lane of not more than 0.3-m transversely to 3 m longitudinally with respect to the edge of the traffic lane. If the 4.6-m minimum offset cannot be achieved, the temporary railing shall be installed on the 10 to 1 skew to obtain the maximum available offset between the approach end of the railing and the edge of the traffic lane, and an array of temporary crash cushion modules shall be installed at the approach end of the temporary railing. Temporary railing (Type K) shall conform to the provisions in Section 12-3.08, "Temporary Railing (Type K)," of the Standard Specifications. Temporary railing (Type K), conforming to the details shown on 1999 Standard Plan T3, may be used. Temporary railing (Type K) fabricated prior to January 1, 1993, and conforming to 1988 Standard Plan B11-30 may be used, provided the fabrication date is printed on the required Certificate of Compliance. Temporary crash cushion modules shall conform to the provisions in "Temporary Crash Cushion Module" of these special provisions. Except for installing, maintaining and removing traffic control devices, whenever work is performed or equipment is operated in the following work areas, the Contractor shall close the adjacent traffic lane unless otherwise provided in the Standard Specifications and these special provisions: | Approach Speed of Public Traffic (Posted Limit) (Kilometers Per Hour) | Work Areas | |---|--| | Over 72 (45 Miles Per Hour) | Within 1.8 m of a traffic lane but not on a traffic lane | | 56 to 72 (35 to 45 Miles Per Hour) | Within 0.9-m of a traffic lane but not on a traffic lane | The lane closure provisions of this section shall not apply if the work area is protected by permanent or temporary railing or barrier. When traffic cones or delineators are used to delineate a temporary edge of a traffic lane, the line of cones or delineators shall be considered to be the edge of the traffic lane, however, the Contractor shall not reduce the width of an existing lane to less than 3 m without written approval from the Engineer. When work is not in progress on a trench or other excavation that required closure of an adjacent lane, the traffic cones or portable delineators used for the lane closure shall be placed off of and adjacent to the edge of the traveled way. The spacing of the cones or delineators shall be not more than the spacing used for the lane closure. Suspended loads or equipment shall not be moved nor positioned over public traffic or pedestrians. Full compensation for conforming to the provisions in this section "Public Safety," including furnishing and installing temporary railing (Type K) and temporary crash cushion modules, shall be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be allowed therefor. ### **5-1.05 TESTING** Testing of materials and work shall conform to the provisions in Section 6-3, "Testing," of the Standard Specifications and these
special provisions. Whenever the provisions of Section 6-3.01, "General," of the Standard Specifications refer to tests or testing, it shall mean tests to assure the quality and to determine the acceptability of the materials and work. The Engineer will deduct the costs for testing of materials and work found to be unacceptable, as determined by the tests performed by the Department, and the costs for testing of material sources identified by the Contractor which are not used for the work, from moneys due or to become due to the Contractor. The amount deducted will be determined by the Engineer. #### 5-1.06 REMOVAL OF ASBESTOS AND HAZARDOUS SUBSTANCES When the presence of asbestos or hazardous substances are not shown on the plans or indicated in the specifications and the Contractor encounters materials which the Contractor reasonably believes to be asbestos or a hazardous substance as defined in Section 25914.1 of the Health and Safety Code, and the asbestos or hazardous substance has not been rendered harmless, the Contractor may continue work in unaffected areas reasonably believed to be safe. The Contractor shall immediately cease work in the affected area and report the condition to the Engineer in writing. In conformance with Section 25914.1 of the Health and Safety Code, removal of asbestos or hazardous substances including exploratory work to identify and determine the extent of the asbestos or hazardous substance will be performed by separate contract. If delay of work in the area delays the current controlling operation, the delay will be considered a right of way delay and the Contractor will be compensated for the delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. ### 5-1.07 YEAR 2000 COMPLIANCE This contract is subject to Year 2000 Compliance for automated devices in the State of California. Year 2000 compliance for automated devices in the State of California is achieved when embedded functions have or create no logical or mathematical inconsistencies when dealing with dates prior to and beyond 1999. The year 2000 is recognized and processed as a leap year. The product shall operate accurately in the manner in which the product was intended for date operation without requiring manual intervention. The Contractor shall provide the Engineer a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for all automated devices furnished for the project. ### 5-1.075 BUY AMERICA REQUIREMENTS Attention is directed to the "Buy America" requirements of the Surface Transportation Assistance Act of 1982 (Section 165) and the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) Sections 1041(a) and 1048(a), and the regulations adopted pursuant thereto. In conformance with the law and regulations, all manufacturing processes for steel and iron materials furnished for incorporation into the work on this project shall occur in the United States; with the exception that pig iron and processed, pelletized and reduced iron ore manufactured outside of the United States may be used in the domestic manufacturing process for such steel and iron materials. The application of coatings, such as epoxy coating, galvanizing, painting, and other coatings that protect or enhance the value of steel or iron materials shall be considered a manufacturing process subject to the "Buy America" requirements. A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications shall be furnished for steel and iron materials. The certificates, in addition to certifying that the materials comply with the specifications, shall specifically certify that all manufacturing processes for the materials occurred in the United States, except for the above exceptions. The requirements imposed by the law and regulations do not prevent a minimal use of foreign steel and iron materials if the total combined cost of the materials used does not exceed one-tenth of one percent (0.1 percent) of the total contract cost or \$2500, whichever is greater. The Contractor shall furnish the Engineer acceptable documentation of the quantity and value of the foreign steel and iron prior to incorporating the materials into the work. # 5-1.08 SUBCONTRACTOR AND DBE RECORDS The Contractor shall maintain records showing the name and business address of each first-tier subcontractor. The records shall also show the name and business address of every DBE subcontractor, DBE vendor of materials and DBE trucking company, regardless of tier. The records shall show the date of payment and the total dollar figure paid to all of these firms. DBE prime contractors shall also show the date of work performed by their own forces along with the corresponding dollar value of the work. Upon completion of the contract, a summary of these records shall be prepared on Form CEM-2402 (F) and certified correct by the Contractor or the Contractor's authorized representative, and shall be furnished to the Engineer. The form shall be furnished to the Engineer within 90 days from the date of contract acceptance. \$10,000 will be withheld from payment until the Form CEM-2402 (F) is submitted. The amount will be returned to the Contractor when a satisfactory Form CEM-2402 (F) is submitted. Prior to the fifteenth of each month, the Contractor shall submit documentation to the Engineer showing the amount paid to DBE trucking companies listed in the Contractor's DBE information. This monthly documentation shall indicate the portion of the revenue paid to DBE trucking companies which is claimed toward DBE participation. The Contractor shall also obtain and submit documentation to the Engineer showing the amount paid by DBE trucking companies to all firms, including owner-operators, for the leasing of trucks. The DBE who leases trucks from a non-DBE is entitled to credit only for the fee or commission it receives as a result of the lease arrangement. The records must confirm that the amount of credit claimed toward DBE participation conforms with Section 2-1.02, "Disadvantaged Business Enterprise," of these special provisions. The Contractor shall also obtain and submit documentation to the Engineer showing the truck number, owner's name, California Highway Patrol CA number, and if applicable, the DBE certification number of the owner of the truck for all trucks used during that month for which DBE participation will be claimed. This documentation shall be submitted on Form CEM-2404 (F). ### 5-1.083 DBE CERTIFICATION STATUS If a DBE subcontractor is decertified during the life of the project, the decertified subcontractor shall notify the Contractor in writing with the date of decertification. If a subcontractor becomes a certified DBE during the life of the project, the subcontractor shall notify the Contractor in writing with the date of certification. The Contractor shall furnish the written documentation to the Engineer. Upon completion of the contract, Form CEM-2403 (F) indicating the DBE's existing certification status shall be signed and certified correct by the Contractor. The certified form shall be furnished to the Engineer within 90 days from the date of contract acceptance. # 5-1.086 PERFORMANCE OF DBE SUBCONTRACTORS AND SUPPLIERS The DBEs listed by the Contractor in response to the provisions in Section 2-1.02B, "Submission of DBE Information," and Section 3, "Award and Execution of Contract," of these special provisions, which are determined by the Department to Contract No. 07-195904 be certified DBEs, shall perform the work and supply the materials for which they are listed, unless the Contractor has received prior written authorization to perform the work with other forces or to obtain the materials from other sources. Authorization to use other forces or sources of materials may be requested for the following reasons: - A. The listed DBE, after having had a reasonable opportunity to do so, fails or refuses to execute a written contract, when such written contract, based upon the general terms, conditions, plans and specifications for the project, or on the terms of such subcontractor's or supplier's written bid, is presented by the Contractor. - B. The listed DBE becomes bankrupt or insolvent. - C. The listed DBE fails or refuses to perform the subcontract or furnish the listed materials. - D. The Contractor stipulated that a bond was a condition of executing a subcontract and the listed DBE subcontractor fails or refuses to meet the bond requirements of the Contractor. - E. The work performed by the listed subcontractor is substantially unsatisfactory and is not in substantial conformance with the plans and specifications, or the subcontractor is substantially delaying or disrupting the progress of the work. - F. It would be in the best interest of the State. The Contractor shall not be entitled to any payment for such work or material unless it is performed or supplied by the listed DBE or by other forces (including those of the Contractor) pursuant to prior written authorization of the Engineer. #### 5-1.09 SUBCONTRACTING Attention is directed to the provisions in Section 8-1.01, "Subcontracting," of the Standard Specifications, and Section 2, "Proposal Requirements and Conditions," and Section 3, "Award and Execution of Contract," of these special provisions. Pursuant to the provisions of Section 1777.1 of the Labor Code, the Labor Commissioner publishes and distributes a list of contractors ineligible to perform work as a subcontractor on a public works project. This list of debarred contractors is available from the Department of Industrial Relations web site at: http://www.dir.ca.gov/DLSE/Debar.html. The provisions in the third paragraph of Section 8-1.01, "Subcontracting," of the Standard Specifications, that the Contractor
shall perform with the Contractor's own organization contract work amounting to not less than 50 percent of the original contract price, is not changed by the Federal Aid requirement specified under "Required Contract Provisions Federal-Aid Construction Contracts" in Section 14 of these special provisions that the Contractor perform not less than 30 percent of the original contract work with the Contractor's own organization. Each subcontract and any lower tier subcontract that may in turn be made shall include the "Required Contract Provisions Federal-Aid Construction Contracts" in Section 14 of these special provisions. This requirement shall be enforced as follows: A. Noncompliance shall be corrected. Payment for subcontracted work involved will be withheld from progress payments due, or to become due, until correction is made. Failure to comply may result in termination of the contract. In conformance with the Federal DBE regulations Sections 26.53(f)(1) and 26.53(f)(2) Part 26, Title 49 CFR: - A. The Contractor shall not terminate for convenience a DBE subcontractor listed in response to Section 2-1.02B, "Submission of DBE Information," and then perform that work with its own forces, or those of an affiliate without the written consent of the Department, and - B. If a DBE subcontractor is terminated or fails to complete its work for any reason, the Contractor will be required to make good faith efforts to substitute another DBE subcontractor for the original DBE subcontractor, to the extent needed to meet the contract goal. The requirement in Section 2-1.02, "Disadvantaged Business Enterprise (DBE)," of these special provisions that DBEs must be certified on the date bids are opened does not apply to DBE substitutions after award of the contract. # 5-1.10 PROMPT PROGRESS PAYMENT TO SUBCONTRACTORS Attention is directed to the provisions in Sections 10262 and 10262.5 of the Public Contract Code concerning prompt payment to subcontractors. ### **5-1.103 RECORDS** The Contractor shall maintain cost accounting records for the contract pertaining to, and in such a manner as to provide a clear distinction between, the following six categories of costs of work during the life of the contract: - A. Direct costs of contract item work. - B. Direct costs of changes in character in conformance with Section 4-1.03C, "Changes in Character of Work," of the Standard Specifications. - C. Direct costs of extra work in conformance with Section 4-1.03D, "Extra Work," of the Standard Specifications. - D. Direct costs of work not required by the contract and performed for others. - E. Direct costs of work performed under a notice of potential claim in conformance with the provisions in Section 9-1.04, "Notice of Potential Claim," of the Standard Specifications. - F. Indirect costs of overhead. Cost accounting records shall include the information specified for daily extra work reports in Section 9-1.03C, "Records," of the Standard Specifications. The requirements for furnishing the Engineer completed daily extra work reports shall only apply to work paid for on a force account basis. The cost accounting records for the contract shall be maintained separately from other contracts, during the life of the contract, and for a period of not less than 3 years after the date of acceptance of the contract. If the Contractor intends to file claims against the Department, the Contractor shall keep the cost accounting records specified above until complete resolution of all claims has been reached. #### 5-1.11 PARTNERING The State will promote the formation of a "Partnering" relationship with the Contractor in order to effectively complete the contract to the benefit of both parties. The purpose of this relationship is to maintain a cooperative communication and to mutually resolve conflicts at the lowest responsible management level. The Contractor may request the formation of a "Partnering" relationship by submitting a request in writing to the Engineer after approval of the contract. If the Contractor's request for "Partnering" is approved by the Engineer, scheduling of a "Partnering Workshop," selecting the "Partnering" facilitator and workshop site, and other administrative details shall be as agreed to by both parties. If agreed to by the parties, additional "Partnering Workshops" will be conducted as needed throughout the life of the contract. A one-day "Training in Partnering Concepts" session will be conducted regardless of whether the Contractor requests the formation of a "Partnering" relationship. The "Training in Partnering Concepts" session will be conducted locally for the Contractor's and the Engineer's project representatives. The Contractor shall be represented by a minimum of 2 representatives, one being the Contractor's authorized representative pursuant to Section 5-1.06, "Superintendence," of the Standard Specifications. Scheduling of the "Training in Partnering Concepts" session and selection of the trainer and training site shall be determined cooperatively by the Contractor and the Engineer. If, upon the Contractor's request, "Partnering" is approved by the Engineer, the "Training in Partnering Concepts" session shall be conducted prior to the initial "Partnering Workshop." The costs involved in providing the "Training in Partnering Concepts" trainer and training site will be borne entirely by the State. The costs will be determined in conformance with the provisions in Section 9-1.03B, "Work Performed by Special Forces or Other Special Services," of the Standard Specifications, and paying to the Contractor the sum of that cost, except no markups will be allowed. The costs involved in providing the "Partnering Workshop" facilitator and workshop site will be borne equally by the State and the Contractor. The division of cost will be made by determining the cost in providing the "Partnering Workshop" facilitator and workshop site in conformance with the provisions in Section 9-1.03B, "Work Performed by Special Forces or Other Special Services," of the Standard Specifications, and paying to the Contractor one-half of that cost, except no markups will be allowed. All other costs associated with "Training in Partnering Concepts" and "Partnering Workshops" will be borne separately by the party incurring the costs, such as wages and travel expenses, and no additional compensation will be allowed therefor. The establishment of a "Partnering" relationship will not change or modify the terms and conditions of the contract and will not relieve either party of the legal requirements of the contract. # 5-1.114 VALUE ANALYSIS The Contractor may submit to the Engineer, in writing, a request for a "Value Analysis" workshop. The purpose for having a workshop is to identify value enhancing opportunities and to consider modifications to the plans and specifications that will reduce either the total cost, time of construction or traffic congestion, without impairing, in any manner, the essential functions or characteristics of the project including, but not limited to, service life, economy of operation, ease of maintenance, benefits to the travelling public, desired appearance, or design and safety standards. To maximize the potential benefits of a workshop, the request should be submitted to the Engineer early in the project after approval of the contract. If the Contractor's request for a "Value Analysis" workshop is approved by the Engineer, scheduling of a workshop, selecting the facilitator and workshop site, and other administrative details shall be determined cooperatively by the Contractor and the Engineer. The workshop shall be conducted in conformance with the methodology described in the Department's "Value Analysis Team Guide" available at the Department's web site at: http://www.dot.ca.gov/hq/oppd/value/ The facilitator shall be a Certified Value Specialist (CVS) as recognized by the Society of American Value Engineers (SAVE) International, which may be contacted as follows: SAVE International, 60 Revere Drive, Northbrook, IL 60062 Telephone 1-847-480-1730, FAX 1-847-480-9282 The Contractor may submit recommendations resulting from a "Value Analysis" workshop for approval by the Engineer as cost reduction incentive proposals in conformance with the provisions in Section 5-1.14, "Cost Reduction Incentive," of the Standard Specifications. The costs involved in providing the "Value Analysis" facilitator and workshop site will be borne equally by the State and the Contractor. The division of cost will be made by determining the cost in providing the "Value Analysis" facilitator and workshop site in conformance with the provisions in Section 9-1.03B, "Work Performed by Special Forces or Other Special Services," of the Standard Specifications, and paying to the Contractor one-half of that cost, except no markups will be allowed. All other costs associated with the "Value Analysis" workshop will be borne separately by the party incurring the costs, such as wages and travel expenses, and no additional compensation will be allowed therefor. # 5-1.12 DISPUTE REVIEW BOARD # **GENERAL** To assist in the resolution of disputes or potential claims arising out of the work of this project, a Dispute Review Board, hereinafter referred to as the "DRB," shall be established by the Engineer and Contractor cooperatively upon approval of the contract. The DRB is intended to assist the contract administrative claims resolution process as specified in the provisions in Section 9-1.04, "Notice of Potential Claim," and Section 9-1.07B, "Final Payment and Claims," of the Standard Specifications and these special provisions. The DRB shall not serve as a substitute for provisions in the specifications in regard to filing potential claims. The requirements and procedures established in this section shall be a prerequisite to filing a claim, filing for arbitration, or filing for litigation prior or subsequent to project completion. The DRB shall be
utilized when dispute or potential claim resolution at the project level is unsuccessful. The DRB shall function as specified herein until the day of acceptance of the contract, at which time the work of the DRB will cease except for completion of unfinished reports. No DRB dispute meetings shall take place later than 30 days prior to acceptance of contract. After acceptance of contract, disputes or potential claims which have followed the dispute resolution processes of the Standard Specifications and these special provisions, but have not been resolved, shall be stated or restated by the Contractor, in response to the Proposed Final Estimate within the time limits provided in Section 9-1.07B, "Final Payment and Claims," of the Standard Specifications. The State will review those claims in conformance with the provisions in Section 9-1.07B of the Standard Specifications. Following the adherence to and completion of the contractual administrative claims procedure, the Contractor may file for arbitration in conformance with the provisions in Section 9-1.10, "Arbitration," of the Standard Specifications and these special provisions. Disputes, as used in this section, shall include differences of opinion, properly noticed as provided hereinafter, between the State and Contractor on matters related to the work and other subjects considered by the State or Contractor, or by both, to be of concern to the DRB on this project, except matters relating to Contractor, subcontractor or supplier potential claims not actionable against the Department as specified in these special provisions or quantification of disputes for overhead type expenses or costs. Disputes for overhead type expenses or costs shall conform to the requirements of Section 9-1.07B, "Final Payment and Claims," of the Standard Specifications. Whenever the term "dispute" or "disputes" is used herein, it shall be deemed to include potential claims as well as disputes. The DRB shall serve as an advisory body to assist in the resolution of disputes between the State and the Contractor, hereinafter referred to as the "parties." The DRB shall consider disputes referred to it, and furnish written reports containing findings and recommendations pertaining to those disputes, to the parties to aid in resolution of the differences between them. DRB findings and recommendations are not binding on the parties. # SELECTION PROCESS, DISCLOSURE AND APPOINTMENTS The DRB shall consist of one member selected by the State and approved by the Contractor, one member selected by the Contractor and approved by the State, and a third member selected by the first 2 members and approved by both the State and the Contractor. The third member shall act as the DRB Chairperson. DRB members shall be especially knowledgeable in the type of construction and contract documents potentially anticipated by the contract. DRB members shall discharge their responsibilities impartially as an independent body, considering the facts and circumstances related to the matters under consideration, pertinent provisions of the contract and applicable laws and regulations. The State and the Contractor shall nominate and approve DRB members in conformance with the terms and conditions of the Dispute Review Board Agreement and these special provisions, within 45 days of the approval of the contract. Each party shall provide written notification to the other of the name of their selected DRB nominee along with the prospective member's complete written disclosure statement. Disclosure statements shall include a resume of the prospective member's experience and a declaration statement describing past, present, anticipated, and planned relationships, including indirect relationships through the prospective member's primary or full-time employer, to this project and with the parties involved in this construction contract, including but not limited to, relevant subcontractors or suppliers to the parties, parties' principals, or parties' counsel. DRB members shall also include a full disclosure of close professional or personal relationships with all key members of the contract. Objections to nominees must be based on a specific breech or violation of nominee responsibilities or on nominee qualifications under these provisions unless otherwise specified. The Contractor or the State may, on a one-time basis, object to the other's nominee without specifying a reason and this person will not be selected for the DRB. Another person shall then be nominated within 15 days. The first duty of the State and Contractor selected members of the DRB shall be to select and recommend a prospective third DRB member to the parties for final selection and approval. The first 2 DRB members shall proceed with the selection of the third DRB member immediately upon receiving written notification from the State of their selection, and shall provide their recommendation simultaneously to the parties within 15 days of the notification. The first 2 DRB members shall select a third DRB member subject to mutual approval of the parties or may mutually concur on a list of potentially acceptable third DRB members and submit the list to the parties for final selection and approval of the third member. The goal in the selection of the third member is to complement the professional experience of the first 2 members and to provide leadership for the DRB's activities. The third prospective DRB member shall supply a full disclosure statement to the first 2 DRB members and to the parties prior to appointment. An impasse shall be considered to have been reached if the parties are unable to approve a third member within 15 days of receipt of the recommendation of the first 2 DRB members, or if the first 2 DRB members are unable to agree upon a recommendation within their 15 day time limit. In the event of an impasse in selection of third DRB member the State and the Contractor shall each propose 3 candidates for the third DRB member position. The parties shall select the candidates proposed under this paragraph from the current list of arbitrators certified by the Public Works Contract Arbitration Committee created by Article 7.2 (commencing with Section 10245) of the State Contract Act. The first 2 DRB members shall then select one of the 6 proposed candidates in a blind draw. No DRB member shall have prior direct involvement in this contract. No member shall have a financial interest in this contract or the parties thereto, within a period of 6 months prior to award of this contract or during the contract, except as follows: - A. Compensation for services on this DRB. - B. Ownership interest in a party or parties, documented by the prospective DRB member, that has been reviewed and determined in writing by the State to be sufficiently insignificant to render the prospective member acceptable to the State. - C. Service as a member of other Dispute Review Boards on other contracts. - D. Retirement payments or pensions received from a party that are not tied to, dependent on or affected by the net worth of the party. - E. The above provisions apply to parties having a financial interest in this contract, including but not limited to contractors, subcontractors, suppliers, consultants, and legal and business services. The Contractor or the State may reject any of the three DRB members who fail to fully comply at all times with all required employment and financial disclosure conditions of DRB membership as described in the Dispute Review Board Agreement and as specified herein. A copy of the Dispute Review Board Agreement is included in this section. The Contractor, the State, and the 3 members of the DRB shall complete and adhere to the Dispute Review Board Agreement in administration of this DRB within 15 days of the parties' concurrence in the selection of the third member. No DRB meeting shall take place until the Dispute Review Board Agreement has been signed by all parties. The State authorizes the Engineer to execute and administer the terms of the Agreement. The person(s) designated by the Contractor as authorized to execute contract change orders shall be authorized to execute and administer the terms of this agreement, or to delegate the authority in writing. The operation of the DRB shall be in conformance with the terms of the Dispute Review Board Agreement. # **COMPENSATION** The State and the Contractor shall bear the costs and expenses of the DRB equally. Each DRB member shall be compensated at an agreed rate of \$1,200 per day if time spent per meeting, including on-site time plus one hour of travel time, is greater than 4 hours. Each DRB member shall be compensated at an agreed rate of \$700 per day if time spent per meeting, including on-site time plus one hour of travel time, is less than or equal to 4 hours. The agreed rates shall be considered full compensation for on-site time, travel expenses, transportation, lodging, time for travel and incidentals for each day, or portion thereof, that the DRB member is at an authorized DRB meeting. No additional compensation will be made for time spent by DRB members in review and research activities outside the official DRB meetings unless that time, (such as time spent evaluating and preparing recommendations on specific issues presented to the DRB), has been specifically agreed to in advance by the State and Contractor. Time away from the project, which has been specifically agreed to in advance by the parties, will be compensated at an agreed rate of \$125 per hour. The agreed amount of \$125 per hour shall include all incidentals including expenses for telephone, fax, and computer services. Members serving on more than one DRB involving the Department, regardless of the number of meetings per day, shall not be paid more than the all inclusive rate per day or rate per hour for an individual project. The State will provide, at no cost to the Contractor, administrative services such as
conference facilities and secretarial services to the DRB. These special provisions and the Dispute Review Board Agreement state the provisions for compensation and expenses of the DRB. DRB members shall be compensated at the same daily and hourly rate. The Contractor shall make direct payments to each DRB member for their participation in authorized meetings and approved hourly rate charges from invoices submitted by each DRB member. The State will reimburse the Contractor for the State's share of the costs. There will be no markups applied to expenses connected with the DRB, either by the DRB members or by the Contractor when requesting payment of the State's share of DRB expenses. Regardless of the DRB recommendation, neither party shall be entitled to reimbursement of DRB costs from the other party. ### REPLACEMENT OF DRB MEMBERS Service of a DRB member may be terminated at any time with not less than 15 days notice as follows: - A. The State may terminate service of the State appointed member. - B. The Contractor may terminate service of the Contractor appointed member. - C. Upon the written recommendation of the State and Contractor appointed members for the removal of the third member. - D. Upon resignation of a member. - E. The State or Contractor may terminate the service of any member who fails to fully comply with all required employment and financial disclosure conditions of DRB membership When a member of the DRB is replaced, the replacement member shall be appointed in the same manner as the replaced member was appointed. The appointment of a replacement DRB member will begin promptly upon determination of the need for replacement and shall be completed within 15 days. Changes in either of the DRB members chosen by the two parties will not require re-selection of the third member, unless both parties agree to such re-selection in writing. The Dispute Review Board Agreement shall be amended to reflect the change of a DRB member. # **OPERATION** The following procedure shall be used for dispute resolution: - A. If the Contractor objects to any decision, act or order of the Engineer, the Contractor shall give written notice of potential claim in conformance with the provisions in Section 9-1.04, "Notice of Potential Claim," of the Standard Specifications and these special provisions, including the provision of applicable cost documentation; or file written protests or notices in conformance with the provisions in the Standard Specifications and these special provisions. - B. The Engineer will respond, in writing, to the Contractor's written supplemental notice of potential claim within 20 days of receipt of the notice. - C. Within 15 days after receipt of the Engineer's written response, the Contractor shall, if the Contractor still objects, file a written reply with the Engineer, stating clearly and in detail the basis of the objection. - D. Following an objection to the Engineer's written response, the Contractor shall refer the dispute to the DRB if the Contractor wishes to further pursue the objection to the Engineer's decision. The Contractor shall make the referral - in writing to the DRB, simultaneously copied to the State, within 21 days after receipt of the written response from the Engineer. The written dispute referral shall describe the disputed matter in individual discrete segments so that it will be clear to both parties and the DRB what discrete elements of the dispute have been resolved, and which remain unresolved, and shall include an estimate of the cost of the affected work and impacts, if any, on project completion. - E. By failing to submit the written notice of referral to the DRB, within 21 days after receipt of the Engineer's written response to the supplemental notice of potential claim, the Contractor waives future claims and arbitration on the matter in contention - F. The Contractor and the State shall each be afforded an opportunity to be present and to be heard by the DRB, and to offer evidence. Either party furnishing written evidence or documentation to the DRB must furnish copies of such information to the other party a minimum of 15 days prior to the date the DRB is scheduled to convene the meeting for the dispute. Either party shall produce such additional evidence as the DRB may deem necessary to reach an understanding and a determination of the dispute. The party furnishing additional evidence shall furnish copies of such additional evidence to the other party at the same time the evidence is provided to the DRB. The DRB shall not consider evidence not furnished in conformance with the terms specified herein. - G. Upon receipt by the DRB of a written referral of a dispute, the DRB shall convene to review and consider the dispute. The dispute meeting shall be held no earlier than 30 days and no later than 60 days after receipt of the written referral unless otherwise agreed to by all parties. The DRB shall determine the time and location of the DRB dispute meeting, with due consideration for the needs and preferences of the parties while recognizing the paramount importance of a timely hearing of the dispute. - H. There shall be no participation of either party's attorneys at DRB dispute meetings. - I. There shall be no participation of persons who are not directly involved in the contract or who do not have direct knowledge of the dispute, including but not limited to consultants, except for expert testimony allowed at the discretion of the DRB and with approval prior to the dispute meeting by both parties. - J. The DRB shall furnish a report, containing findings and recommendations as described in the Dispute Review Board Agreement, in writing to both the State and the Contractor. The DRB may request clarifying information of either party within 10 days after the DRB dispute meeting. Requested information shall be submitted to the DRB within 10 days of the DRB request. The DRB shall complete its report, including minority opinion, if any, and submit it to the parties within 30 days of the DRB dispute meeting, except that time extensions may be granted at the request of the DRB with the written concurrence of both parties. The report shall include the facts and circumstances related to the matters under consideration, pertinent provisions of the contract, applicable laws and regulations, and actual costs and time incurred as shown on the Contractor's cost accounting records. The DRB shall make recommendations on the merit of the dispute and, if appropriate, recommend guidelines for determining compensation. - K. Within 30 days after receiving the DRB's report, both the State and the Contractor shall respond to the DRB in writing signifying that the dispute is either resolved or remains unresolved. Failure to provide the written response within the time specified, or a written rejection of the DRB's recommendation or response to a request for reconsideration presented in the report by either party, shall conclusively indicate that the party(s) failing to respond accepts the DRB recommendation. Immediately after responses have been received from both parties, the DRB shall provide copies of both responses to the parties simultaneously. Either party may request clarification of elements of the DRB's report from the DRB prior to responding to the report. The DRB shall consider any clarification request only if submitted within 10 days of receipt of the DRB's report, and if submitted simultaneously in writing to both the DRB and the other party. Each party may submit only one request for clarification for any individual DRB report. The DRB shall respond, in writing, to requests for clarification within 10 days of receipt of such requests. - L. The DRB's recommendations, stated in the DRB's reports, are not binding on either party. Either party may seek a reconsideration of a recommendation of the DRB. The DRB shall only grant a reconsideration based upon submission of new evidence and if the request is submitted within the 30-day time limit specified for response to the DRB's written report. Each party may submit only one request for reconsideration regarding an individual DRB recommendation. - M. If the State and the Contractor are able to resolve their dispute with the aid of the DRB's report, the State and Contractor shall promptly accept and implement the recommendations of the DRB. If the parties cannot agree on compensation within 60 days of the acceptance by both parties of the DRB's recommendation, either party may request the DRB to make a recommendation regarding compensation. - N. The State or the Contractor shall not call DRB members who served on the DRB for this contract as witnesses in arbitration proceedings which may arise from this contract, and all documents created by the DRB shall be inadmissible as evidence in subsequent arbitration proceedings, except the DRB's final written reports on each issue brought before it. - O. The State and Contractor shall jointly indemnify and hold harmless the DRB members from and against all claims, damages, losses, and expenses, including but not limited to attorney's fees, arising out of and resulting from the findings and recommendations of the DRB. - P. The DRB members shall have no claim against the State or the Contractor, or both, from claimed harm arising out of the parties' evaluations of the DRB's report. ## DISPUTES INVOLVING SUBCONTRACTOR POTENTIAL CLAIMS For purposes of this section, a "subcontractor potential claim" shall include any potential claim by a subcontractor (including also any pass through potential claims by a lower tier subcontractor or supplier) against the Contractor that is actionable by the Contractor against the Department which arises from the work, services, or materials provided or to be provided in connection with the contract. If the Contractor determines to pursue a dispute against the Department that includes a subcontractor potential claim, the dispute shall be processed
and resolved in conformance with these special provisions and in conformance with the following: - A. The Contractor shall identify clearly in submissions pursuant to this section, that portion of the dispute that involves a subcontractor potential claim or potential claims. - B. The Contractor shall include, as part of its submission pursuant to Step D above, a certification (False Claims Act Certification) by the subcontractor's or supplier's officer, partner, or authorized representative with authority to bind the subcontractor and with direct knowledge of the facts underlying the subcontractor potential claim. The Contractor shall submit a certification that the subcontractor potential claim is acknowledged and forwarded by the Contractor. The form for these certifications is available from the Engineer. - C. At DRB dispute meetings involving one or more subcontractor potential claims, the Contractor shall require that each subcontractor involved in the dispute have present an authorized representative with actual knowledge of the facts underlying the subcontractor potential claim to assist in presenting the subcontractor potential claim and to answer questions raised by the DRB members or the Department's representatives. - D. Failure by the Contractor to declare a subcontractor potential claim on behalf of its subcontractor (including lower tier subcontractors' and suppliers' pass through potential claims) at the time of submission of the Contractor's potential claims, as provided hereunder, shall constitute a release of the State by the Contractor of such subcontractor potential claim. - E. The Contractor shall include in all subcontracts under this contract that subcontractors and suppliers of any tier (a) agree to submit subcontractor potential claims to the Contractor in a proper form and in sufficient time to allow processing by the Contractor in conformance with the Dispute Review Board resolution specifications; (b) agree to be bound by the terms of the Dispute Review Board provisions to the extent applicable to subcontractor potential claims; (c) agree that, to the extent a subcontractor potential claim is involved, completion of all steps required under these Dispute Review Board special provisions shall be a condition precedent to pursuit by the subcontractor of other remedies permitted by law, including without limitation of a lawsuit against the Contractor; and (d) agree that the existence of a dispute resolution process for disputes involving subcontractor potential claims shall not be deemed to create any claim, right, or cause of action by any subcontractor or supplier against the Department. Notwithstanding the foregoing, this Dispute Review Board special provision shall not apply to, and the DRB shall not have the authority to consider, subcontractor potential claims between the subcontractor(s) or supplier(s) and the Contractor that are not actionable by the Contractor against the Department. ## RETENTION Failure of the Contractor to nominate and approve DRB members in conformance with the terms and conditions of the Dispute Review Board Agreement and these special provisions shall result in the retention of 25 percent of the estimated value of all work performed during each estimate period in which the Contractor fails to comply with the requirements of this section as determined by the Engineer. DRB retentions will be released for payment on the next monthly estimate for partial payment following the date that the Contractor has nominated and approved DRB members and no interest will be due the Contractor. ## DISPUTE REVIEW BOARD AGREEMENT A copy of the "Dispute Review Board Agreement" to be executed by the Contractor, State and the 3 DRB members after approval of the contract follows: Form 6202 Rev (09/01/02) ## DISPUTE REVIEW BOARD AGREEMENT | (Contract Identification) | | | | | |-------------------------------------|------------------------|---------|-------------------------------------|--| | Contract No | | | | | | | VIEW BOARD AGRI | | | | | this day of
Department of Transp | portation and the | | inafter called th
ONTRACTOR," an | | | Review Board, hereinafter | called the "DRB" consi | | | | | (Contractor Appointee) | | _, | | | | (State Appointee) | |
_ ; | | | | and (Third Person) | | | | | | WITNESSETH, that | | | | | WHEREAS, the STATE and the CONTRACTOR, hereinafter called the "parties," are now engaged in the construction on the State Highway project referenced above; and WHEREAS, the special provisions for the above referenced contract provides for the establishment and operation of the DRB to assist in resolving disputes; and WHEREAS, the DRB is composed of three members, one selected by the STATE, one selected by the CONTRACTOR, and the third member selected by the other two members and approved by the parties; NOW THEREFORE, in consideration of the terms, conditions, covenants, and performance contained herein, or attached and incorporated and made a part hereof, the STATE, the CONTRACTOR, and the DRB members hereto agree as follows: ## SECTION I DESCRIPTION OF WORK To assist in the resolution of disputes between the parties, the contract provides for the establishment and the operation of the DRB. The intent of the DRB is to fairly and impartially consider disputes placed before it and provide written recommendations for resolution of these disputes to both parties. The members of this DRB shall perform the services necessary to participate in the DRB's actions as designated in Section II, Scope of Work. # SECTION II SCOPE OF WORK The scope of work of the DRB includes, but is not limited to, the following: # A. OBJECTIVE The principal objective of the DRB is to assist in the timely resolution of disputes between the parties arising from performance of this contract. It is not intended for either party to default on their normal responsibility to amicably and fairly settle their differences by indiscriminately assigning them to the DRB. It is intended that the mere existence of the DRB will encourage the parties to resolve disputes without resorting to this review procedure. But when a dispute that is serious enough to warrant the DRB's review does develop, the process for prompt and efficient action will be in place. ## B. PROCEDURES The DRB shall render written reports on disputes between the parties arising from the construction contract. Prior to consideration of a dispute, the DRB shall establish rules and regulations that will govern the conduct of its business and reporting procedures in conformance with the requirements of the contract and the terms of this AGREEMENT. DRB recommendations, resulting from its consideration of a dispute, shall be furnished in writing to both parties. The recommendations shall be based on facts and circumstances involved in the dispute, pertinent contract provisions, applicable laws and regulations. The recommendations shall find one responsible party in a dispute; shared or "jury" determinations shall not be rendered. The DRB shall make recommendations on the merit of the dispute, and if appropriate, recommend guidelines for determining compensation. If the parties cannot agree on compensation within 60 days of the acceptance by both parties of the DRB's recommendation, either party may request the DRB to make a recommendation regarding compensation. The DRB shall refrain from officially giving advice or consulting services to anyone involved in the contract. The individual members shall act in a completely independent manner and while serving as members of the DRB shall have no consulting business connections with either party or its principals or attorneys or other affiliates (subcontractors, suppliers, etc.) who have a beneficial interest in the contract. During scheduled meetings of the DRB as well as during dispute meetings, DRB members shall refrain from expressing opinions on the merits of statements on matters under dispute or potential dispute. Opinions of DRB members expressed in private sessions shall be kept strictly confidential. Individual DRB members shall not meet with, or discuss contract issues with individual parties, except as directed by the DRB Chairperson. Such discussions or meetings shall be disclosed to both parties. Other discussions regarding the project between the DRB members and the parties shall be in the presence of all three members and both parties. Individual DRB members shall not undertake independent investigations of any kind pertaining to disputes or potential disputes, except with the knowledge of both parties and as expressly directed by the DRB Chairperson. ## C. CONSTRUCTION SITE VISITS, PROGRESS MEETINGS AND FIELD INSPECTIONS The DRB members shall visit the project site and meet with representatives of the parties to keep abreast of construction activities and to develop familiarity with the work in progress. Scheduled progress meetings shall be held at or near the project site. The DRB shall meet at least once at the start of the project, and at least once every 4 months thereafter. The frequency, exact time, and duration of additional site visits and progress meetings shall be as recommended by the DRB and approved by the parties consistent with the construction activities or matters under consideration and dispute. Each meeting shall consist of a round table discussion and a field inspection of the work being performed on the contract, if necessary. Each meeting shall be attended by representatives of both parties. The agenda shall generally be as follows: - 1. Meeting opened by the DRB Chairperson. - 2. Remarks by the STATE's representative. - 3. A description by the CONTRACTOR's representative of work accomplished since the last meeting; the current schedule status of the work; and a forecast for the coming period. - 4. An outline by the CONTRACTOR's representative of potential problems and a description of proposed solutions. - 5. An outline by the
STATE's representative of the status of the work as the STATE views it. - 6. A brief description by the CONTRACTOR's or STATE's representative of potential claims or disputes which have surfaced since the last meeting. - 7. A summary by the STATE's representative, the CONTRACTOR's representative, or the DRB of the status of past disputes and potential claims. The STATE's representative will prepare minutes of all progress meetings and circulate them for revision and approval by all concerned within 10 days of the meeting. The field inspection shall cover all active segments of the work, the DRB being accompanied by both parties' representatives. The field inspection may be waived upon mutual agreement of the parties. # D. DRB CONSIDERATION AND HANDLING OF DISPUTES Upon receipt by the DRB of a written referral of a dispute, the DRB shall convene to review and consider the dispute. The dispute meeting shall be held no earlier than 30 days and no later than 60 days after receipt of the written referral, unless otherwise agreed to by all parties. The DRB shall determine the time and location of DRB dispute meetings, with due consideration for the needs and preferences of the parties while recognizing the paramount importance of speedy resolution of issues. No dispute meetings shall take place later than 30 days prior to acceptance of contract. Normally, dispute meetings shall be conducted at or near the project site. However, any location that would be more convenient and still provide required facilities and access to necessary documentation shall be satisfactory. Both parties shall be given the opportunity to present their evidence at these dispute meetings. It is expressly understood that the DRB members are to act impartially and independently in the consideration of the contract provisions, applicable laws and regulations, and the facts and conditions surrounding any dispute presented by either party, and that the recommendations concerning any such dispute are advisory and nonbinding on the parties. The DRB may request that written documentation and arguments from both parties be sent to each DRB member, through the DRB Chairperson, for review before the dispute meeting begins. A party furnishing written documentation to the DRB shall furnish copies of such information to the other party at the same time that such information is supplied to the DRB DRB dispute meetings shall be informal. There shall be no testimony under oath or cross-examination. There shall be no reporting of the procedures by a shorthand reporter or by electronic means. Documents and verbal statements shall be received by the DRB in conformance with acceptance standards established by the DRB. These standards need not comply with prescribed legal laws of evidence. The third DRB member shall act as Chairperson for dispute meetings and all other DRB activities. The parties shall have a representative at all dispute meetings. Failure to attend a duly noticed dispute meeting by either of the parties shall be conclusively considered by the DRB as indication that the non-attending party considers written submittals as their entire and complete argument. The claimant shall discuss the dispute, followed by the other party. Each party shall then be allowed one or more rebuttals until all aspects of the dispute are thoroughly covered. DRB members shall ask questions, seek clarification, and request further data from either of the parties as may be necessary to assist in making a fully informed recommendation. The DRB may request from either party documents or information that would assist the DRB in making its findings and recommendations including, but not limited to, documents used by the CONTRACTOR in preparing the bid for the project. A refusal by a party to provide information requested by the DRB may be considered by the DRB as an indication that the requested material would tend to disprove that party's position. In large or complex cases, additional dispute meetings may be necessary in order to consider all the evidence presented by both parties. All involved parties shall maintain the confidentiality of all documents and information, as provided in this AGREEMENT. During dispute meetings, no DRB member shall express an opinion concerning the merit of any facet of the case. DRB deliberations shall be conducted in private, with interim individual views kept strictly confidential. After dispute meetings are concluded, the DRB shall meet in private and reach a conclusion supported by 2 or more members. Private sessions of the DRB may be held at a location other than the job site or by electronic conferencing as deemed appropriate, in order to expedite the process. The DRB's findings and recommendations, along with discussion of reasons therefor, shall then be submitted as a written report to both parties. Recommendations shall be based on the pertinent contract provisions, applicable laws and regulations, and facts and circumstances related to the dispute. The report shall be thorough in discussing the facts considered, the contract language, law or regulation viewed by the DRB as pertinent to the issues, and the DRB's interpretation and philosophy in arriving at its conclusions and recommendations. The DRB's report shall stand on its own, without attachments or appendices. The DRB Chairperson shall furnish a copy of the written recommendation report to the DRB Coordinator, Division of Construction, MS 44, P.O. Box 942874, Sacramento, CA 94274. With prior written approval of both parties, the DRB may obtain technical services necessary to adequately review the disputes presented, including audit, geotechnical, schedule analysis and other services. The parties' technical staff may supply those services as appropriate. The cost of technical services, as agreed to by the parties, shall be borne equally by the 2 parties as specified in an approved contract change order. The CONTRACTOR will not be entitled to markups for the payments made for these services. The DRB shall resist submittal of incremental portions of information by either party, in the interest of making a fully informed decision and recommendation. The DRB shall make every effort to reach a unanimous decision. If this proves impossible, the dissenting member shall prepare a minority opinion, which shall be included in the DRB's report. Although both parties should place weight upon the DRB's recommendations, they are not binding. Either party may appeal a recommendation to the DRB for reconsideration. However, reconsideration shall only be allowed when there is new evidence to present, and the DRB shall accept only one appeal from each party pertaining to an individual DRB recommendation. The DRB shall hear appeals in conformance with the terms described in the Section entitled "Dispute Review Board" in the special provisions. # E. DRB MEMBER REPLACEMENT Should the need arise to appoint a replacement DRB member, the replacement DRB member shall be appointed in the same manner as the original DRB members were appointed. The selection of a replacement DRB member shall begin promptly upon notification of the necessity for a replacement and shall be completed within 15 days. This AGREEMENT shall be amended to indicate change in DRB membership. ## SECTION III CONTRACTOR RESPONSIBILITIES The CONTRACTOR shall furnish to each DRB member one copy of pertinent documents that are or may become necessary for the DRB to perform their function. Pertinent documents are written notices of potential claim, responses to those notices, drawings or sketches, calculations, procedures, schedules, estimates, or other documents which are used in the performance of the work or in justifying or substantiating the CONTRACTOR's position. The CONTRACTOR shall also furnish a copy of such pertinent documents to the STATE, in conformance with the terms outlined in the special provisions. ## SECTION IV STATE RESPONSIBILITIES The STATE will furnish the following services and items: ## A. CONTRACT RELATED DOCUMENTS The STATE will furnish to each DRB member one copy of Notice to Contractors and Special Provisions, Proposal and Contract, Plans, Standard Specifications, and Standard Plans, change orders, written instructions issued by the STATE to the CONTRACTOR, or other documents pertinent to any dispute that has been referred to the DRB and necessary for the DRB to perform its function. ## **B. COORDINATION AND SERVICES** The STATE, through the Engineer, will, in cooperation with the CONTRACTOR, coordinate the operations of the DRB. The Engineer will arrange or provide conference facilities at or near the project site and provide secretarial and copying services to the DRB without charge to the CONTRACTOR. ## SECTION V TIME FOR BEGINNING AND COMPLETION Once established, the DRB shall be in operation until the day of acceptance of the contract. The DRB members shall not begin work under the terms of this AGREEMENT until authorized in writing by the STATE. ## SECTION VI PAYMENT #### A. ALL INCLUSIVE RATE PAYMENT The STATE and the CONTRACTOR shall bear the costs and expenses of the DRB equally. Each DRB member shall be compensated at an agreed rate of \$1,200 per day if time spent per meeting, including on-site time plus one hour of travel time, is greater than 4 hours. Each DRB member shall be compensated at an agreed rate of \$700 per day if time spent per meeting, including on-site time plus one hour of travel time, is less than or equal to 4 hours. The agreed rates shall be considered full compensation for on-site time, travel expenses, transportation, lodging, time for travel and incidentals for each day, or portion thereof, that the DRB member is at an authorized DRB meeting. No additional compensation will be made for time spent by DRB members in review and research activities outside the official DRB meetings unless that time has been specifically agreed to in advance by the STATE and CONTRACTOR. Time away
from the project that has been specifically agreed to in advance by the parties will be compensated at an agreed rate of \$125 per hour. The agreed amount of \$125 per hour shall include all incidentals including expenses for telephone, fax, and computer services. Members serving on more than one DRB involving the State, regardless of the number of meetings per day, shall not be paid more than the all inclusive rate per day or rate per hour for an individual project. The STATE will provide, at no cost to the CONTRACTOR, administrative services such as conference facilities and secretarial services to the DRB. ## **B. PAYMENTS** DRB members shall be compensated at the same rate. The CONTRACTOR shall make direct payments to each DRB member for their participation in authorized meetings and approved hourly rate charges from invoices submitted by each DRB member. The STATE will reimburse the CONTRACTOR for its share of the costs of the DRB. The DRB members may submit invoices to the CONTRACTOR for partial payment for work performed and services rendered for their participation in authorized meetings not more often than once per month during the progress of the work. The invoices shall be in a format approved by the parties and accompanied by a general description of activities performed during that billing period. Payment for hourly fees, at the agreed rate, shall not be paid to a DRB member until the amount and extent of those fees are approved by the STATE and CONTRACTOR. Invoices shall be accompanied by original supporting documents, which the CONTRACTOR shall include with the extra work billing when submitting for reimbursement of the STATE's share of cost from the STATE. The CONTRACTOR will be reimbursed for one-half of approved costs of the DRB. No markups will be added to the CONTRACTOR's payment. ## C. INSPECTION OF COSTS RECORDS The DRB members and the CONTRACTOR shall keep available for inspection by representatives of the STATE and the United States, for a period of 3 years after final payment, the cost records and accounts pertaining to this AGREEMENT. If any litigation, claim, or audit arising out of, in connection with, or related to this contract is initiated before the expiration of the 3-year period, the cost records and accounts shall be retained until such litigation, claim, or audit involving the records is completed. # SECTION VII ASSIGNMENT OF TASKS OF WORK The DRB members shall not assign the work of this AGREEMENT. ## SECTION VIII TERMINATION OF DRB MEMBERS DRB members may resign from the DRB by providing not less than 15 days written notice of the resignation to the STATE and CONTRACTOR. DRB members may be terminated by their original appointing power or by either party, for failing to fully comply at all times with all required employment and financial disclosure conditions of DRB membership in conformance with the terms of the contract. ## SECTION IX LEGAL RELATIONS The parties hereto mutually understand and agree that the DRB member in the performance of duties on the DRB, is acting in the capacity of an independent agent and not as an employee of either party. No party to this AGREEMENT shall bear a greater responsibility for damages or personal injury than is normally provided by Federal or State of California Law. Notwithstanding the provisions of this contract that require the CONTRACTOR to indemnify and hold harmless the STATE, the parties shall jointly indemnify and hold harmless the DRB members from and against all claims, damages, losses, and expenses, including but not limited to attorney's fees, arising out of and resulting from the findings and recommendations of the DRB. ## SECTION X CONFIDENTIALITY The parties hereto mutually understand and agree that all documents and records provided by the parties in reference to issues brought before the DRB, which documents and records are marked "Confidential - for use by the DRB only," shall be kept in confidence and used only for the purpose of resolution of subject disputes, and for assisting in development of DRB findings and recommendations; that such documents and records will not be utilized or revealed to others, except to officials of the parties who are authorized to act on the subject disputes, for any purposes, during the life of the DRB. Upon termination of this AGREEMENT, said confidential documents and records, and all copies thereof, shall be returned to the parties who furnished them to the DRB. However, the parties understand that such documents shall be subsequently discoverable and admissible in court or arbitration proceedings unless a protective order has been obtained by the party seeking further confidentiality. ## SECTION XI DISPUTES Disputes between the parties hereto, including disputes between the DRB members and either party or both parties, arising out of the work or other terms of this AGREEMENT, which cannot be resolved by negotiation and mutual concurrence between the parties, or through the administrative process provided in the contract, shall be resolved by arbitration as provided in Section 9-1.10, "Arbitration," of the Standard Specifications. # SECTION XII VENUE, APPLICABLE LAW, AND PERSONAL JURISDICTION In the event that any party, including an individual member of the DRB, deems it necessary to institute arbitration proceedings to enforce any right or obligation under this AGREEMENT, the parties hereto agree that such action shall be initiated in the Office of Administrative Hearings of the State of California. The parties hereto agree that all questions shall be resolved by arbitration by application of California law and that the parties to such arbitration shall have the right of appeal from such decisions to the Superior Court in conformance with the laws of the State of California. Venue for the arbitration shall be Sacramento or any other location as agreed to by the parties. # SECTION XIII FEDERAL REVIEW AND REQUIREMENTS On Federal-Aid contracts, the Federal Highway Administration shall have the right to review the work of the DRB in progress, except for private meetings or deliberations of the DRB. Other Federal requirements in this agreement shall only apply to Federal-Aid contracts. ## SECTION XIV CERTIFICATION OF THE CONTRACTOR, THE DRB MEMBERS, AND THE STATE IN WITNESS WHEREOF, the parties hereto have executed this AGREEMENT as of the day and year first above written. | DRB MEMBER | | DRB MEMBER | |------------|----------|--| | By: | Ву: | | | Title: | | Title: | | DRB MEMBER | | | | By: | | | | Title : | | | | CONTRACTOR | | CALIFORNIA STATE DEPARTMENT
OF TRANSPORTATION | | By: | Ву: | | | Title: | Title: _ | | ## 5-1.13 FORCE ACCOUNT PAYMENT The second, third and fourth paragraphs of Section 9-1.03A, "Work Performed by Contractor," in the Standard Specifications, shall not apply. Attention is directed to "Time-Related Overhead" of these special provisions. To the total of the direct costs for work performed on a force account basis, computed as provided in Sections 9-1.03A(1), "Labor," 9-1.03A(2), "Materials," and 9-1.03A(3), "Equipment Rental," of the Standard Specifications, there will be added the following markups: | Cost | Percent Markup | | |------------------|----------------|--| | Labor | 28 | | | Materials | 10 | | | Equipment Rental | 10 | | The above markups shall be applied to work performed on a force account basis, regardless of whether the work revises the current contract completion date. The above markups, together with payments made for time-related overhead pursuant to "Time-Related Overhead" of these special provisions, shall constitute full compensation for all overhead costs for work performed on a force account basis. These overhead costs shall be deemed to include all items of expense not specifically designated as cost or equipment rental in conformance with the provisions in Sections 9-1.03A(1), "Labor," 9-1.03A(2), "Materials," and 9-1.03A(3), "Equipment Rental," of the Standard Specifications. The total payment made as provided above and in the first paragraph of Section 9-1.03A, "Work Performed by Contractor," of the Standard Specifications shall be deemed to be the actual cost of the work performed on a force account basis, and shall constitute full compensation therefor. Full compensation for overhead costs for work performed on a force account basis, and for which no adjustment is made to the lump sum price bid for time-related overhead conforming to the provisions in "Time-Related Overhead" of these special provisions, shall be considered as included in the markups specified above, and no additional compensation will be allowed therefor. When extra work to be paid for on a force account basis is performed by a subcontractor, approved in conformance with the provisions in Section 8-1.01, "Subcontracting," of the Standard Specifications, an additional markup of 7 percent will be added to the total cost of that extra work including all markups specified in this section "Force Account Payment". The additional 7 percent markup shall reimburse the Contractor for additional administrative costs, and no other additional payment will be made by reason of performance of the extra work by a subcontractor. ## 5-1.14 COMPENSATION ADJUSTMENTS FOR PRICE INDEX FLUCTUATIONS The provisions of this section shall apply only to the following contract item: | ITEM CODE | ITEM | |-----------|----------------------------| | 390154 | ASPHALT CONCRETE (TYPE B_) | The compensation payable for asphalt concrete will be increased or decreased in conformance with the provisions of this section for paying asphalt price fluctuations exceeding 10 percent (Iu/Ib is greater than 1.10 or less than 0.90) which occur during performance of the work. The adjustment in compensation will be determined in conformance with the following formulae when the item of asphalt concrete is included in a monthly estimate: - A. Total monthly
adjustment = AQ - B. For an increase in paving asphalt price index exceeding 10 percent: $$A = 0.90 (1.1023) (Iu/Ib - 1.10) Ib$$ C. For a decrease in paving asphalt price index exceeding 10 percent: $$A = 0.90 (1.1023) (Iu/Ib - 0.90) Ib$$ - D. Where: - A = Adjustment in dollars per tonne of paving asphalt used to produce asphalt concrete rounded to the nearest \$0.01. - Iu = The California Statewide Paving Asphalt Price Index which is in effect on the first business day of the month within the pay period in which the quantity subject to adjustment was included in the estimate. - Ib = The California Statewide Paving Asphalt Price Index for the month in which the bid opening for the project - Q = Quantity in tonnes of paving asphalt that was used in producing the quantity of asphalt concrete shown under "This Estimate" on the monthly estimate using the amount of asphalt determined by the Engineer. The adjustment in compensation will also be subject to the following: - A. The compensation adjustments provided herein will be shown separately on payment estimates. The Contractor shall be liable to the State for decreased compensation adjustments and the Department may deduct the amount thereof from moneys due or that may become due the Contractor. - B. Compensation adjustments made under this section will be taken into account in making adjustments in conformance with the provisions in Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications. - C. In the event of an overrun of contract time, adjustment in compensation for paving asphalt included in estimates during the overrun period will be determined using the California Statewide Paving Asphalt Price Index in effect on the first business day of the month within the pay period in which the overrun began. The California Statewide Paving Asphalt Price Index is determined each month on the first business day of the month by the Department using the median of posted prices in effect as posted by Chevron, Mobil, and Unocal for the Buena Vista, Huntington Beach, Kern River, Long Beach, Midway Sunset, and Wilmington fields. In the event that the companies discontinue posting their prices for a field, the Department will determine an index from the remaining posted prices. The Department reserves the right to include in the index determination the posted prices of additional fields. #### 5-1.15 RELATIONS WITH THE CITY OF LOS ANGELES Attention is directed to Section 7, "Legal Relations and Responsibility" of the Standard Specifications. A portion of this project is located within the jurisdiction of the City of Los Angeles. The Contractor shall be fully informed of the requirements as well as rules regulations, and conditions that may govern the Contractor's operations in these areas and shall conduct the work accordingly. Should the Contractor fail to conform to the regulations and requirements of the City of Los Angeles, the State reserves the right to perform the work necessary to the provisions and the cost of such work shall be deducted from any moneys due or to become due the Contractor. ## 5-1.16 AREAS FOR CONTRACTOR'S USE Attention is directed to the provisions in Section 7-1.19, "Rights in Land and Improvements," of the Standard Specifications and these special provisions. The highway right of way shall be used only for purposes that are necessary to perform the required work. The Contractor shall not occupy the right of way, or allow others to occupy the right of way, for purposes which are not necessary to perform the required work. No State-owned parcels adjacent to the right of way are available for the exclusive use of the Contractor within the contract limits. The Contractor shall secure, at the Contractor's own expense, areas required for plant sites, storage of equipment or materials, or for other purposes. No area is available within the contract limits for the exclusive use of the Contractor. However, temporary storage of equipment and materials on State property may be arranged with the Engineer, subject to the prior demands of State maintenance forces and to other contract requirements. Use of the Contractor's work areas and other State-owned property shall be at the Contractor's own risk, and the State shall not be held liable for damage to or loss of materials or equipment located within such areas. # **5-1.17 PAYMENTS** Attention is directed to Sections 9-1.06, "Partial Payments," and 9-1.07, "Payment After Acceptance," of the Standard Specifications and these special provisions. For the purpose of making partial payments pursuant to Section 9-1.06, "Partial Payments," of the Standard Specifications, the amount set forth for the contract items of work hereinafter listed shall be deemed to be the maximum value of the contract item of work which will be recognized for progress payment purposes: A. Clearing and Grubbing \$135,000.00 B. Lead Compliance Plan \$10,000.00 C. Progress Schedule (Critical Path Method) \$25,000.00 After acceptance of the contract pursuant to the provisions in Section 7-1.17, "Acceptance of Contract," of the Standard Specifications, the amount, if any, payable for a contract item of work in excess of the maximum value for progress payment purposes hereinabove listed for the item, will be included for payment in the first estimate made after acceptance of the contract. In determining the partial payments to be made to the Contractor, only the following listed materials will be considered for inclusion in the payment as materials furnished but not incorporated in the work: - A. Bar reinforcing Steel - B. Metal Sign Structure - C. Plastic Pipe - D. Reinforced Concrete Pipe - E. Slotted Corrugated Steel Pipe - F. Miscellaneous Iron and Steel - G. Chain Link Gate - H Crash Cushion - I. Pavement Markers - J. CCTV Camera Assemblies, CCTV Controller Cabinets and CCTV Camera Poles - K. Video Transmitters and Video Receivers - L. Splice Vaults, Splice Closures and Communication Pull Boxes - M. Piling - N. Micropiles - O. Pavement Dowels Concrete Members - P. Prestressed Tiebacks - Q. Type B Joint Seals - R. Masonry Blocks - S. Bridge Mounted Sign Structure - T. Chain Link Railing ## 5-1.18 PROJECT INFORMATION The information in this section has been compiled specifically for this project and is made available for bidders and Contractors. Other information referenced in the Standard Specifications and these special provisions do not appear in this section. The information is subject to the conditions and limitations set forth in Section 2-1.03, "Examination of Plans, Specifications, Contract, and Site of Work," and Section 6-2, "Local Materials," of the Standard Specifications. Bidders and Contractors shall be responsible for knowing the procedures for obtaining information. Information attached to the project plans is as follows: A. Log of Test Borings. Information included in the Information Handout provided to bidders and Contractors is as follows: - A. Partial Aerially Deposited Lead Investigation Report - B. Geotechnical Foundation Report (Retaining / Sound Wall) - C. Foundation Recommendation (Bridge) Information available for inspection at the District Office is as follows: - A. Cross Sections - B. Complete Aerially Deposited Lead Investigation Report - C. Geotechnical Foundation Report (Retaining / Sound Wall) Coreroom@dot.ca.govPlans of the existing bridges may be requested by fax from the Office of Structure Maintenance and Investigations, 1801 30th Street, Sacramento, CA, Fax (916) 227-8357, and are available at the Office of Structure Maintenance and Investigations, Los Angeles, CA. Plans of the existing bridges available to bidders and Contractors are reproductions of the original contract plans, with significant changes noted, and working drawings, and do not necessarily show normal construction tolerances and variances. Where dimensions of new construction required by this contract are dependent on the dimensions of the existing bridges, the Contractor shall verify the controlling field dimensions and shall be responsible for adjusting dimensions of the work to fit existing conditions. ## 5-1.19 SOUND CONTROL REQUIREMENTS Sound control shall conform to the provisions in Section 7-1.01I, "Sound Control Requirements," of the Standard Specifications and these special provisions. The noise level from the Contractor's operations, between the hours of 9:00 p.m. and 7:00 a.m., shall not exceed 86 dBa at a distance of 15 m. This requirement shall not relieve the Contractor from responsibility for complying with local ordinances regulating noise level. The noise level requirement shall apply to the equipment on the job or related to the job, including but not limited to trucks, transit mixers or transient equipment that may or may not be owned by the Contractor. The use of loud sound signals shall be avoided in favor of light warnings except those required by safety laws for the protection of personnel. Full compensation for conforming to the requirements of this section shall be considered as included in the prices paid for the various contract items of work involved and no additional compensation will be allowed therefor. # 5-1,20 GENERAL MIGRATORY BIRD TREATY ACT Attention is directed to the Federal Migratory Bird Treaty Act (15 USC 703-711) 50 CFR Part 21 and 50 CFR Part 10, and the California Department of Fish and Game Code Sections 3503, 3513, and 3800, that protect migratory birds, their occupied nests, and their eggs from disturbance or destruction. Between February 1 and September 1, the Contractor shall notify the Engineer 15 working days prior to beginning work disturbing structures, the ground or vegetation. The Engineer will approve the beginning of work disturbing the ground or vegetation between February 15 and September 1. If, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in approving the disturbance structures,
ground or vegetation, the Contractor will be compensated for resulting losses, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. The Contractor shall use exclusion techniques directed by the Engineer to prevent migratory birds from nesting on the ground, on structures or in trees, shrubs or other vegetation within the project limits. Preventing nesting by using appropriate exclusion techniques will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. If evidence of bird nesting is discovered, the Contractor shall not disturb the nesting birds or nests until the birds have naturally left the nests. If evidence of migratory bird nesting is discovered after beginning work, the Contractor shall immediately stop work and notify the Engineer. Attention is directed to Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications and "Time Related Overhead" of these special provisions. Nothing in this section shall relieve the Contractor from providing for public safety in conformance with the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications. #### 5-1.21 CULTURAL RESOURCES The California Public Resources Code Chapter 1.7, Section 5097.5 makes it a misdemeanor for anyone to knowingly disturb an archaeological or historical feature. California Public Resources Code Sections 5097.98 and 5097.99 require protection of Native American remains which may be found and outlines procedures for handling any burials found. The California Administrative Code, Title 14, Section 4308, requires that no person disfigure any object of historical interest or value. The California Penal Code, Title 14, Part 1, Section 622-1/2 makes it a misdemeanor to destroy anything of historical value within any public place. Should human skeletal material or archaeological remains be found during construction activities, all work must be halted within ten meters of the find. The Contractor shall notify the Engineer immediately. Construction activities within 10 meters of the find shall remain halted until the Contractor has been notified that construction in the vicinity of the find may resume. If, in the opinion of the Engineer, the Contractor's operations are delayed or interfered with due to investigations made of the archaeological find, the State will compensate the Contractor for such delays to the extent provided in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Full compensation for conforming to the above requirements shall be considered as included in the contract prices paid for the various contract items of work involved and no additional compensation will be allowed therefore. ## 5-1.22 AERIALLY DEPOSITED LEAD Aerially deposited lead is present within the project limits. Aerially deposited lead is lead deposited within unpaved areas or formerly unpaved areas, primarily due to vehicle emissions. Attention is directed to "Material Containing Aerially Deposited Lead" of these special provisions. Portions of the Site Investigation Report are included in the "Material Information" handout. The complete report, entitled "ADL Investigation Report, Southbound Route 405 From Route 10, Los Angeles County, California, Contract No. 43A0078, Task Order No. 07-195900-RB and BH, and 07-1178U1-BF," is available for inspection at the Department of Transportation, Construction Office, Change Order Desk, located at 100 South Main Street, Los Angeles, California. Propsective bidders shall telephone 213-897-0054 in advance to make arrangements for entering the building. The Department has received from the California Department of Toxic Substances Control (DTSC) a Variance regarding the use of material containing aerially deposited lead. This project is subject to the conditions of the Variance, as amended. The Variance is available for inspection at the Department of Transportation, Construction Office, Change Order Desk, located at 100 South Main Street, Los Angeles, California. Propsective bidders shall telephone 213-897-0054 in advance to make arrangements for entering the building. Once the Contractor has completed the placement of material containing aerially deposited lead in conformance with these special provisions and as directed by the Engineer, the Contractor shall have no responsibility for such materials in place. The Department will not consider the Contractor a generator of such contaminated materials. Further cleanup, removal or remedial actions for such materials will not be required if handled or disposed of as specified herein. Excavation, reuse, and disposal of material with aerially deposited lead shall be in conformance with all rules and regulations including, but not limited to, those of the following agencies: United States Department of Transportation (USDOT) United States Environmental Protection Agency (USEPA) California Environmental Protection Agency (Cal-EPA) California Department of Health Services Department of Toxic Substances Control (DTSC), Region 4 California Division of Occupational Safety and Health Administration (Cal-OSHA) Integrated Waste Management Board Regional Water Quality Control Board (RWQCB), Region 4 State Air Resources Control Board South Coast Air Quality Management District (SCAQMD) Materials containing hazardous levels of lead shall be transported and disposed of in conformance with Federal and State laws and regulations, as amended, and county and municipal ordinances and regulations, as amended. Laws and regulations that govern this work include, but are not limited to: Health and Safety Code, Division 20, Chapter 6.5 (California Hazardous Waste Control Act) Title 22, California Code of Regulations, Division 4.5 (Environmental Health Standards for the Management of Hazardous Waste) Title 8, California Code of Regulations **SECTION 6. (BLANK)** **SECTION 7. (BLANK)** ## **SECTION 8. MATERIALS** ## **SECTION 8-1. MISCELLANEOUS** ## 8-1.01 SUBSTITUTION OF NON-METRIC MATERIALS AND PRODUCTS Only materials and products conforming to the requirements of the specifications shall be incorporated in the work. When metric materials and products are not available, and when approved by the Engineer, and at no cost to the State, materials and products in the United States Standard Measures which are of equal quality and of the required properties and characteristics for the purpose intended, may be substituted for the equivalent metric materials and products, subject to the following provisions: - A. Materials and products shown on the plans or in the special provisions as being equivalent may be substituted for the metric materials and products specified or detailed on the plans. - B. Before other non-metric materials and products will be considered for use, the Contractor shall furnish, at the Contractor's expense, evidence satisfactory to the Engineer that the materials and products proposed for use are equal to or better than the materials and products specified or detailed on the plans. The burden of proof as to the quality and suitability of substitutions shall be upon the Contractor and the Contractor shall furnish necessary information as required by the Engineer. The Engineer will be the sole judge as to the quality and suitability of the substituted materials and products and the Engineer's decision will be final. - C. When the Contractor elects to substitute non-metric materials and products, including materials and products shown on the plans or in the special provisions as being equivalent, the list of sources of material specified in Section 6-1.01, "Source of Supply and Quality of Materials," of the Standard Specification shall include a list of substitutions to be made and contract items involved. In addition, for a change in design or details, the Contractor shall submit plans and working drawings in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The plans and working drawings shall be submitted at least 7 days before the Contractor intends to begin the work involved. Unless otherwise specified, the following substitutions of materials and products will be allowed: # SUBSTITUTION TABLE FOR PLAIN WIRE REINFORCEMENT ASTM Designation: A 82 | METRIC SIZE SHOWN ON THE PLANS SIZE TO BE SUBSTITUTED | | | |---|--|--| | SIZE TO BE SUBSTITUTED | | | | inch ² x 100 | | | | W1.4 | | | | W1.6 | | | | W2.0 | | | | W2.3 | | | | W2.9 | | | | W3.1 | | | | W3.5 | | | | W3.9, except W3.5 in piles only | | | | W4.0 | | | | W4.7 | | | | W5.0 | | | | W5.4 | | | | W6.2 | | | | W6.5 | | | | W7.8 | | | | W8.5, except W8.0 in piles only | | | | W9.3 | | | | W10.9, except W11.0 in piles only | | | | W12.4 | | | | W14.0 | | | | W15.5 | | | | | | | # SUBSTITUTION TABLE FOR BAR REINFORCEMENT | | EET ON BING REIGHT ONCE WEIGH | |--|---------------------------------------| | METRIC BAR DESIGNATION | BAR DESIGNATION | | NUMBER ¹ SHOWN ON THE PLANS | NUMBER ² TO BE SUBSTITUTED | | 10 | 3 | | 13 | 4 | | 16 | 5 | | 19 | 6 | | 22 | 7 | | 25 | 8 | | 29 | 9 | | 32 | 10 | | 36 | 11 | | 43 | 14 | | 57 | 18 | ¹Bar designation numbers approximate the number of millimeters of the nominal diameter of the bars. No adjustment will be required in spacing or total number of reinforcing bars due to a difference in minimum yield strength between metric and non-metric bars. ²Bar numbers are based on the number of eighths of an inch included in the nominal diameter of the bars # SUBSTITUTION TABLE FOR SIZES OF: (1) STEEL FASTENERS FOR GENERAL APPLICATIONS (ASTM Designation: A 307 or AASHTO Designation: M 314, Grade 36 or 55), and (2) HIGH STRENGTH STEEL FASTENERS (ASTM Designation: A 325 or A 449) | METRIC SIZE SHOWN ON THE PLANS | SIZE TO BE SUBSTITUTED |
--------------------------------|------------------------| | mm | inch | | 6 or 6.35 | 1/4 | | 8 or 7.94 | 5/16 | | 10 or 9.52 | 3/8 | | 11 or 11.11 | 7/16 | | 13, 12.70, or M12 | 1/2 | | 14 or 14.29 | 9/16 | | 16, 15.88, or M16 | 5/8 | | 19, 19.05, or M20 | 3/4 | | 22, 22.22, or M22 | 7/8 | | 24, 25, 25.40, or M24 | 1 | | 29, 28.58, or M27 | 1-1/8 | | 32, 31.75, or M30 | 1-1/4 | | 35 or 34.93 | 1-3/8 | | 38, 38.10, or M36 | 1-1/2 | | 44 or 44.45 | 1-3/4 | | 51 or 50.80 | 2 | | 57 or 57.15 | 2-1/4 | | 64 or 63.50 | 2-1/2 | | 70 or 69.85 | 2-3/4 | | 76 or 76.20 | 3 | | 83 or 82.55 | 3-1/4 | | 89 or 88.90 | 3-1/2 | | 95 or 95.25 | 3-3/4 | | 102 or 101.60 | 4 | # SUBSTITUTION TABLE FOR NOMINAL THICKNESS OF SHEET METAL | SUBSTITUTION TABLE FOR NOMINAL THICKNESS OF SHEET METAL | | | | |---|-------------|-------------------------------|-------------| | UNCOATED HOT AND COLD ROLLED SHEETS | | HOT-DIPPED ZINC COATED SHEETS | | | | | (GALVANIZED) | | | METRIC THICKNESS | GAGE TO BE | METRIC THICKNESS | GAGE TO BE | | SHOWN ON THE PLANS | SUBSTITUTED | SHOWN ON THE PLANS | SUBSTITUTED | | mm | inch | mm | inch | | 7.94 | 0.3125 | 4.270 | 0.1681 | | 6.07 | 0.2391 | 3.891 | 0.1532 | | 5.69 | 0.2242 | 3.510 | 0.1382 | | 5.31 | 0.2092 | 3.132 | 0.1233 | | 4.94 | 0.1943 | 2.753 | 0.1084 | | 4.55 | 0.1793 | 2.372 | 0.0934 | | 4.18 | 0.1644 | 1.994 | 0.0785 | | 3.80 | 0.1495 | 1.803 | 0.0710 | | 3.42 | 0.1345 | 1.613 | 0.0635 | | 3.04 | 0.1196 | 1.461 | 0.0575 | | 2.66 | 0.1046 | 1.311 | 0.0516 | | 2.28 | 0.0897 | 1.158 | 0.0456 | | 1.90 | 0.0747 | 1.006 or 1.016 | 0.0396 | | 1.71 | 0.0673 | 0.930 | 0.0366 | | 1.52 | 0.0598 | 0.853 | 0.0336 | | 1.37 | 0.0538 | 0.777 | 0.0306 | | 1.21 | 0.0478 | 0.701 | 0.0276 | | 1.06 | 0.0418 | 0.627 | 0.0247 | | 0.91 | 0.0359 | 0.551 | 0.0217 | | 0.84 | 0.0329 | 0.513 | 0.0202 | | 0.76 | 0.0299 | 0.475 | 0.0187 | | 0.68 | 0.0269 | | | | 0.61 | 0.0239 | | | | 0.53 | 0.0209 | | | | 0.45 | 0.0179 | | | | 0.42 | 0.0164 | | | | 0.38 | 0.0149 | | | # SUBSTITUTION TABLE FOR WIRE | METRIC THICKNESS | WIRE THICKNESS | | |--------------------|-------------------|----------| | SHOWN ON THE PLANS | TO BE SUBSTITUTED | GAGE NO. | | mm | inch | | | 6.20 | 0.244 | 3 | | 5.72 | 0.225 | 4 | | 5.26 | 0.207 | 5 | | 4.88 | 0.192 | 6 | | 4.50 | 0.177 | 7 | | 4.11 | 0.162 | 8 | | 3.76 | 0.148 | 9 | | 3.43 | 0.135 | 10 | | 3.05 | 0.120 | 11 | | 2.69 | 0.106 | 12 | | 2.34 | 0.092 | 13 | | 2.03 | 0.080 | 14 | | 1.83 | 0.072 | 15 | | 1.57 | 0.062 | 16 | | 1.37 | 0.054 | 17 | | 1.22 | 0.048 | 18 | | 1.04 | 0.041 | 19 | | 0.89 | 0.035 | 20 | # SUBSTITUTION TABLE FOR PIPE PILES | METRIC SIZE | SIZE | |--------------------|-------------------| | SHOWN ON THE PLANS | TO BE SUBSTITUTED | | mm x mm | inch x inch | | PP 360 x 4.55 | NPS 14 x 0.179 | | PP 360 x 6.35 | NPS 14 x 0.250 | | PP 360 x 9.53 | NPS 14 x 0.375 | | PP 360 x 11.12 | NPS 14 x 0.438 | | PP 406 x 12.70 | NPS 16 x 0.500 | | PP 460 x T | NPS 18 x T" | | PP 508 x T | NPS 20 x T" | | PP 559 x T | NPS 22 x T" | | PP 610 x T | NPS 24 x T" | | PP 660 x T | NPS 26 x T" | | PP 711 x T | NPS 28 x T" | | PP 762 x T | NPS 30 x T" | | PP 813 x T | NPS 32 x T" | | PP 864 x T | NPS 34 x T" | | PP 914 x T | NPS 36 x T" | | PP 965 x T | NPS 38 x T" | | PP 1016 x T | NPS 40 x T" | | PP 1067 x T | NPS 42 x T" | | PP 1118 x T | NPS 44 x T" | | PP 1219 x T | NPS 48 x T" | | PP 1524 x T | NPS 60 x T" | | TP1 41:1 : '11: 4 | (TI) | The thickness in millimeters (T) represents an exact conversion of the thickness in inches (T"). # SUBSTITUTION TABLE FOR CIDH CONCRETE PILING | | OR CIDIT CONCRETE TIETING | |--------------------|---------------------------| | METRIC SIZE | ACTUAL AUGER SIZE | | SHOWN ON THE PLANS | TO BE SUBSTITUTED | | | inches | | 350 mm | 14 | | 400 mm | 16 | | 450 mm | 18 | | 600 mm | 24 | | 750 mm | 30 | | 900 mm | 36 | | 1.0 m | 42 | | 1.2 m | 48 | | 1.5 m | 60 | | 1.8 m | 72 | | 2.1 m | 84 | | 2.4 m | 96 | | 2.7 m | 108 | | 3.0 m | 120 | | 3.3 m | 132 | | 3.6 m | 144 | | 4.0 m | 156 | | | | | | | | | | | | | | | | # SUBSTITUTION TABLE FOR STRUCTURAL TIMBER AND LUMBER | METRIC MINIMUM | METRIC MINIMUM | NOMINAL | |--------------------|--------------------|-------------------| | DRESSED DRY, | DRESSED GREEN, | SIZE | | SHOWN ON THE PLANS | SHOWN ON THE PLANS | TO BE SUBSTITUTED | | mm x mm | mm x mm | inch x inch | | 19x89 | 20x90 | 1x4 | | 38x89 | 40x90 | 2x4 | | 64x89 | 65x90 | 3x4 | | 89x89 | 90x90 | 4x4 | | 140x140 | 143x143 | 6x6 | | 140x184 | 143x190 | 6x8 | | 184x184 | 190x190 | 8x8 | | 235x235 | 241x241 | 10x10 | | 286x286 | 292x292 | 12x12 | # SUBSTITUTION TABLE FOR NAILS AND SPIKES | T | SUBSTITUTION TABLE FOR NAILS AND STIKES | | | | | |---------------------|---|---------------|--------------|--|--| | METRIC COMMON NAIL, | METRIC BOX NAIL, | METRIC SPIKE, | SIZE | | | | SHOWN ON THE PLANS | SHOWN ON THE PLANS | SHOWN ON THE | TO BE | | | | | | PLANS | SUBSTITUTED | | | | Length, mm | Length, mm | Length, mm | Penny-weight | | | | Diameter, mm | Diameter, mm | Diameter, mm | | | | | 50.80 | 50.80 | | 6d | | | | 2.87 | 2.51 | | | | | | 63.50 | 63.50 | | 8d | | | | 3.33 | 2.87 | | | | | | 76.20 | 76.20 | 76.20 | 10d | | | | 3.76 | 3.25 | 4.88 | | | | | 82.55 | 82.55 | 82.55 | 12d | | | | 3.76 | 3.25 | 4.88 | | | | | 88.90 | 88.90 | 88.90 | 16d | | | | 4.11 | 3.43 | 5.26 | | | | | 101.60 | 101.60 | 101.60 | 20d | | | | 4.88 | 3.76 | 5.72 | | | | | 114.30 | 114.30 | 114.30 | 30d | | | | 5.26 | 3.76 | 6.20 | | | | | 127.00 | 127.00 | 127.00 | 40d | | | | 5.72 | 4.11 | 6.68 | | | | | | | 139.70 | 50d | | | | | | 7.19 | | | | | | | 152.40 | 60d | | | | | | 7.19 | | | | # SUBSTITUTION TABLE FOR IRRIGATION COMPONENTS | | TILITIS | |------------------------|-------------------| | METRIC | NOMINAL | | WATER METERS, TRUCK | SIZE | | LOADING STANDPIPES, | TO BE SUBSTITUTED | | VALVES, BACKFLOW | | | PREVENTERS, FLOW | | | SENSORS, WYE | | | STRAINERS, FILTER | | | ASSEMBLY UNITS, PIPE | | | SUPPLY LINES, AND PIPE | | | IRRIGATION SUPPLY | | | LINES | | | SHOWN ON THE PLANS | | | DIAMETER NOMINAL (DN) | | | mm | inch | | 15 | 1/2 | | 20 | 3/4 | | 25 | 1 | | 32 | 1-1/4 | | 40 | 1-1/2 | | 50 | 2 | | 65 | 2-1/2 | | 75 | 3 | | 100 | 4 | | 150 | 6 | | 200 | 8 | | 250 | 10 | | 300 | 12 | | 350 | 14 | | 400 | 16 | Unless otherwise specified, substitutions of United States Standard Measures standard structural shapes corresponding to the metric designations shown on the plans and in conformance with the requirements in ASTM Designation: A 6/A 6M, Annex 2, will be allowed. # 8-1.02 PREQUALIFIED AND TESTED SIGNING AND DELINEATION MATERIALS The Department maintains the following list of Prequalified and Tested Signing and Delineation Materials. The Engineer shall not be precluded from sampling and testing products on the list of Prequalified and Tested Signing and Delineation Materials. The manufacturer of products on the list of Prequalified and Tested Signing and Delineation Materials shall furnish the Engineer a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for each type of traffic product supplied. For those categories of materials included on the list of Prequalified and Tested Signing and Delineation Materials, only those products shown within the listing may be used in the work. Other categories of products, not included on the list of Prequalified and Tested Signing and Delineation Materials, may be used in the work provided they conform to the requirements of the Standard Specifications. Materials and products may be added to the list of Prequalified and Tested Signing and Delineation Materials if the manufacturer submits a New Product Information Form to the New Product Coordinator at the Transportation Laboratory. Upon a Departmental request for samples, sufficient samples shall be submitted to permit performance of required tests. Approval of materials or products will depend upon compliance with the specifications and tests the Department may elect to perform. ## PAVEMENT MARKERS, PERMANENT TYPE ## **Retroreflective With Abrasion Resistant Surface (ARS)** - A. Apex, Model 921AR (100 mm x 100 mm) - B. Avery Dennison, Models C88 (100 mm x 100 mm), 911 (100 mm x 100 mm) and 953 (70 mm x 114 mm) - C. Ray-O-Lite, Model "AA" ARS (100 mm x 100 mm) - D. 3M Series 290 (89 mm x 100 mm) - E. 3M Series 290 PSA, with pressure sensitive adhesive pad (89 mm x 100 mm) # **Retroreflective With Abrasion Resistant Surface (ARS)** (for recessed applications only) - A. Avery Dennison, Model 948 (58 mm x 119 mm) - B. Avery Dennison, Model 944SB (51 mm x 100 mm)* - C. Ray-O-Lite, Model 2002 (58 mm x 117 mm) - D. Ray-O-Lite, Model 2004 ARS (51 mm x 100 mm)* *For use only in 114 mm wide (older) recessed slots ## Non-Reflective, 100 mm Round - A. Apex Universal (Ceramic) - B. Apex Universal, Models 929 (ABS) and 929PP (Polypropylene) - C. Glowlite, Inc., (Ceramic) - D. Hi-Way Safety, Inc., Models P20-2000W and 2001Y (ABS) - E. Interstate Sales, "Diamond Back" (ABS) and (Polypropylene) - F. Novabrite Models Cdot (White) Cdot-y (Yellow), Ceramic - G. Novabrite Models Pdot-w (White) Pdot-y (Yellow), Polypropylene - H. Road Creations, Model RCB4NR (Acrylic) - I. Three D Traffic Works TD10000 (ABS), TD10500 (Polypropylene) ## PAVEMENT MARKERS, TEMPORARY TYPE ## Temporary Markers For Long Term Day/Night Use (6 months or less) A. Vega Molded Products "Temporary Road Marker" (75 mm x 100 mm) # Temporary Markers For Short Term Day/Night Use (14 days or less) (For seal coat or chip seal applications, clear protective covers are required) - A. Apex Universal, Model 932 - B. Bunzl Extrusion, Models T.O.M., T.R.P.M., and "HH" (High Heat) - C. Hi-Way Safety, Inc., Model 1280/1281 - D. Glowlite, Inc., Model 932 # STRIPING AND PAVEMENT MARKING MATERIAL # **Permanent Traffic Striping and Pavement Marking Tape** - A.
Advanced Traffic Marking, Series 300 and 400 - B. Brite-Line, Series 1000 - C. Brite-Line, "DeltaLine XRP" - D. Swarco Industries, "Director 35" (For transverse application only) - E. Swarco Industries, "Director 60" - F. 3M, "Stamark" Series 380 and 5730 - G. 3M, "Stamark" Series 420 (For transverse application only) ## Temporary (Removable) Striping and Pavement Marking Tape (6 months or less) - A. Advanced Traffic Marking, Series 200 - B. Brite-Line, Series 100 - C. Garlock Rubber Technologies, Series 2000 - D. P.B. Laminations, Aztec, Grade 102 - E. Swarco Industries, "Director-2" - F. Trelleborg Industri, R140 Series - G. 3M, Series 620 "CR", and Series A750 - H. 3M, Series A145, Removable Black Line Mask - (Black Tape: for use only on Asphalt Concrete Surfaces) - I. Advanced Traffic Marking Black "Hide-A-Line" - (Black Tape: for use only on Asphalt Concrete Surfaces) - J. Brite-Line "BTR" Black Removable Tape - (Black Tape: for use only on Asphalt Concrete Surfaces) - K. Trelleborg Industri, RB-140 - (Black Tape: for use only on Asphalt Concrete Surfaces) # **Preformed Thermoplastic (Heated in place)** - A. Avery Dennison, "Hotape" - B. Flint Trading, "Premark," "Premark 20/20 Flex," and "Premark 20/20 Flex Plus" # Ceramic Surfacing Laminate, 150 mm x 150 mm A. Highway Ceramics, Inc. ## **CLASS 1 DELINEATORS** ## One Piece Driveable Flexible Type, 1700 mm - A. Bunzl Extrusion, "Flexi-Guide Models 400 and 566" - B. Carsonite, Curve-Flex CFRM-400 - C. Carsonite, Roadmarker CRM-375 - D. FlexStake, Model 654 TM - E. GreenLine Models HWD1-66 and CGD1-66 ## Special Use Type, 1700 mm - A. Bunzl Extrusion, Model FG 560 (with 450 mm U-Channel base) - B. Carsonite, "Survivor" (with 450 mm U-Channel base) - C. Carsonite, Roadmarker CRM-375 (with 450 mm U-Channel base) - D. FlexStake, Model 604 - E. GreenLine Models HWDU and CGD (with 450 mm U-Channel base) - F. Impact Recovery Model D36, with #105 Driveable Base - G. Safe-Hit with 200 mm pavement anchor (SH248-GP1) - H. Safe-Hit with 380 mm soil anchor (SH248-GP2) and with 450 mm soil anchor (SH248-GP3) # Surface Mount Type, 1200 mm - A. Bent Manufacturing Company, Masterflex Model MF-180EX-48 - B. Carsonite, "Super Duck II" - C. FlexStake, Surface Mount, Models 704 and 754 TM - D. Impact Recovery Model D48, with #101 Fixed (Surface-Mount) Base - E. Three D Traffic Works "Channelflex" ID No. 522248W ## **CHANNELIZERS** ## Surface Mount Type, 900 mm - A. Bent Manufacturing Company, Masterflex Models MF-360-36 (Round) and MF-180-36 (Flat) - B. Bunzl Extrusion, Flexi-Guide Models FG300PE and FG300UR - C. Carsonite, "Super Duck" (Flat SDF-436, Round SDR-336) - D. Carsonite, "Super Duck II" Model SDCF203601MB "The Channelizer" - E. FlexStake, Surface Mount, Models 703 and 753 TM - F. GreenLine, Model SMD-36 - G. Hi-Way Safety, Inc. "Channel Guide Channelizer" Model CGC36 - H. Impact Recovery Model D36, with #101 Fixed (Surface-Mount) Base - I. Repo, Models 300 and 400 - J. Safe-Hit, Guide Post, Model SH236SMA - K. Three D Traffic Works "Channelflex" ID No. 522053W # **Lane Separation System** A. Bunzl "Flexi-Guide (FG) 300 Curb System" - B. Qwick Kurb, "Klemmfix Guide System" - C. Recycled Technology, Inc. "Safe-Lane System" # **CONICAL DELINEATORS, 1070 mm** (For 700 mm Traffic Cones, see Standard Specifications) - A. Bent Manufacturing Company "T-Top" - B. Plastic Safety Systems "Navigator-42" - C. Radiator Specialty Company "Enforcer" - D. Roadmaker Company "Stacker" - E. TrafFix Devices "Grabber" - F. Three D Traffic Works "Ringtop" TD7000, ID No. 742143 ## **OBJECT MARKERS** # Type "K", 450 mm - A. Bunzl, Model FG318PE - B. Carsonite, Model SMD 615 - C. FlexStake, Model 701 KM - D. Repo, Models 300 and 400 - E. Safe-Hit, Model SH718SMA # Type "K-4" / "Q" Object Markers, 600 mm - A. Bent Manufacturing "Masterflex" Model MF-360-24 - B. Bunzl Extrusion, Model FG324PE - C. Carsonite, Super Duck II - D. FlexStake, Model 701KM - E. Repo, Models 300 and 400 - F. Safe-Hit, Models SH8 24SMA WA and SH8 24GP3 WA - G. The Line Connection, Model DP21-4Q - H. Three D Traffic Works "Q" Marker, ID No. 531702W # CONCRETE BARRIER MARKERS AND TEMPORARY RAILING (TYPE K) REFLECTORS ## Impactable Type - A. ARTUK, "FB" - B. Bunzl Extrusion, Models PCBM-12 and PCBM-T12 - C. Duraflex Corp., "Flexx 2020" and "Electriflexx" - D. Hi-Way Safety, Inc., Model GMKRM100 - E. Plastic Safety Systems "BAM" Models OM-BARR and OM-BWAR - F. Sun-Lab Technology, "Safety Guide Light Model TM-5" - G. Three D Traffic Works "Roadguide" 9304 Series, ID No. 903176 (One-Way), ID No. 903215 (Two-Way) # **Non-Impactable Type** - A. ARTUK, JD Series - B. Plastic Safety Systems "BAM" Models OM-BITARW and OM-BITARA - C. Vega Molded Products, Models GBM and JD ## METAL BEAM GUARD RAIL POST MARKERS (For use to the left of traffic) - A. Bunzl Extrusion, "Mini" (75 mm x 254 mm) - B. Creative Building Products, "Dura-Bull, Model 11201" - C. Duraflex Corp., "Railrider" # CONCRETE BARRIER DELINEATORS, 400 mm (For use to the right of traffic) - A. Bunzl Extrusion, Model PCBM T-16 - B. Safe-Hit, Model SH216RBM - C. Sun-Lab Technology, "Safety Guide Light, Model TM16," (75 mm x 300 mm) - D. Three D Traffic Works "Roadguide" ID No. 904364 (White), ID No. 904390 (Yellow) Contract No. 07-195904 ## CONCRETE BARRIER-MOUNTED MINI-DRUM (260 mm x 360 mm x 570 mm) A. Stinson Equipment Company "SaddleMarker" ## SOUND WALL DELINEATOR (Applied vertically. Place top of 75 mm x 300 mm reflective element at 1200 mm above roadway) - A. Bunzl Extrusion, PCBM S-36 - B. Sun-Lab Technology, "Safety Guide Light, Model SM12," (75 mm x 300 mm) ## **GUARD RAILING DELINEATOR** (Place top of reflective element at 1200 mm above plane of roadway) # Wood Post Type, 686 mm - A. Bunzl Extrusion, FG 427 and FG 527 - B. Carsonite, Model 427 - C. FlexStake, Model 102 GR - D. GreenLine GRD 27 - E. Safe-Hit, Model SH227GRD - F. Three D Traffic Works "Guardflex" TD9100 Series, ID No. 510476 # **Steel Post Type** A. Carsonite, Model CFGR-327 with CFGRBK300 Mounting Bracket ## RETROREFLECTIVE SHEETING # Channelizers, Barrier Markers, and Delineators - A. Avery Dennison T-6500 Series (For rigid substrate devices only) - B. Avery Dennison WR-6100 Series - C. Nippon Carbide Industries, Flexible Ultralite Grade (ULG) II - D. Reflexite, PC-1000 Metalized Polycarbonate - E. Reflexite, AC-1000 Acrylic - F. Reflexite, AP-1000 Metalized Polyester - G. Reflexite, Conformalight, AR-1000 Abrasion Resistant Coating - H. 3M, High Intensity ## Traffic Cones, 330 mm Sleeves A. Reflexite SB (Polyester), Vinyl or "TR" (Semi-transparent) ## Traffic Cones, 100 mm and 150 mm Sleeves - A. Nippon Carbide Industries, Flexible Ultralite Grade (ULG) II - B. Reflexite, Vinyl, "TR" (Semi-transparent) or "Conformalight" - C. 3M Series 3840 ## **Barrels and Drums** - A. Avery Dennison WR-6100 - B. Nippon Carbide Industries, Flexible Ultralite Grade (ULG) II - C. Reflexite, "Conformalight", "Super High Intensity" or "High Impact Drum Sheeting" - D. 3M Series 3810 # Barricades: Type I, Medium-Intensity (Typically Enclosed Lens, Glass-Bead Element) - A. American Decal, Adcolite - B. Avery Dennison, T-1500 and T-1600 series - C. 3M Engineer Grade, Series 3170 # Barricades: Type II, Medium-High-Intensity (Typically Enclosed Lens, Glass-Bead Element) - A. Avery Dennison, T-2500 Series - B. Kiwalite Type II - C. Nikkalite 1800 Series # Signs: Type II, Medium-High-Intensity (Typically Enclosed Lens, Glass-Bead Element) - A. Avery Dennison, T-2500 Series - B. Kiwalite, Type II - C. Nikkalite 1800 Series # Signs: Type III, High-Intensity (Typically Encapsulated Glass-Bead Element) - A. Avery Dennison, T-5500 and T-5500A Series - B. Nippon Carbide Industries, Nikkalite Brand Ultralite Grade II - C. 3M Series 3870 # Signs: Type IV, High-Intensity (Typically Unmetallized Microprismatic Element) - A. Avery Dennison, T-6500 Series - B. Nippon Carbide Industries, Crystal Grade, 94000 Series - C. Nippon Carbide Industries, Model No. 94847 Fluorescent Orange - D. Nippon Carbide Industries, Model No. 94844 Fluorescent Yellow Green # Signs: Type VI, Elastomeric (Roll-Up) High-Intensity, without Adhesive - A. Avery Dennison, WU-6014 - B. Novabrite LLC, "Econobrite" - C. Reflexite "Vinyl" - D. Reflexite "SuperBright" - E. Reflexite "Marathon" - F. 3M Series RS34 Orange and RS20 Fluorescent Orange # Signs: Type VII, Super-High-Intensity (Typically Unmetallized Microprismatic Element) - A. 3M LDP Series 3924 Fluorescent Orange - B. 3M LDP Series 3970 ## Signs: Type VIII, Super-High-Intensity (Typically Unmetallized Microprismatic Element) - A. Avery Dennison, T-7500 Series - B. Avery Dennison, T-7511 Fluorescent Yellow - C. Avery Dennison, T-7513 Fluorescent Yellow Green - D. Avery Dennison, W-7514 Fluorescent Orange - E. Nippon Carbide Industries, Nikkalite Crystal Grade Model 92802 White - F. Nippon Carbide Industries, Nikkalite Crystal Grade Model 92844 Fluorescent Yellow/Green - G. Nippon Carbide Industries, Nikkalite Crystal Grade Model 92847 Fluorescent Orange # Signs: Type IX, Very-High-Intensity (Typically Unmetallized Microprismatic Element) - A. 3M VIP Series 3981 Diamond Grade Fluorescent Yellow - B. 3M VIP Series 3983 Diamond Grade Fluorescent Yellow/Green - C 3M VIP Series 3990 Diamond Grade ## SPECIALTY SIGNS - A. Hallmark Technologies, Inc., All Sign STOP Sign (All Plastic), 750 mm - B. Reflexite "Endurance" Work Zone Sign (with Semi-Rigid Plastic Substrate) # SIGN SUBSTRATE # Fiberglass Reinforced Plastic (FRP) - A. Fiber-Brite - B. Sequentia, "Polyplate" - C. Inteplast Group "InteCel" (13 mm for Post-Mounted CZ Signs, 1200 mm or less) ## **Aluminum Composite** - A. Alcan Composites "Dibond Material, 2 mm" (for temporary construction signs only) - B. Mitsubishi Chemical America, Alpolic 350 (for temporary construction signs only) ## 8-1.03 STATE-FURNISHED MATERIALS Attention is directed to Section 6-1.02, "State-Furnished Materials," of the Standard Specifications and these special provisions. The
following materials will be furnished to the Contractor: - A. Sign panels for mounting on traffic signal poles and mast arms. - B. Changeable message sign control cables. - C. Model 170 controller assemblies, including controller unit, and completely wired Type 334-C controller cabinet without anchor bolts, and inductive loop detector sensor units. - D. Reflective numbers and edge sealer for numbering electrical equipment. Sign panels for mounting on traffic signal poles and mast arms, retro-reflective numbers and edge sealers for numbering electrical equipment, changeable message sign control cables, Model 170 controller assemblies, completely wired Model 334-C changeable message sign cabinets and loop detector sensor units will be furnished to the Contractor at the following address: Department of Transportation District Maintenance Yard 7310 East Bandini Boulevard Commerce, CA 90040. A listing of field conductor terminations, in each changeable message sign and controller cabinet will be furnished free of charge to the Contractor at the site of the work. The Contractor shall notify the Engineer not less than 15 working days before State-furnished material is to be picked up by the Contractor. A full description of the material and the time the material will be picked up shall be provided. ## 8-1.04 SLAG AGGREGATE Air-cooled iron blast furnace slag shall not be used to produce aggregate for: - A. Structure backfill material. - B. Pervious backfill material. - C. Permeable material. - D. Reinforced or prestressed portland cement concrete component or structure. - E. Nonreinforced portland cement concrete component or structure for which a Class 1 Surface Finish is required by the provisions in Section 51-1.18B, "Class 1 Surface Finish," of the Standard Specifications. Aggregate produced from slag resulting from a steel-making process or air-cooled iron blast furnace slag shall not be used on this project. # 8-1.05 ADHESIVE FOR BONDING REFLEX REFLECTORS TO PORCELAIN ENAMEL TRAFFIC SIGNS Adhesive shall be an RTV (room temperature vulcanizing) one-component silicone - rubber adhesive. Adhesive shall be compounded to be highly resistant to ozone, ultraviolet light, and extremes of ambient temperature, shall possess good chemical resistance, and shall exhibit excellent overall weatherability. The cured material shall remain flexible and maintain its adhesive qualities indefinitely. The adhesive shall possess the following physical properties: | Property | Value | Test Method | |-----------------------|------------------------------------|---| | Color | Translucent | Visual Determination | | Consistency | Soft, spreadable thixotropic paste | Visual Determination | | Tack-Free Time | One hour maximum | Finger-touch test | | Durometer, Shore A | 25-40 | ASTM Designation: D 2240 ⁽¹⁾ | | Tensile Strength, MPa | 2.1 minimum | ASTM Designation: D 412 ⁽¹⁾ | | Elongation, Percent | 350 minimum | ASTM Designation: D 412 ⁽¹⁾ | | Specific Gravity | 1.07±0.02 | ASTM Designation: D 792, | | | | Method A-1, Notes: (1) and (2) | | Shear-Adhesion, MPa | 1.0 minimum | Note: (3) | Notes: - (1) After specimen has cured for a total of 48 hours. - (2) 25-mm square specimen. - (3) Test method on file and available at the Transportation Laboratory. When stored at temperatures below 27°C, the adhesive shall have a shelf life of at least one year. A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications shall be furnished for each lot of adhesive supplied. ## 8-1.06 ENGINEERING FABRICS Engineering fabrics shall conform to the provisions in Section 88, "Engineering Fabrics," of the Standard Specifications and these special provisions. Filter fabric for this project shall be ultraviolet (UV) ray protected. ## **SECTION 8-2. CONCRETE** ## 8-2.01 PORTLAND CEMENT CONCRETE Portland cement concrete shall conform to the provisions in Section 90, "Portland Cement Concrete," of the Standard Specifications and these special provisions. References to Section 90-2.01, "Portland Cement," of the Standard Specifications shall mean Section 90-2.01, "Cement," of the Standard Specifications. Mineral admixture shall be combined with cement in conformance with the provisions in Section 90-4.08, "Required Use of Mineral Admixtures," of the Standard Specifications for the concrete materials specified in Section 56-2, "Roadside Signs," of the Standard Specifications. The requirements of Section 90-4.08, "Required Use of Mineral Admixture," of the Standard Specifications shall not apply to Section 19-3.025C, "Soil Cement Bedding," of the Standard Specifications. The Department maintains a list of sources of fine and coarse aggregate that have been approved for use with a reduced amount of mineral admixture in the total amount of cementitious material to be used. A source of aggregate will be considered for addition to the approved list if the producer of the aggregate submits to the Transportation Laboratory certified test results from a qualified testing laboratory that verify the aggregate complies with the requirements. Prior to starting the testing, the aggregate test shall be registered with the Department. A registration number can be obtained by calling (916) 227-7228. The registration number shall be used as the identification for the aggregate sample in correspondence with the Department. Upon request, a split of the tested sample shall be provided to the Department. Approval of aggregate will depend upon compliance with the specifications, based on the certified test results submitted, together with any replicate testing the Department may elect to perform. Approval will expire 3 years from the date the most recent registered and evaluated sample was collected from the aggregate source. Qualified testing laboratories shall conform to the following requirements: - A. Laboratories performing ASTM Designation: C 1293 shall participate in the Cement and Concrete Reference Laboratory (CCRL) Concrete Proficiency Sample Program and shall have received a score of 3 or better on all tests of the previous 2 sets of concrete samples. - B. Laboratories performing ASTM Designation: C 1260 shall participate in the Cement and Concrete Reference Laboratory (CCRL) Pozzolan Proficiency Sample Program and shall have received a score of 3 or better on the shrinkage and soundness tests of the previous 2 sets of pozzolan samples. Aggregates on the list shall conform to one of the following requirements: - A. When the aggregate is tested in conformance with the requirements in California Test 554 and ASTM Designation: C 1293, the average expansion at one year shall be less than or equal to 0.040 percent; or - B. When the aggregate is tested in conformance with the requirements in California Test 554 and ASTM Designation: C 1260, the average of the expansion at 16 days shall be less than or equal to 0.15 percent. The amounts of cement and mineral admixture used in cementitious material shall be sufficient to satisfy the minimum cementitious material content requirements specified in Section 90-1.01, "Description," or Section 90-4.05, "Optional Use of Chemical Admixtures," of the Standard Specifications and shall conform to the following: - A. The minimum amount of cement shall not be less than 75 percent by mass of the specified minimum cementitious material content. - B. The minimum amount of mineral admixture to be combined with cement shall be determined using one of the following criteria: - 1. When the calcium oxide content of a mineral admixture is equal to or less than 2 percent by mass, the amount of mineral admixture shall not be less than 15 percent by mass of the total amount of cementitious material to be used in the mix. - 2. When the calcium oxide content of a mineral admixture is greater than 2 percent by mass, and any of the aggregates used are not listed on the approved list as specified in these special provisions, then the amount of mineral admixture shall not be less than 25 percent by mass of the total amount of cementitious material to be used in the mix. - 3. When the calcium oxide content of a mineral admixture is greater than 2 percent by mass and the fine and coarse aggregates are listed on the approved list as specified in these special provisions, then the amount of mineral admixture shall not be less than 15 percent by mass of the total amount of cementitious material to be used in the mix. - 4. When a mineral admixture that conforms to the provisions for silica fume in Section 90-2.04, "Admixture Materials," of the Standard Specifications is used, the amount of mineral admixture shall not be less than 10 percent by mass of the total amount of cementitious material to be used in the mix. - 5. When a mineral admixture that conforms to the provisions for silica fume in Section 90-2.04, "Admixture Materials," of the Standard Specifications is used and the fine and coarse aggregates are listed on the approved list as specified in these special provisions, then the amount of mineral admixture shall not be less than 7 percent by mass of the total amount of cementitious material to be used in the mix. - C. The total amount of mineral admixture shall not exceed 35 percent by mass of the total amount of cementitious material to be used in the mix. Where Section 90-1.01, "Description," of the Standard Specifications specifies a maximum cementitious content in kilograms per cubic meter, the total mass of cement and mineral admixture per cubic meter shall not exceed the specified maximum cementitious material content. Unless otherwise specified, mineral admixture will not be required in portland cement concrete used for precast concrete girders. The Contractor will be permitted to use Type III portland cement for concrete used in the manufacture of precast concrete members. ## 8-2.02 PRECAST CONCRETE QUALITY CONTROL ## **GENERAL** Precast
concrete quality control shall conform to these special provisions. Unless otherwise specified, precast concrete quality control shall apply when any precast concrete members are fabricated in conformance with the provisions in Section 49, "Piling," or Section 51, "Concrete Structures," of the Standard Specifications. Quality Control (QC) shall be the responsibility of the Contractor. The Contractor's QC inspectors shall perform inspection and testing prior to precasting, during precasting, and after precasting, and as specified in this section and additionally as necessary to ensure that materials and workmanship conform to the details shown on the plans and specifications. Quality Assurance (QA) is the prerogative of the Engineer. Regardless of the acceptance for a given precast element by the Contractor, the Engineer will evaluate the precast element. The Engineer will reject any precast element that does not conform to the approved Precast Concrete Quality Control Plan (PCQCP), the details shown on the plans, and these special provisions. The Contractor shall designate in writing a precast Quality Control Manager (QCM) for each precasting facility. The QCM shall be responsible directly to the Contractor for the quality of precasting, including materials and workmanship, performed by the Contractor and all subcontractors. The QCM shall be the sole individual responsible to the Contractor for submitting, receiving, and approving all correspondence, required submittals, and reports to and from the Engineer. The QCM shall not be employed or compensated by any subcontractor, or other persons or entities hired by subcontractors, or suppliers, who will provide other services or materials for the project. The QCM may be an employee of the Contractor. Prior to submitting the PCQCP required herein, a meeting between the Engineer, the Contractor's QCM, and a representative from each entity performing precast concrete operations for this project, shall be held to discuss the requirements for precast quality control. QC Inspectors shall either be 1) licensed as Civil Engineers in the State of California, or 2) have a current Plant Quality Personnel Certification, Level II, from the Precast/Prestressed Concrete Institute. A QC Inspector shall witness all precast concrete operations. # PRECAST CONCRETE QUALIFICATION AUDIT Unless otherwise specified, no Contractors or subcontractors performing precast concrete operations for the project shall commence work without having successfully completed the Department's Precast Fabrication Qualification Audit, hereinafter referred to as the audit. The Engineer will perform the audit, and copies of the audit form, along with procedures for requesting and completing the audit, are available at the Transportation Laboratory or the following website: http://www.dot.ca.gov/hq/esc/Translab/smbresources.htm An audit that was previously approved by the Engineer no more than three years prior to the beginning of work on this contract will be acceptable for the entire period of this contract, provided the Engineer determines the audit is for the same type of work that is to be performed on this contract. Successful completion of an audit shall not relieve the Contractor of the responsibility for furnishing materials or producing finished work of the quality specified in these special provisions and as shown on the plans. # PRECAST CONCRETE QUALITY CONTROL PLAN Prior to performing any precasting operations, the Contractor shall submit to the Engineer, in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, 3 copies of a separate PCQCP for each item of work which is to be precast. A separate PCQCP shall be submitted for each facility. As a minimum, each PCQCP shall include the following: - A. The name of the precasting firm, the concrete plants to be used, and any concrete testing firm to be used; - B. A manual prepared by the precasting firm that includes equipment, testing procedures, safety plan, and the names, qualifications, and documentation of certifications for all personnel to be used; - C. The name of the QCM and the names, qualifications, and documentation of certifications for all QC inspection personnel to be used; - D. An organizational chart showing all QC personnel and their assigned QC responsibilities; - E. The methods and frequencies for performing all required quality control procedures, including all inspections, material testing, and any required survey procedures for all components of the precast elements including prestressing systems, concrete, grout, reinforcement, steel components embedded or attached to the precast member, miscellaneous metal, and formwork; - F. A system for identification and tracking of required precast element repairs, and a procedure for the re-inspection of any repaired precast element. The system shall have provisions for a method of reporting nonconforming precast elements to the Engineer; and - G. Forms to be used for Certificates of Compliance, daily production logs, and daily reports. The Engineer shall have 4 weeks to review the PCQCP submittal after a complete plan has been received. No precasting shall be performed until the PCQCP is approved in writing by the Engineer. A PCQCP that was previously approved by the Engineer no more than one year prior to the beginning of work on this contract will be acceptable for the entire period of this contract, provided the Engineer determines the PCQCP is for the same type of work that is to be performed on this contract. An amended PCQCP or addendum shall be submitted to, and approved in writing by the Engineer, for any proposed revisions to the approved PCQCP. An amended PCQCP or addendum will be required for any revisions to the PCQCP, including but not limited to changes in concrete plants or source materials, changes in material testing procedures and testing labs, changes in procedures and equipment, changes in QC personnel, or updated systems for tracking and identifying precast elements. The Engineer shall have 2 weeks to complete the review of the amended PCQCP or addendum, once a complete submittal has been received. Work that is affected by any of the proposed revisions shall not be performed until the amended PCQCP or addendum has been approved. After final approval of the PCQCP, amended PCQCP, or addendum, the Contractor shall submit 7 copies to the Engineer of each of these approved documents. It is expressly understood that the Engineer's approval of the Contractor's PCQCP shall not relieve the Contractor of any responsibility under the contract for the successful completion of the work in conformance with the requirements of the plans and specifications. The Engineer's approval shall neither constitute a waiver of any of the requirements of the plans and specifications nor relieve the Contractor of any obligation thereunder, and defective work, materials, and equipment may be rejected notwithstanding approval of the PCQCP. #### REPORTING The QC Inspector shall provide reports to the QCM on a daily basis for each day that precasting operations are performed. A daily production log for precasting shall be kept by the QCM for each day that precasting operations, including setting forms, placing reinforcement, setting prestressing steel, casting, curing, post tensioning, and form release, are performed. The log shall include the facility location, and shall include specific description of casting or related operations, any problems or deficiencies discovered, any testing or repair work performed, and the names of all QC personnel and the specific QC inspections they performed that day. The daily report from each QC Inspector shall also be included in the log. This daily log shall be available for viewing by the Engineer, at the precasting facility. All reports regarding material tests and any required survey checks shall be signed by the person that performed the test or check, and then submitted directly to the QCM for review and signature prior to submittal to the Engineer. Corresponding names shall be clearly printed or typewritten next to all signatures. The Engineer shall be notified immediately in writing when any precasting problems or deficiencies are discovered and also of the proposed repair or process changes required to correct them. The Engineer shall have 4 weeks to review these procedures. No remedial work shall begin until the Engineer approves these procedures in writing. The following items shall be included in a Precast Report that is to be submitted to the Engineer following the completion of any precast element: - A. Reports of all material tests and any required survey checks; - B. Documentation that the Contractor has evaluated all tests and corrected all rejected deficiencies, and all repairs have been re-examined with the required tests and found acceptable; and - C. Daily production log. At the completion of any precast element, and if the QCM determines that element is in conformance with these special provisions, the QCM shall sign and furnish to the Engineer, a certificate of compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. This certificate of compliance shall be submitted with the Precast Report. The certificate shall state that all of the materials and workmanship incorporated in the work, and all required tests and inspections of this work, have been performed in conformance with the details shown on the plans and the provisions of the Standard Specifications and these special provisions. ## **PAYMENT** In the event the Engineer fails to complete the review of 1) a PCQCP, 2) an amended PCQCP or addendum, or 3) a proposed repair or process change, within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the
review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. All required repair work or process changes required to correct precasting operation deficiencies, whether discovered by the QCM, QC Inspector, or by the Engineer, and any associated delays or expenses to the Contractor caused by performing these repairs, shall be at the Contractor's expense. Full compensation for conforming to the requirements of this section shall be considered as included in the contract prices paid for the various items of work involved, and no additional compensation will be allowed therefor. ## **SECTION 8-3. WELDING** ## **8-3.01 WELDING** ## **GENERAL** Flux core welding electrodes conforming to the requirements of AWS A5.20 E6XT-4 or E7XT-4 shall not be used to perform welding for this project. Wherever reference is made to the following AWS welding codes in the Standard Specifications, on the plans, or in these special provisions, the year of adoption for these codes shall be as listed: | AWS Code | Year of Adoption | |----------|------------------| | D1.1 | 2002 | | D1.4 | 1998 | | D1.5 | 2002 | | D1.6 | 1999 | Requirements of the AWS welding codes shall apply unless specified otherwise in the Standard Specifications, on the plans, or in these special provisions. Wherever the abbreviation AWS is used, it shall be equivalent to the abbreviations ANSI/AWS or AASHTO/AWS. Section 6.1.1.1 of AWS D1.5 is replaced with the following: Quality Control (QC) shall be the responsibility of the Contractor. As a minimum, the Contractor shall perform inspection and testing of each weld joint prior to welding, during welding, and after welding as specified in this section and as necessary to ensure that materials and workmanship conform to the requirements of the contract documents. Sections 6.1.3 through 6.1.4.3 of AWS D1.1, Section 7.1.2 of AWS D1.4, and Sections 6.1.1.2 through 6.1.3.3 of AWS D1.5 are replaced with the following: The QC Inspector shall be the duly designated person who acts for and on behalf of the Contractor for inspection, testing, and quality related matters for all welding. Quality Assurance (QA) is the prerogative of the Engineer. The QA Inspector is the duly designated person who acts for and on behalf of the Engineer. The QC Inspector shall be responsible for quality control acceptance or rejection of materials and workmanship, and shall be currently certified as an AWS Certified Welding Inspector (CWI) in conformance with the requirements in AWS QC1, "Standard for AWS Certification of Welding Inspectors." The QC Inspector may be assisted by an Assistant QC Inspector provided that this individual is currently certified as an AWS Certified Associate Welding Inspector (CAWI) in conformance with the requirements in AWS QC1, "Standard for AWS Certification of Welding Inspectors." The Assistant QC Inspector may perform inspection under the direct supervision of the QC Inspector provided the Assistant is always within visible and audible range of the QC Inspector. The QC Inspector shall be responsible for signing all reports and for determining if welded materials conform to workmanship and acceptance criteria. The ratio of QC Assistants to QC Inspectors shall not exceed 5 to 1. When the term "Inspector" is used without further qualification, it shall refer to the QC Inspector. Section 6.14.6, "Personnel Qualification," of AWS D1.1, Section 7.8, "Personnel Qualification," of AWS D1.4, and Section 6.1.3.4, "Personnel Qualification," of AWS D1.5 are replaced with the following: Personnel performing nondestructive testing (NDT) shall be qualified and certified in conformance with the requirements of the American Society for Nondestructive Testing (ASNT) Recommended Practice No. SNT-TC-1A and the Written Practice of the NDT firm. The Written Practice of the NDT firm shall meet or exceed the guidelines of the ASNT Recommended Practice No. SNT-TC-1A. Individuals who perform NDT, review the results, and prepare the written reports shall be either: - A. Certified NDT Level II technicians, or; - B. Level III technicians who hold a current ASNT Level III certificate in that discipline and are authorized and certified to perform the work of Level II technicians. Section 6.5.4 of AWS D1.5 is replaced with the following: The QC Inspector shall inspect and approve each joint preparation, assembly practice, welding technique, joint fit-up, and the performance of each welder, welding operator, and tack welder to make certain that the applicable requirements of this code and the approved Welding Procedure Specification (WPS) are met. The QC Inspector shall examine the work to make certain that it meets the requirements of Sections 3 and 6.26. The size and contour of all welds shall be measured using suitable gages. Visual inspection for cracks in welds and base metal, and for other discontinuities should be aided by strong light magnifiers, or such other devices as may be helpful. Acceptance criteria different from those specified in this code may be used when approved by the Engineer. Section 6.6.5, "Nonspecified NDT Other than Visual," of AWS D1.1, Section 6.6.5 of AWS D1.4 and Section 6.6.5 of AWS D1.5 shall not apply. For any welding, the Engineer may direct the Contractor to perform NDT that is in addition to the visual inspection or NDT specified in the AWS or other specified welding codes, in the Standard Specifications, or in these special provisions. Additional NDT required by the Engineer will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. Should any welding deficiencies be discovered by this additional NDT, all costs associated with the repair of the deficient area, including NDT of the weld and of the weld repair, and any delays caused by the repair, shall be at the Contractor's expense. Repair work to correct welding deficiencies discovered by visual inspection or NDT, or by additional NDT directed or performed by the Engineer, and any associated delays or expenses caused to the Contractor by performing these repairs, shall be at the Contractor's expense. The Engineer shall have the authority to verify the qualifications or certifications of any welder, QC Inspector, or NDT personnel to specified levels by retests or other means approved by the Engineer. Continuous inspection shall be provided when any welding is being performed. Continuous inspection, as a minimum, shall include having a QC Inspector within such close proximity of all welders or welding operators so that inspections by the QC Inspector of each welding operation at each welding location shall not lapse for a period exceeding 30 minutes. Inspection and approval of all joint preparations, assembly practices, joint fit-ups, welding techniques, and the performance of each welder, welding operator, and tack welder shall be documented by the QC Inspector on a daily basis for each day welding is performed. For each inspection, including fit-up, Welding Procedure Specification (WPS) verification, and final weld inspection, the QC Inspector shall confirm and document compliance with the requirements of the AWS or other specified code criteria and the requirements of these special provisions on all welded joints before welding, during welding, and after the completion of each weld. When joint weld details that are not prequalified to the details of Section 3 of AWS D1.1 or to the details of Figure 2.4 or 2.5 of AWS D1.5 are proposed for use in the work, the joint details, their intended locations, and the proposed welding parameters and essential variables, will be approved by the Engineer. The Engineer shall have 2 weeks to complete the review of the proposed joint detail locations. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Upon approval of the proposed joint detail locations and qualification of the proposed joint details, welders and welding operators using these details shall perform a qualification test plate using the WPS variables and the joint detail to be used in production. The test plate shall have the maximum thickness to be used in production and a minimum length of 180 mm and minimum finish welded width 460 mm. The test plate shall be mechanically and radiographically tested. Mechanical and radiographic testing and acceptance criteria shall be as specified in the applicable AWS codes. In addition to the requirements specified in the applicable code, the period of effectiveness for a welder's or welding operator's qualification shall be a maximum of 3 years for the same weld process, welding position, and weld type. If production welding will be performed without gas shielding, then qualification shall also be without gas shielding. Excluding welding of fracture critical members, a valid qualification at the beginning of work on a contract will be acceptable for the entire period of the contract, as long as the welder's or welding operator's work remains satisfactory. The Engineer will witness all qualification tests for WPSs that were not previously approved by the Department. An approved independent third party will witness the qualification tests for welders or welding operators. The independent third party shall be a current CWI and shall not be employed by the contractor performing the welding. The Engineer shall have 2 weeks to review the qualifications and copy of the current certification of the independent third party. In the event the
Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. The Contractor shall notify the Engineer one week prior to performing any qualification tests. Witnessing of qualification tests by the Engineer shall not constitute approval of the intended joint locations, welding parameters, or essential variables. In addition to the requirements of AWS D1.5 Section 5.12 or 5.13, welding procedures qualification, for work welded in conformance with that code, shall conform to the following requirements: - A. Unless considered prequalified, fillet welds, including reinforcing fillet welds, shall be qualified in each position. The fillet weld soundness test shall be conducted using the essential variables of the WPS as established by the Procedure Qualification Record (PQR.) - B. For qualification of joints that do not conform to Figures 2.4 and 2.5 of AWS D1.5, two WPS qualification tests are required. The tests conforming to AWS D1.5 Section 5.13 shall be conducted using both Figure 5.1 and Figure 5.3. The test conforming to Figure 5.3 shall be conducted using the same welding electrical parameters that were established for the test conducted conforming to Figure 5.1. - C. The travel speed, current, and voltage values that are used for tests conducted per AWS D1.5 Section 5.12 or 5.13 shall be consistent for each weld joint, and shall in no case vary by more than 10 percent for travel speed, 10 percent for current, and 7 percent for voltage. - D. For a WPS qualified in conformance with AWS D1.5 Section 5.13, the values to be used for calculating ranges for current and voltage shall be based on the average of all weld passes made in the test. Heat input shall be calculated using the average of current and voltage of all weld passes made in the test for a WPS qualified in conformance with Section 5.12 or 5.13. - E. To qualify for unlimited material thickness, two qualification tests are required for WPSs utilized for welding material thicknesses greater than 38 mm. One test shall be conducted using 20-mm thick test plates, and one test shall be conducted using test plates with a thickness between 38 mm and 50 mm. Two maximum heat input tests may be conducted for unlimited thickness qualification. - F. Macroetch tests are required for WPS qualification tests, and acceptance shall be per AWS D1.5 Section 5.19.3. - G. When a weld joint is to be made using a combination of qualified WPSs, each process shall be qualified separately. - H. When a weld joint is to be made using a combination of qualified and prequalified processes, the WPS shall reflect both processes and the limitations of essential variables, including weld bead placement, for both processes. - I. Prior to preparing mechanical test specimens, the PQR welds shall be inspected by visual and radiographic tests. Backing bar shall be 75 mm in width and shall remain in place during NDT testing. Results of the visual and radiographic tests shall comply with AWS D1.5 Section 6.26.2, excluding Section 6.26.2.2. Test plates that do not comply with both tests shall not be used. ## WELDING QUALITY CONTROL Welding quality control shall conform to the requirements in the AWS or other specified welding codes, the Standard Specifications, and these special provisions. Unless otherwise specified, welding quality control shall apply when any work is welded in conformance with the provisions in Section 49, "Piling," Section 52, "Reinforcement," Section 55, "Steel Structures," or Section 75-1.035, "Bridge Joint Restrainer Units," of the Standard Specifications. The welding of fracture critical members (FCMs) shall conform to the provisions specified in the Fracture Control Plan (FCP) and herein. The Contractor shall designate in writing a welding Quality Control Manager (QCM). The QCM shall be responsible directly to the Contractor for the quality of welding, including materials and workmanship, performed by the Contractor and subcontractors. The QCM shall be the sole individual responsible to the Contractor for submitting, receiving, reviewing, and approving all correspondence, required submittals, and reports to and from the Engineer. The QCM shall be a registered professional engineer or shall be currently certified as a CWI or a CAWI. The QCM shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project. The QCM may be an employee of the Contractor. Welding inspection personnel or NDT firms to be used in the work shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project, except for the following conditions: - A. The work is welded in conformance with AWS D1.5 and is performed at a permanent fabrication or manufacturing facility which is certified under the AISC Quality Certification Program, Category Cbr, Major Steel Bridges and Fracture Critical endorsement F. - B. The welding is performed on pipe pile material at a permanent pipe manufacturing facility authorized to apply the American Petroleum Institute (API) monogram for API 5L pipe. For welding performed at such facilities, the inspection personnel or NDT firms may be employed or compensated by the facility performing the welding. Prior to submitting the Welding Quality Control Plan (WQCP) required herein, a pre-welding meeting between the Engineer, the Contractor's QCM, and a representative from each entity performing welding or inspection for this project, shall be held to discuss the requirements for the WQCP. The Contractor shall submit to the Engineer, in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, 2 copies of a separate WQCP for each subcontractor or supplier for each item of work for which welding is to be performed. The Contractor shall allow the Engineer 2 weeks to review the WQCP submittal after a complete plan has been received. No welding shall be performed until the WQCP is approved in writing by the Engineer. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. An amended WQCP or any addendum to the approved WQCP shall be submitted to, and approved in writing by the Engineer, for proposed revisions to the approved WQCP. An amended WQCP or addendum will be required for revisions to the WQCP, including but not limited to a revised WPS; additional welders; changes in NDT firms, QC, or NDT personnel or procedures; or updated systems for tracking and identifying welds. The Engineer shall have 1 week to complete the review of the amended WQCP or addendum. Work affected by the proposed revisions shall not be performed until the amended WQCP or addendum has been approved. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Information regarding the contents, format, and organization of a WQCP, is available at the Transportation Laboratory or the following website: http://www.dot.ca.gov/hq/esc/Translab/smbresources.htm After final approval of the WQCP, amended WQCP, or addendum, the Contractor shall submit 7 copies to the Engineer of the approved documents. A copy of the Engineer approved document shall be available at each location where welding is to be performed A daily production log for welding shall be kept for each day that welding is performed. The log shall clearly indicate the locations of all welding. The log shall include the welders' names, amount of welding performed, any problems or deficiencies discovered, and any testing or repair work performed, at each location. The daily report from each QC Inspector shall also be included in the log. The following items shall be included in a Welding Report that is to be submitted to the Engineer within 10 days following the performance of any welding: - A. Reports of all visual weld inspections and NDT. - B. Radiographs and radiographic reports, and other required NDT reports. - C. Documentation that the Contractor has evaluated all radiographs and other nondestructive tests and corrected all rejectable deficiencies, and all repaired welds have been reexamined by the required NDT and found acceptable. - D. Daily production log. The following information shall be clearly written on the outside of radiographic envelopes: name of the QCM, name of the nondestructive testing firm, name of the radiographer, date, contract number, complete part description, and all included weld numbers or a report number, as detailed in the WQCP. In addition, all innerleaves shall have clearly written on them the part description and all included weld numbers, as detailed in the WQCP. Reports regarding NDT shall be signed by both the NDT technician and the person that performed the review, and then submitted directly to the QCM for review and signature
prior to submittal to the Engineer. Corresponding names shall be clearly printed or typewritten next to all signatures. The Engineer will review the Welding Report to determine if the Contractor is in conformance with the WQCP. Unless otherwise specified, the Engineer shall be allowed 10 days to review the report and respond in writing after a complete Welding Report has been received. Prior to receiving notification from the Engineer of the Contractor's conformance with the WQCP, the Contractor may encase in concrete or cover welds for which a Welding Report has been submitted. However, should the Contractor elect to encase or cover those welds prior to receiving notification from the Engineer, it is expressly understood that the Contractor shall not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection. Should the Contractor elect to wait to encase or cover welds pending notification by the Engineer, and in the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. The QC Inspector shall provide reports to the QCM on a daily basis for each day that welding is performed. Except for noncritical weld repairs, the Engineer shall be notified immediately in writing when welding problems, deficiencies, base metal repairs, or any other type of repairs not submitted in the WQCP are discovered, and also of the proposed repair procedures to correct them. The Contractor shall allow the Engineer one week to review these procedures. No remedial work shall begin until the repair procedures are approved in writing by the Engineer. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. The QCM shall sign and furnish to the Engineer, a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for each item of work for which welding was performed. The certificate shall state that all of the materials and workmanship incorporated in the work, and all required tests and inspections of this work, have been performed in conformance with the details shown on the plans, the Standard Specifications, and these special provisions. ## WELDING FOR OVERHEAD SIGN AND POLE STRUCTURES The Contractor shall meet the following requirements for any work welded in conformance with the provisions in Section 56-1, "Overhead Sign Structures," or Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications. Welding inspection personnel or NDT firms to be used in the work shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project, except for when the welding is performed at a permanent fabrication or manufacturing facility which is certified under the AISC Quality Certification Program, Category Sbd, Conventional Steel Building Structures. # **Welding Qualification Audit** Contractors or subcontractors performing welding operations for overhead sign and pole structures shall not deliver materials to the project without having successfully completed the Department's "Manufacturing Qualification Audit for Overhead Sign and Pole Structures," hereinafter referred to as the audit, not more than one year prior to the delivery of the materials. The Engineer will perform the audit. Copies of the audit form, and procedures for requesting and completing the audit, are available at the Transportation Laboratory or the following website: http://www.dot.ca.gov/hq/esc/Translab/smbresources.htm An audit that was approved by the Engineer no more than one year prior to the beginning of work on this contract will be acceptable for the entire period of this contract, provided the Engineer determines the audit was for the same type of work that is to be performed on this contract. Successful completion of an audit shall not relieve the Contractor of the responsibility for furnishing materials or producing finished work of the quality specified in these special provisions and as shown on the plans. # **Welding Report** For work welded in conformance with the provisions in Section 56-1, "Overhead Sign Structures," or Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications, a Welding Report shall be submitted in conformance with the provisions in "Welding Quality Control," of these special provisions. #### **PAYMENT** Full compensation for conforming to the requirements of "Welding" shall be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be allowed therefor. #### SECTION 9. DESCRIPTION OF BRIDGE WORK The bridge and wall work to be done consists, in general, of the following structures: ## **EXPOSITION OVERHEAD** Bridge Number 53-0704 An eight span bridge approximately 169 meters in length, modify by reconstructing the median barrier and adding median approach slabs. ## **RETAINING WALL NO. 115** A 21 span reinforced concrete T-beam and reinforced concrete slab structure, approximately 106 meters in length. ## OLYMPIC BOULEVARD UNDERCROSSING Bridge Number 53-0706 A single span precast girder rigid frame widening approximately 36 meters in length. ## **ROUTE 405/2 SEPARATION** Bridge Number 53-0708 A single span precast girder rigid frame widening approximately 34 meters in length. ## OHIO AVENUE UNDERCROSSING Bridge Number 53-1097 A single span precast girder widening approximately 21 meters in length. ## WILSHIRE BOULEVARD UNDERCROSSING Bridge Number 53-0710 A two span precast girder widening approximately 41 meters in length. ## CONSTITUTION AVENUE UNDERCROSSING Bridge Number 53-0711 A single span precast voided slab widening approximately 13 meters in length. RETAINING WALLS NO. 99, 485, 495, 497, 501 & 515 SOUND WALLS NO. 491, 499 & 517 # SECTION 10. CONSTRUCTION DETAILS # **SECTION 10-1. GENERAL** ## 10-1.01 CONSTRUCTION PROJECT INFORMATION SIGNS Before any major physical construction work readily visible to highway users is started on this contract, the Contractor shall furnish and erect 2 Type 2 Construction Project Information signs at the locations designated by the Engineer. The signs and overlays shall be of a type and material consistent with the estimated time of completion of the project and shall conform to the details shown on the plans. The sign letters, border and the Department's construction logos shall conform to the colors (non-reflective) and details shown on the plans, and shall be on a white background (non-reflective). The colors blue and orange shall conform to PR Color Number 3 and Number 6, respectively, as specified in the Federal Highway Administration's Color Tolerance Chart. The sign message to be used for fund types shall consist of the following, in the order shown: # FEDERAL HIGHWAY TRUST FUNDS STATE HIGHWAY FUNDS The sign message to be used for type of work shall consist of the following: ## HIGHWAY CONSTRUCTION The sign message to be used for the Year of Completion of Project Construction will be furnished by the Engineer. The Contractor shall furnish and install the "Year" sign overlay within 10 working days of notification of the year date to be used. The letter sizes to be used shall be as shown on the plans. The information shown on the signs shall be limited to that shown on the plans. The signs shall be kept clean and in good repair by the Contractor. Upon completion of the work, the signs shall be removed and disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13 of the Standard Specifications. Full compensation for furnishing, erecting, maintaining, and removing and disposing of the construction project information signs shall be considered as included in the contract lump sum price paid for construction area signs and no additional compensation will be allowed therefor. ## 10-1.02 ORDER OF WORK Order of work shall conform to the provisions in Section 5-1.05, "Order of Work," of the Standard Specifications and these special provisions. Attention is directed to "Concrete Pavement" of these special provisions in regard to providing Prepaving Conference and test strips prior to commencing concrete paving operations. Test borings (if alternative micropiles are proposed) shall be performed as the first order of work. Temporary railing (Type K) and temporary crash cushions shall be secured in place prior to commencing work for which the temporary railing and crash cushions are required. Attention is directed to "Water Pollution Control" of these special provisions regarding the submittal and approval of the Storm Water Pollution Prevention Plan prior to performing work having potential to cause water pollution. The first order of work shall be to place the order for the traffic signal equipment. The Engineer shall be furnished a statement from the vendor that the order for the traffic signal equipment has been received and accepted by the vendor. The uppermost layer of new pavement shall not be placed until all underlying conduits and loop
detectors have been installed. The Contractor shall submit to the Engineer a plan to meet the requirements of Ramp Metering System (RMS), Traffic Monitoring Station (TMS) and Changeable Message Sign (CMS) restrictions confirming to the requirements in "Maintaining Existing Electrical System," of these special provisions no less than 30 days prior to commencing work. The Engineer will have 10 days to review the plans. If the Engineer fails to complete the review within 10 days, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the plan, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Attention is directed to "Maintaining Traffic" and "Temporary Pavement Delineation" of these special provisions and to the stage construction sheets of the plans. Work on Sunset Boulevard shall be completed prior to the closure of the Waterford Street on-ramp. Attention is directed to "Progress Schedule (Critical Path Method)" of these special provisions regarding the submittal of a general time-scaled logic diagram within 10 days after approval of the contract. The diagram shall be submitted prior to performing any work that may be affected by any proposed deviations to the construction staging of the project. The work shall be performed in conformance with the stages of construction shown on the plans. Nonconflicting work in subsequent stages may proceed concurrently with work in preceding stages, provided satisfactory progress is maintained in the preceding stages of construction. In each stage, after completion of the preceding stage, the first order of work shall be the removal of existing pavement delineation as directed by the Engineer. Pavement delineation removal shall be coordinated with new delineation so that lane lines are provided at all times on traveled ways open to public traffic. Before obliterating any pavement delineation (traffic stripes, pavement markings, and pavement markers) that is to be replaced on the same alignment and location, as determined by the Engineer, the pavement delineation shall be referenced by the Contractor, with a sufficient number of control points to reestablish the alignment and location of the new pavement delineation. The references shall include the limits or changes in striping pattern, including one- and 2-way barrier lines, limit lines, crosswalks and other pavement markings. Full compensation for referencing existing pavement delineation shall be considered as included in the contract prices paid for new pavement delineation and no additional compensation will be allowed therefor. At those locations exposed to public traffic where guard railings or barriers are to be constructed, reconstructed, or removed and replaced, the Contractor shall schedule operations so that at the end of each working day there shall be no post holes open nor shall there be any railing or barrier posts installed without the blocks and rail elements assembled and mounted thereon. Not less than 20 days prior to planting the plants, the Contractor shall furnish the Engineer a statement from the vendor that the order for the plants required for this contract, including inspection plants, has been received and accepted by the vendor. The statement from the vendor shall include the names, sizes, and quantities of plants ordered and the anticipated date of delivery. The Contractor shall place orders for replacement plants with the vendor at the appropriate time so that the roots of the replacement plants are not in a root-bound condition. Not less than 60 days prior to applying seeds, the Contractor shall furnish the Engineer a statement from the vendor that the order for the seed required for this contract has been received and accepted by the vendor. The statement from the vendor shall include the names and quantity of seed ordered and the anticipated date of delivery. Attention is directed to "Irrigation Systems Functional Test" of these special provisions, regarding restrictions for planting operations. Attention is directed to "Locate Existing Crossovers and Conduits" of these special provisions regarding locating existing irrigation water line crossovers and conduits shown on the plans to be incorporated in the new work. Existing irrigation water line crossovers and conduits shall be located prior to performing work on the irrigation system. Clearing, grubbing, and earthwork operations shall not be performed in areas where existing irrigation facilities are to remain in place until existing irrigation facilities have been checked for proper operation in conformance with the provisions in "Existing Highway Irrigation Facilities" of these special provisions. Existing conduits to be extended shall be located in conformance with the provisions in "Extend Irrigation Crossovers" of these special provisions prior to the start of other work in these areas. Attention is directed to Section 20-5.027B, "Wiring Plans and Diagrams," of the Standard Specifications regarding submittal of working drawings. Attention is directed to "Irrigation Controller Enclosure Cabinet" of these special provisions regarding preinstalling irrigation components in the irrigation controller enclosure cabinet prior to field installation. #### 10-1.03 WATER POLLUTION CONTROL Water pollution control work shall conform to the provisions in Section 7-1.01G, "Water Pollution," of the Standard Specifications and these special provisions. This project lies within the boundaries of the Los Angeles (Region 4) Regional Water Quality Control Board (RWQCB). The State Water Resources Control Board (SWRCB) has issued a permit to the Department which governs storm water and non-storm water discharges from its properties, facilities and activities. The Department's Permit is entitled: "Order No. 99-06-DWQ, NPDES No. CAS000003, National Pollutant Discharge Elimination System (NPDES) Permit, Storm Water Permit and Waste Discharge Requirements (WDRs) for the State of California, Department of Transportation Properties, Facilities, and Activities." Copies of the Department's Permit are available for review from the SWRCB, Storm Water Permit Unit, 1001 "I" Street, P.O. Box 1977, Sacramento, California 95812-1977, Telephone: (916) 341-5254, and may also be obtained from the SWRCB Internet website at: http://www.swrcb.ca.gov/stormwtr/caltrans.html. The Department's Permit references and incorporates by reference the current Statewide General Permit issued by the SWRCB entitled "Order No. 99-08-DWQ, National Pollutant Discharge Elimination System (NPDES) General Permit No. CAS000002, Waste Discharge Requirements (WDRs) for Discharges of Storm Water Associated with Construction Activity," which regulates discharges of storm water and non-storm water from construction activities disturbing 0.4-hectare or more of soil in a common plan of development. Sampling and analysis requirements as specified in SWRCB Resolution No. 2001-46 are added to the Statewide General Permit. Copies of the Statewide General Permit and modifications thereto are available for review from the SWRCB, Storm Water Permit Unit, 1001 "I" Street, P.O. Box 1977, Sacramento, California 95812-1977, Telephone: (916) 341-5254 and may also be obtained from the SWRCB Internet website at: http://www.swrcb.ca.gov/stormwtr/construction.html. The NPDES permit that regulate this project, as referenced above, are hereafter collectively referred to as the "Permits." This project shall conform to the Permits and modifications thereto. The Contractor shall maintain copies of the Permits at the project site and shall make the Permits available during construction. The Permits require the preparation of a Storm Water Pollution Prevention Plan (SWPPP). The SWPPP shall be prepared in conformance with the requirements of the Permits, the Department's "Storm Water Pollution Prevention Plan (SWPPP) and Water Pollution Control Program (WPCP) Preparation Manual," and the Department's "Construction Site Best Management Practices (BMPs) Manual," including addenda to those permits and manuals issued up to and including the date of advertisement of the project. These manuals are hereinafter referred to, respectively, as the "Preparation Manual" and the "Construction Site BMPs Manual," and collectively, as the "Manuals." Copies of the Manuals may be obtained from the Department of Transportation, Material Operations Branch, Publication Distribution Unit, 1900 Royal Oaks Drive, Sacramento, California 95815, Telephone: (916) 445-3520, and may also be obtained from the Department's Internet website at: http://www.dot.ca.gov/hq/construc/stormwater/stormwater1.htm. The Contractor shall know and fully comply with applicable provisions of the Permits and all modifications thereto, the Manuals, and Federal, State, and local regulations and requirements that govern the Contractor's operations and storm water and non-storm water discharges from both the project site and areas of disturbance outside the project limits during construction. Attention is directed to Sections 7-1.01, "Laws to be Observed," and 7-1.12, "Indemnification and Insurance," of the Standard Specifications. The Permits shall apply to storm water and certain permitted non-storm water discharges from areas outside the project site which are directly related to construction activities for this contract including, but not limited to, asphalt batch plants, material borrow areas, concrete plants, staging areas, storage yards and access roads. The Contractor shall comply with the Permits and the Manuals for those areas and shall implement, inspect and maintain the required water pollution control practices. The Engineer shall be allowed full access to these areas during construction to assure Contractor's proper implementation of water pollution control practices.
Installing, inspecting and maintaining water pollution control practices on areas outside the highway right of way not specifically arranged and provided for by the Department for the execution of this contract, will not be paid for. The Contractor shall be responsible for penalties assessed or levied on the Contractor or the Department as a result of the Contractor's failure to comply with the provisions in this section "Water Pollution Control" including, but not limited to, compliance with the applicable provisions of the Permits, the Manuals, and Federal, State and local regulations and requirements as set forth therein. Penalties as used in this section, "Water Pollution Control," shall include fines, penalties and damages, whether proposed, assessed, or levied against the Department or the Contractor, including those levied under the Federal Clean Water Act and the State Porter-Cologne Water Quality Control Act, by governmental agencies or as a result of citizen suits. Penalties shall also include payments made or costs incurred in settlement for alleged violations of the Permits, the Manuals, or applicable laws, regulations, or requirements. Costs incurred could include sums spent instead of penalties, in mitigation or to remediate or correct violations. #### RETENTION OF FUNDS Notwithstanding any other remedies authorized by law, the Department may retain money due the Contractor under the contract, in an amount determined by the Department, up to and including the entire amount of Penalties proposed, assessed, or levied as a result of the Contractor's violation of the Permits, the Manuals, or Federal or State law, regulations or requirements. Funds may be retained by the Department until final disposition has been made as to the Penalties. The Contractor shall remain liable for the full amount of Penalties until such time as they are finally resolved with the entity seeking the Penalties. Retention of funds for failure to conform to the provisions in this section, "Water Pollution Control," shall be in addition to the other retention amounts required by the contract. The amounts retained for the Contractor's failure to conform to provisions in this section will be released for payment on the next monthly estimate for partial payment following the date when an approved SWPPP has been implemented and maintained, and when water pollution has been adequately controlled, as determined by the Engineer. When a regulatory agency identifies a failure to comply with the Permits and modifications thereto, the Manuals, or other Federal, State or local requirements, the Department may retain money due the Contractor, subject to the following: - A. The Department will give the Contractor 30 days notice of the Department's intention to retain funds from partial payments which may become due to the Contractor prior to acceptance of the contract. Retention of funds from payments made after acceptance of the contract may be made without prior notice to the Contractor. - B. No retention of additional amounts out of partial payments will be made if the amount to be retained does not exceed the amount being withheld from partial payments pursuant to Section 9-1.06, "Partial Payments," of the Standard Specifications. - C. If the Department has retained funds, and it is subsequently determined that the State is not subject to the entire amount of the Costs and Liabilities assessed or proposed in connection with the matter for which the retention was made, the Department shall be liable for interest on the amount retained for the period of the retention. The interest rate payable shall be 6 percent per annum. During the first estimate period that the Contractor fails to conform to the provisions in this section, "Water Pollution Control," the Department may retain an amount equal to 25 percent of the estimated value of the contract work performed. The Contractor shall notify the Engineer immediately upon request from the regulatory agencies to enter, inspect, sample, monitor, or otherwise access the project site or the Contractor's records pertaining to water pollution control work. The Contractor and the Department shall provide copies of correspondence, notices of violation, enforcement actions or proposed fines by regulatory agencies to the requesting regulatory agency. ## STORM WATER POLLUTION PREVENTION PLAN PREPARATION, APPROVAL AND AMENDMENTS As part of the water pollution control work, a Storm Water Pollution Prevention Plan (SWPPP) is required for this contract. The SWPPP shall conform to the provisions in Section 7-1.01G, "Water Pollution," of the Standard Specifications, the requirements in the Manuals, the requirements of the Permits, and these special provisions. Upon the Engineer's approval of the SWPPP, the SWPPP shall be considered to fulfill the provisions in Section 7-1.01G, "Water Pollution," of the Standard Specifications for development and submittal of a Water Pollution Control Program. No work having potential to cause water pollution, shall be performed until the SWPPP has been approved by the Engineer. Approval shall not constitute a finding that the SWPPP complies with applicable requirements of the Permits, the Manuals and applicable Federal, State and local laws, regulations, and requirements. The Contractor shall designate a Water Pollution Control Manager. The Water Pollution Control Manager shall be responsible for the preparation of the SWPPP and required modifications or amendments, and shall be responsible for the implementation and adequate functioning of the various water pollution control practices employed. The Contractor may designate different Water Pollution Control Managers to prepare the SWPPP and to implement the water pollution control practices. The Water Pollution Control Managers shall serve as the primary contact for issues related to the SWPPP or its implementation. The Contractor shall submit to the Engineer a statement of qualifications, describing the training, previous work history and expertise of the individual selected by the Contractor to serve as Water Pollution Control Manager. The Water Pollution Control Manager shall have a minimum of 24 hours of formal storm water management training or certification as a Certified Professional in Erosion and Sediment Control (CPESC). The Engineer will reject the Contractor's submission of a Water Pollution Control Manager if the submitted qualifications are deemed to be inadequate. The SWPPP shall apply to the areas within and those outside of the highway right of way that are directly related to construction operations including, but not limited to, asphalt batch plants, material borrow areas, concrete plants, staging areas, storage yards, and access roads. The SWPPP shall incorporate water pollution control practices in the following categories: - A. Soil stabilization. - B. Sediment control. - C. Wind erosion control. - D. Tracking control. - E. Non-storm water management. - F. Waste management and materials pollution control. The SWPPP shall include, but not be limited to, the items described in the Manuals, Permits and related information contained in the contract documents. The Contractor shall develop and include in the SWPPP the Sampling and Analysis Plan(s) as required by the Permits, and modifications thereto, and as required in "Sampling and Analytical Requirements" of this section. The Contractor shall develop a Water Pollution Control Schedule that describes the timing of grading or other work activities that could affect water pollution. The Water Pollution Control Schedule shall be updated by the Contractor to reflect changes in the Contractor's operations that would affect the necessary implementation of water pollution control practices. The Contractor shall complete the "Construction Site BMPs Consideration Checklist" presented in the Preparation Manual and shall incorporate water pollution control practices into the SWPPP. Water pollution control practices include the "Minimum Requirements" and other Contractor-selected water pollution control practices from the "Construction Site BMPs Consideration Checklist" and the "Project-Specific Minimum Requirements" identified in the Water Pollution Control Cost Break-Down of this section. Within 20 working days after the approval of the contract, the Contractor shall submit 3 copies of the draft SWPPP to the Engineer. The Engineer will have 10 working days to review the SWPPP. If revisions are required, as determined by the Engineer, the Contractor shall revise and resubmit the SWPPP within 10working days of receipt of the Engineer's comments. The Engineer will have 5 working days to review the revisions. Upon the Engineer's approval of the SWPPP, 4 approved copies of the SWPPP, incorporating the required changes, shall be submitted to the Engineer. In order to allow construction activities to proceed, the Engineer may conditionally approve the SWPPP while minor revisions are being completed. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for resulting losses, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. The Contractor shall prepare an amendment to the SWPPP when there is a change in construction activities or operations which may affect the discharge of pollutants to surface waters, ground waters, municipal storm drain systems, or when the Contractor's activities or operations violate a condition of the Permits, or when directed by the Engineer. Amendments shall identify additional water pollution control practices or revised operations, including those areas or operations not identified in the initially approved SWPPP. Amendments to the SWPPP
shall be prepared and submitted for review and approval within a time approved by the Engineer, but in no case longer than the time specified for the initial submittal and review of the SWPPP. At a minimum, the SWPPP shall be amended annually and submitted to the Engineer 25 days prior to the defined rainy season. The Contractor shall keep one copy of the approved SWPPP and approved amendments at the project site. The SWPPP shall be made available upon request by a representative of the Regional Water Quality Control Board, State Water Resources Control Board, United States Environmental Protection Agency, or the local storm water management agency. Requests by the public shall be directed to the Engineer. ## COST BREAK-DOWN The Contractor shall include a Water Pollution Control Cost Break-Down in the SWPPP which itemizes the contract lump sum for water pollution control work. The Contractor shall use the Water Pollution Control Cost Break-Down provided in this section as the basis for the cost break-down submitted with the SWPPP. The Contractor shall use the Water Pollution Control Cost Break-Down to identify items, quantities and values for water pollution control work, excluding Temporary Water Pollution Control Practices for which there are separate bid items. The Contractor shall be responsible for the accuracy of the quantities and values used in the cost break-down submitted with the SWPPP. Partial payment for the item of water pollution control will not be made until the Water Pollution Control Cost Break-Down is approved by the Engineer. Attention is directed to "Time-Related Overhead" of these special provisions regarding compensation for time-related overhead. Line items indicated in the Water Pollution Control Cost Break-Down in this section with a specified Estimated Quantity shall be considered "Project-Specific Minimum Requirements." The Contractor shall incorporate Project-Specific Minimum Requirements with Contractor-designated quantities and values into the Water Pollution Control Cost Break-Down submitted with the SWPPP. Line items indicated in the Water Pollution Control Cost Break-Down in this section without a specified Estimated Quantity shall be considered by the Contractor for selection to meet the applicable "Minimum Requirements" as defined in the Manuals, or for other water pollution control work as identified in the "Construction Site BMPs Consideration Checklist" presented in the Preparation Manual. In the Water Pollution Control Cost Break-Down submitted with the SWPPP, the Contractor shall list only those water pollution control practices selected for the project, including quantities and values required to complete the work for those items. The sum of the amounts for the items of work listed in the Water Pollution Control Cost Break-Down shall be equal to the contract lump sum price bid for water pollution control. Overhead and profit, except for time-related overhead, shall be included in the individual items listed in the cost break-down. #### WATER POLLUTION CONTROL COST BREAK-DOWN #### Contract No. 07-195904 | ITEM | ITEM DESCRIPTION | UNIT | ESTIMATED
QUANTITY | VALUE | AMOUNT | |-------|--|------|-----------------------|-------|--------| | SS-3 | Hydraulic Mulch | M2 | | | | | SS-4 | Hydroseeding | M2 | | | | | SS-5 | Soil Binders | M2 | | | | | SS-6 | Straw Mulch | M2 | | | | | SS-7 | Geotextiles, Plastic Covers & Erosion
Control Blankets/Mats | M2 | | | | | SS-8 | Wood Mulching | M2 | | | | | SS-9 | Earth Dikes/Drainage Swales & Lined Ditches | M | | | | | SS-10 | Outlet Protection/Velocity Dissipation
Devices | EA | | | | | SS-11 | Slope Drains | EA | | | | | SS-12 | Streambank Stabilization | LS | | | | | SC-1 | Silt Fence | M | | | | | SC-2 | Sediment/Desilting Basin | EA | | | | | SC-3 | Sediment Trap | EA | | | | | SC-4 | Check Dam | EA | | | | | SC-5 | Fiber Rolls | M | | | | | ITEM | ITEM DESCRIPTION | UNIT | ESTIMATED
QUANTITY | VALUE | AMOUNT | |-------|---|------|-----------------------|-------|--------| | SC-6 | Gravel Bag Berm | M | | | | | SC-7 | Street Sweeping and Vacuuming | LS | | | | | SC-8 | Sandbag Barrier | M | | | | | SC-9 | Straw Bale Barrier | M | | | | | SC-10 | Storm Drain Inlet Protection | EA | | | | | WE-1 | Wind Erosion Control | LS | | | | | TC-1 | Stabilized Construction Entrance/Exit | EA | | | | | TC-2 | Stabilized Construction Roadway | EA | | | | | TC-3 | Entrance/Outlet Tire Wash | EA | | | | | NS-1 | Water Conservation Practices | LS | | | | | NS-2 | Dewatering Operations | EA | | | | | NS-3 | Paving and Grinding Operations | LS | | | | | NS-4 | Temporary Stream Crossing | EA | | | | | NS-5 | Clear Water Diversion | EA | | | | | NS-6 | Illicit Connection/Illegal Discharge
Detection and Reporting | LS | | | | | NS-7 | Potable Water/Irrigation | LS | | | | | NS-8 | Vehicle and Equipment Cleaning | LS | | | | | NS-9 | Vehicle and Equipment Fueling | LS | | | | | NS-10 | Vehicle and Equipment Maintenance | LS | | | | | NS-11 | Pile Driving Operations | LS | | | | | NS-12 | Concrete Curing | LS | | | | | NS-13 | Material and Equipment Use over Water | LS | | | | | NS-14 | Concrete Finishing | LS | | | | | NS-15 | Structure Demolition/Removal Over or
Adjacent to Water | LS | | | | | WM-1 | Material Delivery and Storage | LS | | | | | WM-2 | Material Use | LS | | | | | WM-3 | Stockpile Management | LS | | | | | WM-4 | Spill Prevention and Control | LS | | | | | WM-5 | Solid Waste Management | LS | | | | | WM-6 | Hazardous Waste Management | LS | | | | | WM-7 | Contaminated Soil Management | LS | | | | | ITEM | ITEM DESCRIPTION | UNIT | ESTIMATED
QUANTITY | VALUE | AMOUNT | |-------|----------------------------------|------|-----------------------|-------|--------| | WM-8 | Concrete Waste Management | LS | | | | | WM-9 | Sanitary/Septic Waste Management | LS | | | | | WM-10 | Liquid Waste Management | LS | | | | | TOTAL | |-------| |-------| Adjustments in the items of work and quantities listed in the approved cost break-down shall be made when required to address amendments to the SWPPP, except when the adjusted items are paid for as extra work. No adjustment in compensation will be made to the contract lump sum price paid for water pollution control due to differences between the quantities shown in the approved cost break-down and the quantities required to complete the work as shown on the approved SWPPP. No adjustment in compensation will be made for ordered changes to correct SWPPP work resulting from the Contractor's own operations or from the Contractor's negligence. The approved cost break-down will be used to determine partial payments during the progress of the work and as the basis for calculating the adjustment in compensation for the item of water pollution control due to increases or decreases of quantities ordered by the Engineer. When an ordered change increases or decreases the quantities of an approved cost break-down item, the adjustment in compensation will be determined in the same manner specified for increases and decreases in the quantity of a contract item of work in conformance with the provisions in Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications. If an ordered change requires a new item which is not on the approved cost break-down, the adjustment in compensation will be determined in the same manner specified for extra work in conformance with Section 4-1.03D, "Extra Work," of the Standard Specifications. If requested by the Contractor and approved by the Engineer, changes to the water pollution control practices listed in the approved cost break-down, including addition of new water pollution control practices, will be allowed. Changes shall be included in the approved amendment of the SWPPP. If the requested changes result in a net cost increase to the lump sum price for water pollution control, an adjustment in compensation will be made without change to the water pollution control item. The net cost increase to the water pollution control item will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. ## **SWPPP IMPLEMENTATION** Unless otherwise specified, upon approval of the SWPPP, the Contractor shall be responsible throughout the duration of the project for installing, constructing, inspecting, maintaining, removing, and disposing of the water pollution control practices specified in the SWPPP and in the amendments. Unless otherwise directed by the Engineer, the Contractor's responsibility for SWPPP implementation shall continue throughout temporary suspensions of work ordered in conformance with the provisions in Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications. Requirements for installation, construction, inspection, maintenance, removal, and disposal of water pollution control practices shall conform to the requirements in the Manuals and these special provisions. If the Contractor or the Engineer identifies a deficiency in the implementation of the approved SWPPP or amendments, the deficiency shall be corrected immediately unless requested by the Contractor and approved by the Engineer in writing, but shall be corrected prior to the onset of precipitation. If the Contractor fails to correct the identified deficiency by the date agreed or prior to the onset of precipitation, the project shall be in nonconformance with this section, "Water Pollution Control." Attention is directed to Section 5-1.01, "Authority of Engineer," of the Standard Specifications, and to "Retention of Funds" of this section for possible nonconformance penalties. If the Contractor fails to conform to the provisions of this section, "Water Pollution Control," the Engineer may order the suspension of construction operations until the project complies with the
requirements of this section. Implementation of water pollution control practices may vary by season. The Construction Site BMPs Manual and these special provisions shall be followed for control practice selection of year-round, rainy season and non-rainy season water pollution control practices. #### **Year-Round Implementation Requirements** The Contractor shall have a year-round program for implementing, inspecting and maintaining water pollution control practices for wind erosion control, tracking control, non-storm water management, and waste management and materials pollution control. The National Weather Service weather forecast shall be monitored and used by the Contractor on a daily basis. An alternative weather forecast proposed by the Contractor may be used if approved by the Engineer. If precipitation is predicted, the necessary water pollution control practices shall be deployed prior to the onset of the precipitation. Disturbed soil areas shall be considered active whenever the soil disturbing activities have occurred, continue to occur or will occur during the ensuing 21 days. Non-active areas shall be protected as prescribed in the Construction Site BMPs Manual within 14 days of cessation of soil disturbing activities or prior to the onset of precipitation, whichever occurs first. In order to provide effective erosion control, the Contractor may be directed by the Engineer to apply permanent erosion control in small or multiple units. The Contractor's attention is directed to "Erosion Control (Type D)" of these special provisions. ## **Rainy Season Implementation Requirements** Soil stabilization and sediment control practices shall be provided throughout the rainy season, defined as between October 1 and May 1 An implementation schedule of required soil stabilization and sediment control practices for disturbed soil areas shall be completed no later than 20 days prior to the beginning of each rainy season. The implementation schedule shall identify the soil stabilization and sediment control practices and the dates when the implementation will be 25 percent, 50 percent and 100 percent complete, respectively. For construction activities beginning during the rainy season, the Contractor shall implement applicable soil stabilization and sediment control practices. Throughout the defined rainy season, the active disturbed soil area of the project site shall be not more than 1.9 hectares. The Engineer may approve, on a case-by-case basis, expansions of the active disturbed soil area limit. Soil stabilization and sediment control materials shall be maintained on site sufficient to protect disturbed soil areas. A detailed plan for the mobilization of sufficient labor and equipment shall be maintained to deploy the water pollution control practices required to protect disturbed soil areas prior to the onset of precipitation. ## **Non-Rainy Season Implementation Requirements** The non-rainy season shall be defined as days outside the defined rainy season. The Contractor's attention is directed to the Construction Site BMPs Manual for soil stabilization and sediment control implementation requirements on disturbed soil areas during the non-rainy season. Disturbed soil areas within the project shall be protected in conformance with the requirements in the Construction Site BMPs Manual with an effective combination of soil stabilization and sediment control. ## **MAINTENANCE** To ensure the proper implementation and functioning of water pollution control practices, the Contractor shall regularly inspect and maintain the construction site for the water pollution control practices identified in the SWPPP. The construction site shall be inspected by the Contractor as follows: - A. Prior to a forecast storm. - B. After a precipitation event which causes site runoff. - C. At 24 hour intervals during extended precipitation events. - D. Routinely, a minimum of once every two weeks outside of the defined rainy season. - E. Routinely, a minimum of once every week during the defined rainy season. The Contractor shall use the Storm Water Quality Construction Site Inspection Checklist provided in the Preparation Manual or an alternative inspection checklist provided by the Engineer. One copy of each site inspection record shall be submitted to the Engineer within 24 hours of completing the inspection. # REPORTING REQUIREMENTS # Report of Discharges, Notices or Orders If the Contractor identifies discharges into surface waters or drainage systems in a manner causing, or potentially causing, a condition of pollution, or if the project receives a written notice or order from a regulatory agency, the Contractor shall immediately inform the Engineer. The Contractor shall submit a written report to the Engineer within 3 days of the discharge event, notice or order. The report shall include the following information: - A. The date, time, location, nature of the operation, and type of discharge, including the cause or nature of the notice or order. - B. The water pollution control practices deployed before the discharge event, or prior to receiving the notice or order. - C. The date of deployment and type of water pollution control practices deployed after the discharge event, or after receiving the notice or order, including additional measures installed or planned to reduce or prevent reoccurrence. - D. An implementation and maintenance schedule for affected water pollution control practices. # **Report of First-Time Non-Storm Water Discharge** The Contractor shall notify the Engineer at least 7 days in advance of first-time non-storm water discharge events, excluding exempted discharges. The Contractor shall notify the Engineer of the operations causing non-storm water discharges and shall obtain field approval for first-time non-storm water discharges. Non-storm water discharges shall be monitored at first-time occurrences and routinely thereafter. #### **Annual Certifications** By June 15 of each year, the Contractor shall complete and submit an Annual Certification of Compliance, as contained in the Preparation Manual, to the Engineer. # SAMPLING AND ANALYTICAL REQUIREMENTS The Contractor is required to implement specific sampling and analytical procedures to determine whether BMPs implemented on the construction site are: A. preventing pollutants that are known or should be known by permittees to occur on construction sites that are not visually detectable in storm water discharges, to cause or contribute to exceedances of water quality objectives. ## Non-Visible Pollutants The project has the potential to discharge non-visible pollutants in storm water from the construction site. The project SWPPP shall contain a Sampling and Analysis Plan (SAP) that describes the sampling and analysis strategy and schedule to be implemented on the project for monitoring non-visible pollutants in conformance with this section. The SAP shall identify potential non-visible pollutants that are known or should be known to occur on the construction site associated with the following: (1) construction materials, wastes or operations; (2) known existing contamination due to historical site usage; or (3) application of soil amendments, including soil stabilization products, with the potential to alter pH or contribute toxic pollutants to storm water. Planned material and waste storage areas, locations of known existing contamination, and areas planned for application of soil amendments shall be shown on the SWPPP Water Pollution Control Drawings. The SAP shall identify a sampling schedule for collecting a sample down gradient from the applicable non-visible pollutant source and a sufficiently large uncontaminated control sample during the first two hours of discharge from rain events during daylight hours which result in a sufficient discharge for sample collection. If run-on occurs onto the non-visible pollutant source, a run-on sample that is immediately down gradient of the run-on to the Department's right of way shall be collected. A minimum of 72 hours of dry weather shall occur between rain events to distinguish separate rain events. The SAP shall state that water quality sampling will be triggered when any of the following conditions are observed during the required storm water inspections conducted before or during a rain event: - A. Materials or wastes containing potential non-visible pollutants are not stored under watertight conditions. - B. Materials or wastes containing potential non-visible pollutants are stored under watertight conditions, but (1) a breach, leakage, malfunction, or spill is observed; and (2) the leak or spill has not been cleaned up prior to the rain event; and (3) there is the potential for discharge of non-visible pollutants to surface waters or drainage system. - C. Construction activities, such as application of fertilizer, pesticide, herbicide, methyl methacrylate concrete sealant, or non-pigmented curing compound have occurred during a rain event or within 24 hours preceding a rain event, and there is the potential for discharge of pollutants to surface waters or drainage system. - D. Soil amendments, including soil stabilization products, with the potential to alter pH levels or contribute toxic pollutants to storm water runoff have been applied, and there is the potential for discharge of pollutants to surface waters or drainage system (unless independent test data are available that demonstrate acceptable concentration levels of non-visible pollutants in the soil amendment). - E. Storm water runoff from an area contaminated by historical usage of the site is observed to combine with storm water, and there is the potential for discharge of pollutants to surface waters or drainage system. The SAP shall identify sampling locations for collecting down gradient and control samples, and the rationale for their selection. The control sampling location shall be selected where the sample does not come into
contact with materials, wastes or areas associated with potential non-visible pollutants or disturbed soil areas. Sampling locations shall be shown on the SWPPP Water Pollution Control Drawings. Only trained personnel shall collect water quality samples and be identified in the SAP. Qualifications of designated sampling personnel shall describe training and experience, and shall be included in the SWPPP. The SAP shall state monitoring preparation, sample collection procedures, quality assurance/quality control, sample labeling procedures, sample collection documentation, sample shipping and chain of custody procedures, sample numbering system, and reference the construction site health and safety plan. The SAP shall identify the analytical method to be used for analyzing down gradient and control samples for potential non-visible pollutants on the project. For samples analyzed in the field by sampling personnel, collection, analysis, and equipment calibration shall be in conformance with the Manufacturer's specifications. For samples that will be analyzed by a laboratory, sampling, preservation, and analysis shall be performed by a State-certified laboratory in conformance with 40 CFR 136. The SAP shall identify the specific State-certified laboratory, sample containers, preservation requirements, holding times, and analysis method to be used. A list of State-certified laboratories that are approved by the Department is available at the following internet site: http://www.dhs.ca.gov/ps/ls/elap/html/lablist_county.htm. ## **Analytical Results and Evaluation** The Contractor shall submit a hard copy and electronic copy of water quality analytical results and quality assurance/quality control data to the Engineer within 5 days of sampling for field analyses and within 30 days for laboratory analyses. Analytical results shall be accompanied by an evaluation from the Contractor to determine if down gradient samples show elevated levels of the tested parameter relative to levels in the control sample. If down gradient or downstream samples, as applicable, show increased levels, the Contractor will assess the BMPs, site conditions, and surrounding influences to determine the probable cause for the increase. As determined by the assessment, the Contractor will repair or modify BMPs to address increases and amend the SWPPP as necessary. Electronic results (in one of the following file formats: .xls, .txt, .csv, .dbs, or .mdb) shall have at a minimum the following information: sample identification number, contract number, constituent, reported value, method reference, method detection limit, and reported detection limit. The Contractor shall document sample collection during rain events. Water quality sampling documentation and analytical results shall be maintained with the SWPPP on the project site until a Notice of Completion has been submitted and approved. If construction activities or knowledge of site conditions change, such that discharges or sampling locations change, the Contractor shall amend the SAP in conformance with this section, "Water Pollution Control." ## **PAYMENT** The contract lump sum price paid for prepare storm water pollution prevention plan shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals for doing all the work involved in developing, preparing, obtaining approval of, revising, and amending the SWPPP, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Attention is directed to Section 9-1.06, "Partial Payments," and Section 9-1.07, "Payment After Acceptance," of the Standard Specifications. Payments for prepare storm water pollution prevention plan will be made as follows: - A. After the SWPPP has been approved by the Engineer, 75 percent of the contract item price for prepare storm water pollution prevention plan will be included in the monthly partial payment estimate. - B. After acceptance of the contract in conformance with the provisions in Section 7-1.17, "Acceptance of Contract," of the Standard Specifications, payment for the remaining 25 percent of the contract item price for prepare storm water pollution prevention plan will be made in conformance with the provisions in Section 9-1.07. The contract lump sum price paid for water pollution control shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing, constructing, removing, and disposing of water pollution control practices, including non-storm water management, and waste management and materials pollution water pollution control practices, except those for which there is a contract item of work as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Storm water sampling and analysis will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. No payment will be made for the preparation, collection, analysis, and reporting of storm water samples required where appropriate BMPs are not implemented prior to a rain event, or if a failure of a BMP is not corrected prior to a rain event. For items identified on the approved Water Pollution Control Cost Break-Down, the cost of maintaining the temporary water pollution control practices shall be divided equally by the State and the Contractor as follows: ## **Soil Stabilization** Temporary water pollution control practices except: SS-1 Scheduling SS-2 Preservation of Existing Vegetation ## **Sediment Control** Temporary water pollution control practices except: SC-7 Street Sweeping and Vacuuming # Wind Erosion Control No sharing of maintenance costs will be allowed. ## **Tracking Control** TC-1 Stabilized Construction Entrance/Exit. #### **Non-Storm Water Management** No sharing of maintenance costs will be allowed. ## **Waste Management & Materials Pollution Control** No sharing of maintenance costs will be allowed. The division of cost will be made by determining the cost of maintaining water pollution control practices in conformance with the provisions in Section 9-1.03, "Force Account Payment," of the Standard Specifications and paying to the Contractor one-half of that cost. Cleanup, repair, removal, disposal, improper installation, and replacement of water pollution control practices damaged by the Contractor's negligence, shall not be considered as included in the cost for performing maintenance. The provisions for sharing maintenance costs shall not relieve the Contractor from the responsibility for providing appropriate maintenance on items with no shared maintenance costs. Full compensation for non-shared maintenance costs of water pollution control practices, as specified in this section, "Water Pollution Control," shall be considered as included in the contract lump sum price paid for water pollution control and no additional compensation will be allowed therefor. Water pollution control practices for which there is a contract item of work, will be measured and paid for as that contract item of work. #### 10-1.04 TEMPORARY FENCE Temporary fence shall be furnished, constructed, maintained, and later removed as shown on the plans, as specified in these special provisions and as directed by the Engineer. Except as otherwise specified in this section, temporary fence shall conform to the plan details and the specifications for permanent fence of similar character as provided in Section 80, "Fences," of the Standard Specifications. Used materials may be installed provided the used materials are good, sound and are suitable for the purpose intended, as determined by the Engineer. Materials may be commercial quality provided the dimensions and sizes of the materials are equal to, or greater than, the dimensions and sizes shown on the plans or specified herein. Posts shall be either metal or wood at the Contractor's option. Galvanizing and painting of steel items will not be required. Treating wood with a wood preservative will not be required. Concrete footings for metal posts will not be required. Temporary fence that is damaged during the progress of the work shall be repaired or replaced by the Contractor at the Contractor's expense. When no longer required for the work, as determined by the Engineer, temporary fence shall be removed. Removed facilities shall become the property of the Contractor and shall be removed from the site of the work, except as otherwise provided in this section. Removed temporary fence materials that are not damaged may be constructed in the permanent work provided the materials conform to the requirements specified for the permanent work and such materials are new when used for the temporary fence. Holes caused by the removal of temporary fence shall be backfilled in conformance with the provisions in the second paragraph of Section 15-1.02, "Preservation of Property," of the Standard Specifications. The various types and kinds of temporary fence will be measured and paid for in the same manner specified for permanent fence of similar character as provided in Section 80, "Fences," of the Standard Specifications. Full compensation for maintaining, removing, and disposing of temporary fence shall be considered as included in the contract prices paid per meter for the various types of temporary fence and no additional compensation will be allowed therefor. ## 10-1.05 PRESERVATION OF PROPERTY Attention is directed to Section 7-1.11, "Preservation of Property," of the Standard Specifications and these special provisions. Existing trees, shrubs and other plants, that are not to be removed as shown on the plans or specified in these special provisions, and are injured or damaged by reason of the Contractor's operations, shall be replaced by the Contractor. The minimum size of tree replacement shall be No. 15 container and the minimum size of shrub
replacement shall be No. 15 container. Replacement planting shall conform to the requirements in Section 20-4.07, "Replacement," of the Standard Specifications. The Contractor shall water replacement plants in conformance with the provisions in Section 20-4.06, "Watering," of the Standard Specifications. Damaged or injured plants shall be removed and disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13 of the Standard Specifications. At the option of the Contractor, removed trees and shrubs may be reduced to chips. Replacement planting of injured or damaged trees, shrubs, and other plants shall be completed prior to the start of the plant establishment period. Replacement planting shall conform to the provisions in Section 20-4.05, "Planting," of the Standard Specifications. #### 10-1.06 DAMAGE REPAIR Attention is directed to Section 7-1.16, "Contractor's Responsibility for the Work and Materials," and Section 7-1.165, "Damage by Storm, Flood, Tsunami or Earthquake," of the Standard Specifications and these special provisions. When, as a result of drought conditions (as defined herein) during the plant establishment period, plants have died or, in the opinion of the Engineer, have deteriorated to a point beyond which the plants will not mature as typical examples of their species, the Engineer may direct replacement of the affected plants. The total cost of ordered plant replacements, after water has been restricted or stopped, will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. Restriction or shutoff of available water shall not relieve the Contractor from performing other contract work. A drought condition occurs when the Department, or its supplier, restricts or stops delivery of water to the Contractor to the degree that plants have died or deteriorated as described above. When the provisions in Section 7-1.165, "Damage by Storm, Flood, Tsunami or Earthquake," of the Standard Specifications are applicable, the provisions above for payment of costs for repair of damage due to rain, freezing conditions and drought shall not apply. ## 10-1.07 RELIEF FROM MAINTENANCE AND RESPONSIBILITY The Contractor may be relieved of the duty of maintenance and protection for those items not directly connected with plant establishment work in conformance with the provisions in Section 7-1.15, "Relief From Maintenance and Responsibility," of the Standard Specifications. Water pollution control, maintain existing planted areas, and maintain existing irrigation facilities shall not be relieved of maintenance. ## 10-1.08 SCAFFOLDING Scaffolding shall be defined in accordance with and shall conform to the Construction Safety Orders of the Division of Occupational Safety and Health and these special provisions. If scaffolding is constructed for this project over or adjacent to traffic, or suspended from the traveled way, the Contractor shall submit to the Engineer working drawings for scaffolding systems in conformance with Section 5-1.02, "Plans and Working Drawings" of the Standard Specifications, and these special provisions. Scaffolding working drawings shall include the following items: - A. Descriptions, calculations, and values for all loads anticipated during the erection, use, and removal of scaffolding. - B. Methods and equipment for erecting, moving, and removing scaffolding. - C. Design details including bolt layouts, welding details, and any connections to existing structures. - D. Stress sheets including a summary of computed stresses in the (1) scaffolding, (2) connections between scaffolding and any existing structures and (3) existing load supporting members. The computed stresses shall include the effects of erection, movement, and removal of the scaffolding. The scaffolding manufacturer's name, address, and phone number shall be shown on the working drawings. The working drawings shall be stamped and signed by an engineer who is registered as a Civil Engineer. In addition, prior to submitting the working drawings to the Engineer, the working drawings shall be stamped and signed by an independent reviewer who is registered as a Civil Engineer in the State of California. The independent reviewer shall not be employed by the same entity preparing the working drawings. The Contractor shall allow 1 week for the review of a complete submittal for scaffolding working drawings. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Welding for the manufacturing and erection of scaffolding shall conform to the requirements in AWS D1.1 or D1.2 for steel or aluminum construction respectively. Full compensation for conforming to the above requirements shall be considered as included in the contract prices paid for the various contract items of work, and no additional compensation will be allowed therefor. #### 10-1.09 COOPERATION Attention is directed to Section 7-1.14, "Cooperation," and Section 8-1.10, "Utility and Non-Highway Facilities," of the Standard Specifications and these special provisions. The following projects may be in progress adjacent to or within the limits of this project during the life of this contract: Contract No. 07-1178U4: Construct HOV lane (both directions) in Culver City and Los Angeles on Route 405 from Route 90 to Route 10 (KP 41.2 to KP 48.2). Contract No. 07-226614: Construct and O&M Litter Removal Devices in and near Los Angeles on Routes 170, 10, 90 210, 405 at various locations. #### 10-1.10 PROGRESS SCHEDULE (CRITICAL PATH METHOD) The Contractor shall submit to the Engineer practicable critical path method (CPM) progress schedules in conformance with these special provisions. Whenever the term "schedule" is used in this section it shall mean CPM progress schedule. Attention is directed to "Payments" of Section 5 of these special provisions. The provisions in Section 8-1.04, "Progress Schedule," of the Standard Specifications shall not apply. #### **DEFINITIONS** The following definitions shall apply to this section: - A. ACTIVITY.—A task, event or other project element on a schedule that contributes to completing the project. Activities have a description, start date, finish date, duration and one or more logic ties. - B. BASELINE SCHEDULE.—The initial schedule representing the Contractor's work plan on the first working day of the project. - C. CONTRACT COMPLETION DATE.—The current extended date for completion of the contract shown on the weekly statement of working days furnished by the Engineer in conformance with the provisions in Section 8-1.06, "Time of Completion," of the Standard Specifications. - D. CRITICAL PATH.—The longest continuous chain of activities for the project that has the least amount of total float of all chains. In general, a delay on the critical path will extend the scheduled completion date. - E. CRITICAL PATH METHOD (CPM).—A network based planning technique using activity durations and the relationships between activities to mathematically calculate a schedule for the entire project. - F. DATA DATE.—The day after the date through which a schedule is current. Everything occurring earlier than the data date is "as-built" and everything on or after the data date is "planned." - G. EARLY COMPLETION TIME.—The difference in time between an early scheduled completion date and the contract completion date. - H. FLOAT.—The difference between the earliest and latest allowable start or finish times for an activity. - I. MILESTONE.—An event activity that has zero duration and is typically used to represent the beginning or end of a certain stage of the project. - J. NARRATIVE REPORT.—A document submitted with each schedule that discusses topics related to project progress and scheduling. - K. NEAR CRITICAL PATH.—A chain of activities with total float exceeding that of the critical path but having no more than 10 working days of total float. - L. SCHEDULED COMPLETION DATE.—The planned project finish date shown on the current accepted schedule. - M. STATE OWNED FLOAT ACTIVITY.—The activity documenting time saved on the critical path by actions of the State. It is the last activity prior to the scheduled completion date. - N. TIME IMPACT ANALYSIS.—A schedule and narrative report developed specifically to demonstrate what effect a proposed change or delay has on the current scheduled completion date. - O. TOTAL FLOAT.—The amount of time that an activity or chain of activities can be delayed before extending the scheduled completion date. - P. UPDATE SCHEDULE.—A current schedule developed from the baseline or subsequent schedule through regular monthly review to incorporate as-built progress and any planned changes. ## GENERAL REQUIREMENTS The Contractor shall submit to the Engineer baseline, monthly update and final update schedules, each consistent in all respects with the time and order of work requirements of the contract. The project work shall be executed in the sequence indicated on the current accepted schedule. Schedules shall show the order in which the Contractor proposes to carry out the work with logical links between time-scaled work activities, and calculations made using the critical path method to determine the controlling operation or operations. The Contractor is responsible for assuring that all activity sequences are logical and that each schedule shows a coordinated plan for complete performance of the work. The Contractor shall produce schedules using computer software and shall furnish compatible software for the Engineer's exclusive possession and use. The Contractor shall furnish
network diagrams, narrative reports, tabular reports and schedule data as parts of each schedule submittal. Schedules shall include, but not be limited to, activities that show the following that are applicable to the project: - A. Project characteristics, salient features, or interfaces, including those with outside entities, that could affect time of completion. - B. Project start date, scheduled completion date and other milestones. - C. Work performed by the Contractor, subcontractors and suppliers. - D. Submittal development, delivery, review and approval, including those from the Contractor, subcontractors and suppliers. - E. Procurement, delivery, installation and testing of materials, plants and equipment. - F. Testing and settlement periods. - G. Utility notification and relocation. - H. Erection and removal of falsework and shoring. - I. Major traffic stage switches. - J. Finishing roadway and final cleanup. - K. State-owned float as the predecessor activity to the scheduled completion date. Schedules shall have not less than 50 and not more than 500 activities, unless otherwise authorized by the Engineer. The number of activities shall be sufficient to assure adequate planning of the project, to permit monitoring and evaluation of progress, and to do an analysis of time impacts. Schedule activities shall include the following: - A. A clear and legible description. - B. Start and finish dates. - C. A duration of not less than one working day, except for event activities, and not more than 20 working days, unless otherwise authorized by the Engineer. - D. At least one predecessor and one successor activity, except for project start and finish milestones. - E. Required constraints. - F. Codes for responsibility, stage, work shifts, location and contract pay item numbers. The Contractor may show early completion time on any schedule provided that the requirements of the contract are met. Early completion time shall be considered a resource for the exclusive use of the Contractor. The Contractor may increase early completion time by improving production, reallocating resources to be more efficient, performing sequential activities concurrently or by completing activities earlier than planned. The Contractor may also submit for approval a cost reduction incentive proposal in conformance with the provisions in Section 5-1.14, "Cost Reduction Incentive," of the Standard Specifications that will reduce time of construction. The Contractor may show a scheduled completion date that is later than the contract completion date on an update schedule, after the baseline schedule is accepted. The Contractor shall provide an explanation for a late scheduled completion date in the narrative report that is included with the schedule. State-owned float shall be considered a resource for the exclusive use of the State. The Engineer may accrue State-owned float by the early completion of review of any type of required submittal when it saves time on the critical path. The Contractor shall prepare a time impact analysis, when requested by the Engineer, to determine the effect of the action in conformance with the provisions in "Time Impact Analysis" specified herein. The Engineer will document State-owned float by directing the Contractor to update the State-owned float activity on the next update schedule. The Contractor shall include a log of the action on the State-owned float activity and include a discussion of the action in the narrative report. The Engineer may use State-owned float to mitigate past, present or future State delays by offsetting potential time extensions for contract change orders. The Engineer may adjust contract working days for ordered changes that affect the scheduled completion date, in conformance with the provisions in Section 4-1.03, "Changes," of the Standard Specifications. The Contractor shall prepare a time impact analysis to determine the effect of the change in conformance with the provisions in "Time Impact Analysis" specified herein, and shall include the impacts acceptable to the Engineer in the next update schedule. Changes that do not affect the controlling operation on the critical path will not be considered as the basis for a time adjustment. Changes that do affect the controlling operation on the critical path will be considered by the Engineer in decreasing time or granting an extension of time for completion of the contract. Time extensions will only be granted if the total float is absorbed and the scheduled completion date is delayed one or more working days because of the ordered change. The Engineer's review and acceptance of schedules shall not waive any contract requirements and shall not relieve the Contractor of any obligation thereunder or responsibility for submitting complete and accurate information. Schedules that are rejected shall be corrected by the Contractor and resubmitted to the Engineer within 5 working days of notification by the Engineer, at which time a new review period of one week will begin. Errors or omissions on schedules shall not relieve the Contractor from finishing all work within the time limit specified for completion of the contract. If, after a schedule has been accepted by the Engineer, either the Contractor or the Engineer discover that any aspect of the schedule has an error or omission, it shall be corrected by the Contractor on the next update schedule. #### **COMPUTER SOFTWARE** The Contractor shall submit to the Engineer for approval a description of proposed software before delivery. The software shall be the current version of Primavera SureTrak Project Manager for Windows, or equal, and shall be compatible with Windows NT (version 4.0) operating system. If software other than SureTrak is proposed, it shall be capable of generating files that can be imported into SureTrak. The Contractor shall furnish schedule software and all original software instruction manuals to the Engineer with submittal of the baseline schedule. The furnished schedule software shall become the property of the State and will not be returned to the Contractor. The State will compensate the Contractor in conformance with the provisions in Section 4-1.03, "Extra Work," of the Standard Specifications for replacement of software which is damaged, lost or stolen after delivery to the Engineer. The Contractor shall instruct the Engineer in the use of the software and provide software support until the contract is accepted. Within 20 working days of contract approval, the Contractor shall provide a commercial 8-hour training session for 2 Department employees in the use of the software at a location acceptable to the Engineer. It is recommended that the Contractor also send at least 2 employees to the same training session to facilitate development of similar knowledge and skills in the use of the software. If software other than SureTrak is furnished, then the training session shall be a total of 16-hours for each Department employee. ## NETWORK DIAGRAMS, REPORTS AND DATA The Contractor shall include the following for each schedule submittal: - A. Two sets of originally plotted, time-scaled network diagrams. - B. Two copies of a narrative report. - C. Two copies of each of 3 sorts of the CPM software-generated tabular reports. - D. One 1.44-megabyte 90 mm (3.5 inch) floppy diskette containing the schedule data. The time-scaled network diagrams shall conform to the following: - A. Show a continuous flow of information from left to right. - B. Be based on early start and early finish dates of activities. - C. Clearly show the primary paths of criticality using graphical presentation. - D. Be prepared on E-size sheets, 860 mm x 1120 mm (34 inch x 44 inch). - E. Include a title block and a timeline on each page. The narrative report shall be organized in the following sequence with all applicable documents included: - A. Contractor's transmittal letter. - B. Work completed during the period. - C. Identification of unusual conditions or restrictions regarding labor, equipment or material; including multiple shifts, 6-day work weeks, specified overtime or work at times other than regular days or hours. - D. Description of the current critical path. - E. Changes to the critical path and scheduled completion date since the last schedule submittal. - F. Description of problem areas. - G. Current and anticipated delays: - 1. Cause of delay. - 2. Impact of delay on other activities, milestones and completion dates. - 3. Corrective action and schedule adjustments to correct the delay. - H. Pending items and status thereof: - 1. Permits - 2. Change orders - 3. Time adjustments - 4. Non-compliance notices - I. Reasons for an early or late scheduled completion date in comparison to the contract completion date. Tabular reports shall be software-generated and provide information for each activity included in the project schedule. Three different reports shall be sorted by (1) activity number, (2) early start and (3) total float. Tabular reports shall be 215 mm x 280 mm (8 1/2 inch x 11 inch) in size and shall include, as a minimum, the following applicable information: - A. Data date - B. Activity number and description - C. Predecessor and successor activity numbers and descriptions - D. Activity codes - E. Scheduled, or actual and remaining durations (work days) for each activity - F. Earliest start (calendar) date - G. Earliest finish (calendar) date - H. Actual start (calendar) date - I. Actual finish (calendar) date - J. Latest start (calendar) date - K. Latest finish (calendar) date - L. Free float (work days) - M. Total float (work days) - N. Percentage of activity complete and remaining duration for incomplete activities. - O. Lags - P. Required constraints Schedule submittals will only be considered complete when all documents and data have been provided as described above. #### PRE-CONSTRUCTION SCHEDULING CONFERENCE The Contractor shall schedule and the Engineer will
conduct a pre-construction scheduling conference with the Contractor's project manager and construction scheduler within 10 working days of the approval of the contract. At this meeting the Engineer will review the requirements of this section of the special provisions with the Contractor. The Contractor shall submit a general time-scaled logic diagram displaying the major activities and sequence of planned operations and shall be prepared to discuss the proposed work plan and schedule methodology that comply with the requirements of these special provisions. If the Contractor proposes deviations to the construction staging of the project, then the general time-scaled logic diagram shall also display the deviations and resulting time impacts. The Contractor shall be prepared to discuss the proposal. At this meeting, the Contractor shall additionally submit the alphanumeric coding structure and the activity identification system for labeling the work activities. To easily identify relationships, each activity description shall indicate its associated scope or location of work by including such terms as quantity of material, type of work, bridge number, station to station location, side of highway (such as left, right, northbound, southbound), lane number, shoulder, ramp name, ramp line descriptor or mainline. The Engineer will review the logic diagram, coding structure, and activity identification system, and provide any required baseline schedule changes to the Contractor for implementation. #### **BASELINE SCHEDULE** Beginning the week following the pre-construction scheduling conference, the Contractor shall meet with the Engineer weekly until the baseline schedule is accepted by the Engineer to discuss schedule development and resolve schedule issues. The Contractor shall submit to the Engineer a baseline schedule within 20 working days of approval of the contract. The Contractor shall allow 3 weeks for the Engineer's review after the baseline schedule and all support data are submitted. In addition, the baseline schedule submittal will not be considered complete until the computer software is delivered and installed for use in review of the schedule. The baseline schedule shall include the entire scope of work and how the Contractor plans to complete all work contemplated. The baseline schedule shall show the activities that define the critical path. Multiple critical paths and near-critical paths shall be kept to a minimum. A total of not more than 50 percent of the baseline schedule activities shall be critical or near critical, unless otherwise authorized by the Engineer. The baseline schedule shall not extend beyond the number of working days specified in these special provisions. The baseline schedule shall have a data date of the first working day of the contract and not include any completed work to date. The baseline schedule shall not attribute negative float or negative lag to any activity. If the Contractor submits an early completion baseline schedule that shows contract completion in less than 85 percent of the working days specified in these special provisions, the baseline schedule shall be supplemented with resource allocations for every task activity and include time-scaled resource histograms. The resource allocations shall be shown to a level of detail that facilitates report generation based on labor crafts and equipment classes for the Contractor and subcontractors. The Contractor shall use average composite crews to display the labor loading of on-site construction activities. The Contractor shall optimize and level labor to reflect a reasonable plan for accomplishing the work of the contract and to assure that resources are not duplicated in concurrent activities. The time-scaled resource histograms shall show labor crafts and equipment classes to be utilized on the contract. The Engineer may review the baseline schedule activity resource allocations using Means Productivity Standards or equivalent to determine if the schedule is practicable. #### **UPDATE SCHEDULE** The Contractor shall submit an update schedule and meet with the Engineer to review contract progress, on or before the first day of each month, beginning one month after the baseline schedule is accepted. The Contractor shall allow 2 weeks for the Engineer's review after the update schedule and all support data are submitted, except that the review period shall not start until the previous month's required schedule is accepted. Update schedules that are not accepted or rejected within the review period will be considered accepted by the Engineer. The update schedule shall have a data date of the twenty-first day of the month or other date established by the Engineer. The update schedule shall show the status of work actually completed to date and the work yet to be performed as planned. Actual activity start dates, percent complete and finish dates shall be shown as applicable. Durations for work that has been completed shall be shown on the update schedule as the work actually occurred, including Engineer submittal review and Contractor resubmittal times. The Contractor may include modifications such as adding or deleting activities or changing activity constraints, durations or logic that do not (1) alter the critical path(s) or near critical path(s) or (2) extend the scheduled completion date compared to that shown on the current accepted schedule. The Contractor shall state in writing the reasons for any changes to planned work. If any proposed changes in planned work will result in (1) or (2) above, then the Contractor shall submit a time impact analysis as described herein. ## TIME IMPACT ANALYSIS The Contractor shall submit a written time impact analysis (TIA) to the Engineer with each request for adjustment of contract time, or when the Contractor or Engineer consider that an approved or anticipated change may impact the critical path or contract progress. The TIA shall illustrate the impacts of each change or delay on the current scheduled completion date or internal milestone, as appropriate. The analysis shall use the accepted schedule that has a data date closest to and prior to the event. If the Engineer determines that the accepted schedule used does not appropriately represent the conditions prior to the event, the accepted schedule shall be updated to the day before the event being analyzed. The TIA shall include an impact schedule developed from incorporating the event into the accepted schedule by adding or deleting activities, or by changing durations or logic of existing activities. If the impact schedule shows that incorporating the event modifies the critical path and scheduled completion date of the accepted schedule, the difference between scheduled completion dates of the two schedules shall be equal to the adjustment of contract time. The Engineer may construct and utilize an appropriate project schedule or other recognized method to determine adjustments in contract time until the Contractor provides the TIA. The Contractor shall submit a TIA in duplicate within 15 working days of receiving a written request for a TIA from the Engineer. The Contractor shall allow the Engineer 2 weeks after receipt to approve or reject the submitted TIA. All approved TIA schedule changes shall be shown on the next update schedule. If a TIA submitted by the Contractor is rejected by the Engineer, the Contractor shall meet with the Engineer to discuss and resolve issues related to the TIA. If agreement is not reached, the Contractor will be allowed 15 days from the meeting with the Engineer to give notice in conformance with the provisions in Section 9-1.04, "Notice of Potential Claim," of the Standard Specifications. The Contractor shall only show actual as-built work, not unapproved changes related to the TIA, in subsequent update schedules. If agreement is reached at a later date, approved TIA schedule changes shall be shown on the next update schedule. The Engineer will withhold remaining payment on the schedule contract item if a TIA is requested by the Engineer and not submitted by the Contractor within 15 working days. The schedule item payment will resume on the next estimate after the requested TIA is submitted. No other contract payment will be retained regarding TIA submittals. #### FINAL UPDATE SCHEDULE The Contractor shall submit a final update, as-built schedule with actual start and finish dates for the activities, within 30 days after completion of contract work. The Contractor shall provide a written certificate with this submittal signed by the Contractor's project manager and an officer of the company stating, "To my knowledge and belief, the enclosed final update schedule reflects the actual start and finish dates of the actual activities for the project contained herein." An officer of the company may delegate in writing the authority to sign the certificate to a responsible manager. ## RETENTION The Department will retain an amount equal to 25 percent of the estimated value of the work performed during each estimate period in which the Contractor fails to submit an acceptable schedule conforming to the requirements of these special provisions as determined by the Engineer. Schedule retentions will be released for payment on the next monthly estimate for partial payment following the date that acceptable schedules are submitted to the Engineer or as otherwise specified herein. Upon completion of all contract work and submittal of the final update schedule and certification, any remaining retained funds associated with this section, "Progress Schedule (Critical Path Method)", will be released for payment. Retentions held in conformance with this section shall be in addition to other retentions provided for in the contract. No interest will be due the Contractor on retention amounts. #### **PAYMENT** Progress schedule (critical path method) will be paid for at a lump sum price. The contract
lump sum price paid for progress schedule (critical path method) shall include full compensation for furnishing all labor, material, tools, equipment, and incidentals, including computer software, and for doing all the work involved in preparing, furnishing, and updating schedules, and instructing and assisting the Engineer in the use of computer software, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Payments for the progress schedule (critical path method) contract item will be made progressively as follows: - A. A total of 25 percent of the item amount or a total of 25 percent of the amount listed for progress schedule (critical path method) in "Payments" of Section 5 of these special provisions, whichever is less, will be paid upon achieving all of the following: - 1. Completion of 5 percent of all contract item work. - 2. Acceptance of all schedules and TIAs required to the time when 5 percent of all contract item work is complete. - 3. Delivery of schedule software to the Engineer. - 4. Completion of required schedule software training. - B. A total of 50 percent of the item amount or a total of 50 percent of the amount listed for progress schedule (critical path method) in "Payments" of Section 5 of these special provisions, whichever is less, will be paid upon completion of 25 percent of all contract item work and acceptance of all schedules and TIAs required to the time when 25 percent of all contract item work is complete. - C. A total of 75 percent of the item amount or a total of 75 percent of the amount listed for progress schedule (critical path method) in "Payments" of Section 5 of these special provisions, whichever is less, will be paid upon completion of 50 percent of all contract item work and acceptance of all schedules and TIAs required to the time when 50 percent of all contract item work is complete. - D. A total of 100 percent of the item amount or a total of 100 percent of the amount listed for progress schedule (critical path method) in "Payments" of Section 5 of these special provisions, whichever is less, will be paid upon completion of all contract item work, acceptance of all schedules and TIAs required to the time when all contract item work is complete, and submittal of the certified final update schedule. If the Contractor fails to complete any of the work or provide any of the schedules required by this section, the Engineer shall make an adjustment in compensation in conformance with the provisions in Section 4-1.03C, "Changes in Character of Work," of the Standard Specifications for the work not performed. Adjustments in compensation for schedules will not be made for any increased or decreased work ordered by the Engineer in furnishing schedules. ## 10-1.11 TIME-RELATED OVERHEAD The Contractor will be compensated for time-related overhead in conformance with these special provisions. Attention is directed to "Beginning of Work, Time of Completion and Liquidated Damages," "Force Account Payment," and "Progress Schedule (Critical Path Method)" of these special provisions. The provisions in Section 9-1.08, "Adjustment of Overhead Costs," of the Standard Specifications shall not apply. Time-related overhead shall consist of those overhead costs, including field and home office overhead, that are in proportion to the time required to complete the work. Time-related overhead shall not include costs that are not related to time, including but not limited to, mobilization, licenses, permits, and other charges incurred only once during the contract. Field office overhead expenses include time-related costs associated with the normal and recurring operations of the construction project, and shall not include costs directly attributable to the work of the contract. Time-related costs of field office overhead include, but are not limited to, salaries, benefits, and equipment costs of project managers, general superintendents, field office managers and other field office staff assigned to the project, and rent, utilities, maintenance, security, supplies, and equipment costs of the project field office. Home office overhead or general and administrative expenses refer to the fixed costs of operating the Contractor's business. These costs include, but are not limited to, general administration, insurance, personnel and subcontract administration, purchasing, accounting, and project engineering and estimating. Home office overhead costs shall exclude expenses specifically related to other contracts or other businesses of the Contractor, equipment coordination, material deliveries, and consultant and legal fees. The amount of time-related overhead associated with a reduction in contract time for cost reduction incentive proposals accepted and executed in conformance with the provisions in Section 5-1.14, "Cost Reduction Incentive," of the Standard Specifications shall be considered a construction cost attributable to the resultant estimated net savings due to the cost reduction incentive. If the final increased amount of time-related overhead exceeds 149 percent of the contract lump sum price bid, the Contractor shall, within 60 days of the Engineer's written request, submit to the Engineer an audit examination and report performed by an independent Certified Public Accountant of the Contractor's actual overhead costs. The independent Certified Public Accountant's audit examination shall be performed in conformance with the requirements of the American Institute of Certified Public Accountants Attestation Standards. The audit examination and report shall depict the Contractor's project and company-wide financial records and shall specify the actual overall average daily rates for both field and home office overhead for the entire duration of the project, and whether the costs have been properly allocated. The rates of field and home office overhead shall exclude unallowable costs as determined in the Federal Acquisition Regulations, 48 CFR, Chapter 1, Part 31. The audit examination and report shall determine if the rates of field office overhead and home office overhead are: - A. Allowable in conformance with the requirements of the Federal Acquisition Regulations, 48 CFR, Chapter 1, Part 31. - B. Adequately supported by reliable documentation. - C. Related solely to the project under examination. Within 20 days of receipt of the Engineer's written request, the Contractor shall make its financial records available for audit by the State for the purpose of verifying the actual rate of time-related overhead specified in the audit submitted by the Contractor. The actual rate of time-related overhead specified in the audit, submitted by the Contractor, will be subject to approval by the Engineer. If the Engineer requests the independent Certified Public Accountant audit, or if it is requested in writing by the Contractor, the contract lump sum payment for time-related overhead, in excess of 149 percent of the lump sum price bid, will be adjusted to reflect the actual rate. The cost of performing an independent Certified Public Accountant audit examination and submitting the report, requested by the Engineer, will be borne equally by the State and the Contractor. The division of the cost will be made by determining the cost of providing an audit examination and report in conformance with the provisions of Section 9-1.03B, "Work Performed by Special Forces or Other Special Services" of the Standard Specifications, and paying to the Contractor one-half of that cost. The cost of performing an audit examination and submitting the independent Certified Public Accountant audit report for overhead claims other than for the purpose of verifying the actual rate of time-related overhead shall be entirely borne by the Contractor. Time-related overhead will be paid for at a lump sum price. The contract lump sum price bid for time-related overhead will be increased or decreased only as a result of suspensions or adjustments of contract time which revise the current contract completion date and which satisfy any of the following criteria: - A. Suspensions of work ordered in conformance with the provisions in Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications, except: - 1. Suspensions ordered due to weather conditions being unfavorable for the suitable prosecution of the controlling operation or operations. - 2. Suspensions ordered due to the failure on the part of the Contractor to carry out orders given, or to perform the provisions of the contract. - 3. Suspensions ordered due to factors beyond the control of and not caused by the State or the Contractor, for which the Contractor is granted extensions of time in conformance with the provisions of the third paragraph of Section 8-1.07, "Liquidated Damages," of the Standard Specifications. - 4. Other suspensions that mutually benefit the State and the Contractor. - B. Extensions of contract time granted by the State in conformance with the provisions in the fifth paragraph in Section 8-1.07, "Liquidated Damages," of the Standard Specifications and set forth in approved contract change orders, in conformance with the provisions in Section 4-1.03, "Changes," of the Standard Specifications. - C. Reductions in contract time set forth in approved contract change orders, in conformance with the provisions in Section 4-1.03, "Changes," of the Standard Specifications. For each day the number of working days bid to complete the contract, in conformance with the provisions in "Beginning Of Work, Time Of Completion And Liquidated Damages," of these special provisions, is increased or decreased due to suspensions or adjustments of contract time as specified above, the lump sum price for time-related overhead will be increased or decreased by an amount equal to the contract lump sum price bid for time-related overhead divided by the number of working days bid to complete the
contract. In the event an early completion progress schedule, as defined in "Progress Schedule (Critical Path Method)" of these special provisions, is submitted by the Contractor and approved by the Engineer, the amount of time-related overhead eligible for payment will be based on the total number of working days for the project, in conformance with the provisions in "Beginning of Work, Time of Completion and Liquidated Damages" of these special provisions, rather than the Contractor's early completion progress schedule. The contract lump sum price paid for time-related overhead shall include full compensation for time-related overhead, including the Contractor's share of costs of an independent Certified Public Accountant audit of overhead costs requested by the Engineer, as specified in these special provisions, and as directed by the Engineer. The provisions in Sections 4-1.03B, "Increased or Decreased Quantities," and 4-1.03C, "Changes in Character of the Work," of the Standard Specifications shall not apply to the contract item of time-related overhead. Full compensation for additional overhead costs involved in incentive and disincentive provisions to satisfy internal milestone or multiple calendar requirements shall be considered as included in the contract items of work involved and no additional compensation will be allowed therefor. Full compensation for additional overhead costs incurred during days of inclement weather when the contract work is extended into additional construction seasons due to delays caused by the State shall be considered as included in the time-related overhead paid during the contract working days, and no additional compensation will be allowed therefor. Full compensation for additional overhead costs involved in performing additional contract item work that is not a controlling operation shall be considered as included in the contract items of work involved, and no additional compensation will be allowed therefor. Full compensation for overhead, other than time-related overhead measured and paid for as specified above, and other than overhead costs included in the markups specified in "Force Account Payment" of these special provisions, shall be considered as included in the various items of work and no additional compensation will be allowed therefor. Overhead costs incurred by joint venture partners, subcontractors, suppliers or other parties associated with the Contractor shall be considered as included in the various overhead costs for which the Contractor is compensated, and no additional compensation will be allowed therefor. For the purpose of making partial payments pursuant to the provisions in Section 9-1.06, "Partial Payments," of the Standard Specifications, the amount of time-related overhead in each monthly partial payment will be based on the number of working days that occurred during that monthly estimate period, including compensable suspensions and right of way delays. Working days granted by contract change order due to extra work or changes in character of work, will be compensated upon completion of the contract. The amount earned per working day for time-related overhead shall be the lesser of the following amounts: A. The contract lump sum price for time-related overhead, divided by the number of working days bid to complete the contract, in conformance with the provisions in "Beginning Of Work, Time Of Completion And Liquidated Damages," of these special provisions. B. Twenty percent of the original total contract amount, divided by the number of working days bid to complete the contract, in conformance with the provisions in "Beginning Of Work, Time Of Completion And Liquidated Damages," of these special provisions. After the work has been completed, except plant establishment work, as provided in Section 20-4.08, "Plant Establishment Work," of the Standard Specifications, the amount of the total contract lump sum price for time-related overhead not yet paid will be included for payment in the first estimate made after completion of roadway construction work, in conformance with the provisions in Section 9-1.06, "Partial Payments," of the Standard Specifications. #### 10-1.12 OBSTRUCTIONS Attention is directed to Section 8-1.10, "Utility and Non-Highway Facilities," and Section 15, "Existing Highway Facilities," of the Standard Specifications and these special provisions. Attention is directed to the existence of certain underground facilities that may require special precautions be taken by the Contractor to protect the health, safety and welfare of workers and of the public. Facilities requiring special precautions include, but are not limited to: conductors of petroleum products, oxygen, chlorine, and toxic or flammable gases; natural gas in pipelines greater than 150 mm in diameter or pipelines operating at pressures greater than 415 kPa (gage); underground electric supply system conductors or cables, with potential to ground of more than 300 V, either directly buried or in a duct or conduit which do not have concentric grounded or other effectively grounded metal shields or sheaths. The Contractor shall notify the Engineer and the appropriate regional notification center for operators of subsurface installations at least 2 working days, but not more than 14 calendar days, prior to performing any excavation or other work close to any underground pipeline, conduit, duct, wire or other structure. Regional notification centers include, but are not limited to, the following: | Notification Center | Telephone Number | |---|------------------| | Underground Service Alert-Northern California (USA) | 1-800-642-2444 | | | 1-800-227-2600 | | Underground Service Alert-Southern California (USA) | 1-800-422-4133 | | | 1-800-227-2600 | Excavation required to install electrical conduits and pull boxes within 1.2 m in the areas with high risk utilities shall be performed by hand without the use of power equipment except power equipment may be used to cut and remove asphalt or portland cement pavement. #### 10-1.13 DUST CONTROL Dust control shall conform to the provisions in Section 10, "Dust Control," of the Standard Specifications and these special provisions. ## 10-1.14 MOBILIZATION Mobilization shall conform to the provisions in Section 11, "Mobilization," of the Standard Specifications. #### 10-1.15 CONSTRUCTION AREA TRAFFIC CONTROL DEVICES Flagging, signs, and all other traffic control devices furnished, installed, maintained, and removed when no longer required shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. Category 1 traffic control devices are defined as those devices that are small and lightweight (less than 45 kg), and have been in common use for many years. The devices shall be known to be crashworthy by crash testing, crash testing of similar devices, or years of demonstrable safe performance. Category 1 traffic control devices include traffic cones, plastic drums, portable delineators, and channelizers. If requested by the Engineer, the Contractor shall provide written self-certification for crashworthiness of Category 1 traffic control devices. Self-certification shall be provided by the manufacturer or Contractor and shall include the following: date, Federal Aid number (if applicable), expenditure authorization, district, county, route and kilometer post of project limits; company name of certifying vendor, street address, city, state and zip code; printed name, signature and title of certifying person; and an indication of which Category 1 traffic control devices will be used on the project. The Contractor may obtain a standard form for self-certification from the Engineer. Category 2 traffic control devices are defined as those items that are small and lightweight (less than 45 kg), that are not expected to produce significant vehicular velocity change, but may otherwise be potentially hazardous. Category 2 traffic control devices include: barricades and portable sign supports. Category 2 devices purchased on or after October 1, 2000 shall be on the Federal Highway Administration (FHWA) Acceptable Crashworthy Category 2 Hardware for Work Zones list. This list is maintained by FHWA and can be located at the following internet address: http://safety.fhwa.dot.gov/fourthlevel/hardware/listing.cfm?code=workzone. The Department maintains a secondary list at the following internet address: http://www.dot.ca.gov/hq/traffops/signtech/signdel/pdf.htm. Category 2 devices that have not received FHWA acceptance, and were purchased before October 1, 2000, may continue to be used until they complete their useful service life or until January 1, 2003, whichever comes first. Category 2 devices in use that have received FHWA acceptance shall be labeled with the FHWA acceptance letter number and the name of the manufacturer by the start of the project. The label shall be readable. After January 1, 2003, all Category 2 devices without a label shall not be used on the project. If requested by the Engineer, the Contractor shall provide a written list of Category 2 devices to be used on the project at least 5 days prior to beginning any work using the devices. For each type of device, the list shall indicate the FHWA acceptance letter number and the name of the manufacturer. Full compensation for providing self-certification for crashworthiness of Category 1 traffic control devices and for providing a list of Category 2 devices used on the project and labeling Category 2 devices as specified shall be considered as included in the prices paid for the various contract items of work requiring the use of the Category 1 or Category 2 traffic control devices and no additional compensation will be allowed therefor. #### 10-1.16 CONSTRUCTION AREA SIGNS Construction area signs shall be furnished, installed, maintained,
and removed when no longer required in conformance with the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. Attention is directed to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Type II retroreflective sheeting shall not be used on construction area sign panels. Attention is directed to "Construction Project Information Signs" of these special provisions regarding the number and type of construction project information signs to be furnished, erected, maintained, and removed and disposed of. The Contractor shall notify the appropriate regional notification center for operators of subsurface installations at least 2 working days, but not more than 14 calendar days, prior to commencing excavation for construction area sign posts. The regional notification centers include, but are not limited to, the following: | Notification Center | Telephone Number | |---|----------------------------------| | Underground Service Alert-Northern California (USA) | 1-800-642-2444
1-800-227-2600 | | Underground Service Alert-Southern California (USA) | 1-800-422-4133
1-800-227-2600 | Excavations required to install construction area signs shall be performed by hand methods without the use of power equipment, except that power equipment may be used if it is determined there are no utility facilities in the area of the proposed post holes. Sign substrates for stationary mounted construction area signs may be fabricated from fiberglass reinforced plastic as specified under "Prequalified and Tested Signing and Delineation Materials" of these special provisions. The Contractor may be required to cover certain signs during the progress of the work. Signs that are no longer required or that convey inaccurate information to the public shall be immediately covered or removed, or the information shall be corrected. Covers for construction area signs shall be of sufficient size and density to completely block out the complete face of the signs. The retroreflective face of the covered signs shall not be visible either during the day or at night. Covers shall be fastened securely so that the signs remain covered during inclement weather. Covers shall be replaced when they no longer cover the signs properly. The term "construction area signs" shall include temporary object markers required for the direction of public traffic through or around the work during construction. Object markers listed or designated on the plans as construction area signs shall be considered to be signs and shall be furnished, erected, maintained, and removed by the Contractor in the same manner specified for construction area signs. Object markers shall be stationary mounted on wood or metal posts in conformance with the details shown on the plans and the provisions in Section 82, "Markers and Delineators," of the Standard Specifications. Marker panels for Type P object markers shall conform to the provisions for sign panels for stationary mounted signs. ## 10-1.17 MAINTAINING TRAFFIC Attention is directed to Sections 7-1.08, "Public Convenience," 7-1.09, "Public Safety," and 12, "Construction Area Traffic Control Devices," of the Standard Specifications and to the provisions in "Public Safety" "Portable Changeable Message Sign", and "Temporary Traffic Screen" of these special provisions. Nothing in these special provisions shall be construed as relieving the Contractor from the responsibilities specified in Section 7-1.09. Lane closures shall conform to the provisions in section "Traffic Control System for Lane Closure" of these special provisions. In addition to the provisions set forth in "Public Safety" of these special provisions, whenever work to be performed on the freeway traveled way except for: - 1. grinding operations - 2. Installing loop detectors and sawcutting when a shadow vehicle equipped with a truck mounted attenuator (TMA) is used - 3. Installing, maintaining and removing traffic control devices, excluding temporary railing (Type K) is within 1.8 m of the adjacent traffic lane, the adjacent traffic lane shall be closed. Personal vehicles of the Contractor's employees shall not be parked within the freeway right of way. The Contractor shall notify local authorities of the Contractor's intent to begin work at least 5 days before work is begun. The Contractor shall cooperate with local authorities relative to handling traffic through the area and shall make arrangements relative to keeping the working area clear of parked vehicles. Whenever vehicles or equipment are parked on the shoulder within 1.8 m of a traffic lane, the shoulder area shall be closed as shown on the plans. Closures will be permitted only during the hours shown on Charts 1 through 33 included in this section "Maintaining Traffic", except as otherwise provided in Table Z (Lane Closure Restrictions for Designated Legal Holidays and Special Days), as shown on the Stage Construction Plans/Traffic Handling Plans or work required under Sections 7-1.08 and 7-1.09 of the Standard Specifications or elsewhere in these special provisions. Lane closures on Olympic Boulevard, Santa Monica Boulevard, Sunset Boulevard, and Wilshire Boulevard will not be allowed between November 15 and January 2. Except as otherwise provided in these special provisions, at the Contractor's option, work may be performed during the hours designated as "No lane closure permitted; no work permitted ... " shown on Charts 1 through 4, provided temporary traffic screen is installed on top of temporary railing (Type K), as shown on the plans. Temporary traffic screen shall be furnished, installed, maintained and removed at the Contractor's expense. The High Occupancy Vehicle (HOV) lane may be closed anytime the adjacent freeway lane is permitted to be closed as shown on Chart 3. Except as otherwise provided in these special provisions, Route 405 freeway may be closed to public traffic at one location in one direction at a time for the purpose of sign bridge installation and removal, and loop detector installation in conformance with the hours and requirements as shown on Charts 5 through 10. Except as otherwise provided in these special provisions, the Contractor will be permitted to close the following: - (1) Southbound off-ramp to Eastbound Wilshire Blvd. - (2) Southbound off-ramp to Westbound Wilshire Blvd. - (3) Eastbound Wilshire Blvd. on-ramp - (4) Westbound Wilshire Blvd. on-ramp for the purpose of pavement structural sections construction as shown on Stage 2A and 4A of the Stage Construction and Traffic Handling Plans for an extended period of time. The extended period of time shall begin at 10:00 p.m. Friday through 6:00 a.m. the following Monday in place of Charts 25 through 28. When the off-ramps are closed, the Contractor shall place a Portable Changeable Message Sign on the right shoulder of southbound Route 405 freeway in advance of Sunset Blvd. off-ramp by Call Box # 345 with the message, "WILSHIRE / WEST / EXIT - CLOSED / AHEAD" OR "WILSHIRE / EAST / EXIT - CLOSED / AHEAD". When the on-ramps are closed, traffic shall be detoured as specified on chart 26 and 28. Closure of on-ramps or off-ramps servicing 2 consecutive local street interchanges in the same direction of travel will not be allowed, unless otherwise permitted by the Engineer. If 2 or more consecutive on-ramps are permitted to be closed, special signs for entrance ramp closures (SP-4) as shown on the plans shall be furnished and installed at the Contractor's expense. When an off-ramp is closed, the Contractor shall furnish and erect special signs for exit ramp closures (SP-3), as shown on the plans. This sign shall be placed on the right shoulder of freeway upstream of the preceding off-ramp. Special advance notice publicity signs (SP-1), as shown on the plans, shall be posted at locations as determined by the Engineer, a minimum of 7 days prior to the ramp or connector closure. When work is not actively in progress, the SP-1 sign shall be removed or covered. Full compensation for furnishing, erecting, maintaining, and removing special advance notice publicity signs (SP-1), special portable freeway detour signs (SP-2, SP-6), and special signs for exit ramp closures (SP-3) as shown on the plans or in these special provisions shall be considered as included in the contract lump sum price paid for traffic control system and no separate payment will be made therefor. Special signs shall be disposed of as provided in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way" of the Standard Specifications at the conclusion of the project. Designated legal holidays are: January 1st, the third Monday in February, the last Monday in May, July 4th, the first Monday in September, November 11th, Thanksgiving Day, and December 25th. When a designated legal holiday falls on a Sunday, the following Monday shall be a designated legal holiday. When November 11th falls on a Saturday, the preceding Friday shall be a designated legal holiday. Special Days are Martin Luther King Day and Columbus Day. Table Z | | | | for Desig | | Closure R
egal Holic | | | Days | | | | |-------------|-----|-----|-----------|-----|-------------------------|------|-----|------|-----|-----|-----| | Each row | Thu | Fri | Sat | Sun | Mon | Tues | Wed | Thu | Fri | Sat | Sun | | represents | | Н | | | | | | | | | | | an | X | XX | XX | | | | | | | | | | individual | | | Н | | | | | | | | | | legal | | X | XX | XX | | | | | | | | | holiday or | | | | Н | | | | | | | | | special day | | X | XX | XX | XX | | | | | | | | situation | | | | | Н | | | | | | | | | | X | XX | XX | XX | | | | | | | | | | | | | SD | | | | | | | | | | | | | XX | | | | | | | | | | | | | | Н | | | | | | | | | | | | X | XX | | | | | | | | | | | | | | Н | | | | | | | | | | | | X | XX | | | | | | | | | | | |
| | Н | | | | | | | | | | | | X | XX | XX | | XX | **H** = Designated Legal Holiday SD = Special Day | ſ | | Refer to lane closure charts | |---|----|--| | | X | The full width of the traveled way shall be open for use by public traffic after 6:00 a.m. | | | XX | The full width of the traveled way shall be open for use by public traffic. | Minor deviations from the requirements of this section concerning hours of work which do not significantly change the cost of the work may be permitted upon the written request of the Contractor, if in the opinion of the Engineer, public traffic will be better served and the work expedited. These deviations shall not be adopted by the Contractor until the Engineer has approved the deviations in writing. All other modifications will be made by contract change order. | Chart No. 1 Lane Requirements and Hours of Work |---|-------|-----|------|------|-----|-----|---|------|------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|-----|-----|------|------| | Location: Northbound 405 Freeway | | | | | | | | | | | | | | | OH | nd F | 2011 | te i | 10 (|)n_ | Co | nne | ecto | | | Location: Northbound 403 Freeway | , 111 | oru | 1 01 | 1111 | Jun | | | 11-(| JU11 | ПСС | 101 | 10 | *** | sio | oui | Iu I | Cou | | | J11- | | | Cit | | | | | | | | | a.1 | | | | | | | | | | | | p.i | | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 1 | 0 1 | 1 1 | 2 | 1 : | 2 : | 3 4 | 4 : | 5 (| 5 7 | 7 8 | 3 9 |) 1 | 0 1 | 1 12 | | Mondays through Thursdays | 2 | 1 | 1 | 1 | 1 | 2 | | X | X | X | X | X | X | X | X | X | X | X | X | | | | 3 | 2 | | Fridays | 2 | 1 | 1 | 1 | 1 | 2 | | X | X | X | X | X | X | X | X | X | X | X | X | | | | 3 | 3 | | Saturdays | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | | | X | X | X | X | X | X | X | X | X | | | 3 | 3 | 2 | | Sundays | | | | | | | | | | | | | | | | 3 | | | | | | | | | | Legend: 1 Provide at least one through freeway lane open in direction of travel 2 Provide at least two through freeway lanes open in direction of travel | 3 Provide at least three through freeway lanes open in direction of travel | No lane closure permitted; work permitted anywhere that does not require freeway lane closure No lane closure permitted; no work permitted on north roadway REMARKS: Number of Through Traffic Lanes – 3 or 4 | Chart No. 2 Lane Requirements and Hours of Work |--|----------------------|-------------------------|------------------------|--------------|------------|-------------------|--------------------|------------------------------|---------------------|-------------------|-------|------------------------|--------------------|-----|-------|------|-----|------|------|-----|-----|-----|-----|------| | Location: Northbound Route 405 Fr | | | | | | | | | | | | | | | onr | nect | or | to S | Sun | set | Blv | ⁄d. | | | | | | | | | | a.1 | n. | | | | | | | | | | | p.i | m. | | | | | | | FROM HOUR TO HOUR | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 8 | 3 9 | 9 1 | 0 1 | 1 1 | 2 | 1 2 | 2 : | 3 4 | 4 : | 5 (| 6 ′ | 7 8 | 3 9 | 9 1 | 0 1 | 1 12 | | Mondays through Thursdays | 2 | 1 | 1 | 1 | 1 | 4 | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | 4 | 3 | | Fridays | 2 | 1 | 1 | 1 | 1 | 4 | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | 4 | | Saturdays | 3 | 2 | 2 | 1 | 1 | 2 | 3 | | | X | X | X | X | X | X | X | X | X | X | X | | | | 4 | | Sundays | 3 | 2 | 2 | 1 | 1 | 1 | 2 | 3 | 4 | | | X | X | X | X | X | X | X | X | X | | | 4 | 3 | | Legend: 1 Provide at least one through: 2 Provide at least two through: 3 Provide at least three through: 4 Provide at least four through: No lane closure permitted; work in the control of con | free
free
free | ewa
eew
ewa
pe | ay layay
ay layarmi | lane
lane | es o | pen
ope
per | in
n in
n in | dire
n di
dir
re tl | recti
rec
ect | on
tion
doe | of to | trav
f trav
trav | vel
nvel
vel | | e fro | eeew | vay | lan | ne c | los | ure | | | | | REMARKS: Number of Through T | raff | ĭc l | Lan | es · | - 5 | or | 5* | | | | | | | | | | | | | | | | | | ^{* -} The traffic lane which is outside of the through traffic lanes and is delineated with a double line of pavement markers as shown on "Pavement Markers and Traffic Lines Typical Details (Detail 37 series)," may be closed at same time as adjacent ramp is allowed to be closed as shown on Charts 16, 17, 21 and 22, except as otherwise provided in this section. | Chart No. 3 Lane Requirements and Hours of Work |---|--------------------|-------------------|----------------------------|--------------------|---------------------|---------------------------|--------------------|---------------------|--------------------|-------------------|-------|-----------------------|-------------|-----|-------|-----|-----|-----|------|------|-----|-----|-----|------| | Location: Southbound Route 405 Fr | | | | | | | | | | | | | | | cto | r | | | | | | | | | | | | | | | | a.ı | n. | | | | | | | | | | | p.: | m. | | | | | | | FROM HOUR TO HOUR 1 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 9 | 9 1 | 0 1 | 1 1 | 2 | 1 : | 2 . | 3 4 | 4 : | 5 (| 6 ′ | 7 8 | 3 9 | 9 1 | 0 1 | 1 12 | | Mondays through Thursdays | 2 | 1 | 1 | 1 | 2 | 4 | | X | X | X | X | X | X | X | X | X | X | X | X | | | | 4 | 3 | | Fridays | 2 | 1 | 1 | 1 | 2 | 4 | | X | X | X | X | X | X | X | X | X | X | X | X | | | | 4 | 4 | | Saturdays | 3 | 2 | 2 | 1 | 1 | 2 | 3 | 4 | | X | X | X | X | X | X | X | X | X | X | | | | 4 | 4 | | Sundays | 3 | 2 | 2 | 1 | 1 | 2 | 2 | 3 | 4 | | | X | X | X | X | X | X | X | X | X | | | 4 | 3 | | Legend: Provide at least one through: Provide at least two through: Provide at least three through Provide at least four through No lane closure permitted; w X No lane closure permitted; no | free
fre
fre | ewa
eew
ewa | ay l
vay
ay l
erm | ane
lar
lane | es o
es c
d a | pen
ope
oper
nyw | in
n in
n in | dire
n di
dir | rec
rect
hat | on
tion
ion | of to | trav
f tra
trav | vel
avel | | e fro | eew | ⁄ay | lan | ne c | losi | ure | | | | REMARKS: Number of Through Traffic Lanes – 4, 5 or 5* (Does Not Include HOV Lane) ^{* -} The traffic lane which is outside of the through traffic lanes and is delineated with a double line of pavement markers as shown on "Pavement Markers and Traffic Lines Typical Details (Detail 37 series)," may be closed at same time as adjacent connector or ramp is allowed to be closed as shown on Charts 13, 20, and 28, except as otherwise provided in this section. | Location: Southbound Route 405 Freeway; South of Route 10 Off-Connector to EB Route 10 On-Connector a.m. p.m. | Chart No. 4 Lane Requirements and Hours of Work |--
---|------------------|-------------------|--------------------|--------------------|------|-------------------|--------------------|---------------------|--------------------|-------------------|-------|------|-------------|-----|-------|-----|------|-----|------|------|-----|-----|-----|------| | FROM HOUR TO HOUR 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 Mondays through Thursdays 1 1 1 1 1 1 3 X X X X X X X X X X X X X | Location: Southbound Route 405 F | reev | vay | r; S | out | h o | f Ro | out | e 10 |) O | ff-(| Con | nec | ctor | to | EB | Ro | oute | 10 |) O1 | n-C | oni | nec | tor | | | Mondays through Thursdays 1 1 1 1 3 X X X X X X X X X | | | | | | | a.ı | n. | | | | | | | | | | | p.i | m. | | | | | | | Fridays 2 1 1 1 1 3 X X X X X X X X X X X X X X X | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 9 | 9 1 | 0 1 | 1 1 | 2 | 1 : | 2 : | 3 4 | 4 5 | 5 (| 5 7 | 7 8 | 3 9 | 1 | 0 1 | 1 12 | | Saturdays 2 2 2 1 1 2 2 3 X X X X X X X X X X X X X X X X X | Mondays through Thursdays | 1 | 1 | 1 | 1 | 1 | 3 | X | X | X | X | X | X | X | X | X | X | X | X | X | | | 3 | 3 | 2 | | Sundays 2 2 1 1 1 1 2 2 3 X X X X X X X X X X X X X X X X X | Fridays | 2 | 1 | 1 | 1 | 1 | 3 | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | 3 | 3 | | Legend: 1 Provide at least one through freeway lane open in direction of travel 2 Provide at least two through freeway lanes open in direction of travel 3 Provide at least three through freeway lanes open in direction of travel | Saturdays | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 3 | | | X | X | X | X | X | X | X | X | X | | | 3 | 3 | 3 | | Provide at least one through freeway lane open in direction of travel Provide at least two through freeway lanes open in direction of travel Provide at least three through freeway lanes open in direction of travel | Sundays | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | | X | X | X | X | X | X | X | X | X | | | | 3 | 2 | | No lane closure permitted; work permitted anywhere that does not require freeway lane closure X No lane closure permitted; no work permitted on south roadway REMARKS: Number of Through Traffic Lanes – 3 or 4 | Provide at least one through Provide at least two through Provide at least three throug No lane closure permitted; w No lane closure permitted; n | free h free vork | eewa
eew
pe | ay l
vay
erm | ane
lan
itte | es o | pen
ope
nyw | in
en in
whe | dir
n di
re t | ecti
rec
hat | ion
tion
do | of to | trav | vel
nvel | | e fro | eew | ⁄ay | lan | ue c | losı | ure | | | | | | | Coi | mp | lete | _ | | rt]
way | | - | sur | e H | oui | :s | | | | | | | | | | | | |--|-----|-----|------|------|-----|-----|-------------|------|-----|------|-----|-----|------|------|----|-----|----|-----|------|-----|----|---|------|------| | Location: Northbound Route 405 F | ree | way | /; N | lort | h o | f R | out | te 1 | 0 (| Off- | -Co | nne | ecto | r to | Sa | nta | Mo | oni | ca E | 3lv | d. | | | | | | | | | | | a.: | m. | | | | | | | | | | | p. | m. | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 1 | 1 12 | | Mondays through Thursdays | | С | C | C | C | Fridays | | С | C | С | C | Saturdays | Sundays | | | С | С | С | С | Legend: C Freeway may be closed com No complete freeway closur | • | • | | ed | • | • | • | • | • | • | • | • | • | • | • | | | • | • | • | • | • | • | | Detour traffic onto eastbound Route 10 freeway and exit at National Blvd. off-ramp; west on National Pl.; north on Westwood Blvd.; west on Santa Monica Blvd. to the on-ramp to northbound Route 405 freeway. Place a portable changeable message sign inside the closure after the last flashing arrow sign on with the message; "FREEWAY / CLOSED / AHEAD – USE E10 / TO / NATIONAL". Place a second portable changeable message sign in advance of Washington Blvd./Venice Blvd. off-ramp with the message: "FREEWAY / CLOSED / AHEAD – ROUTE 10 / TO SANTA / MONICA". A minimum of 20 special freeway detour signs shall be posted along the detour route as shown on the plan and as directed by the Engineer. Close Route 10 Connectors to northbound Route 405 freeway and detour traffic as shown on Chart 11 and Alternative 1 of Chart 12. Close Olympic Blvd./Pico Blvd. on-ramp and detour traffic as shown on Chart 14. | | | Coı | пр | lete | _ | | rt i
wa: | | - | sur | e H | ou | rs | | | | | | | | | | | | | |--|-----|-----|------|------|------|-----|-------------|------|----|-----|-----|-----|------|----|-----|-----|----|-----|-----|-----|----|---|----|----|------| | Location: Northbound Route 405 I | ree | way | /; N | lort | th o | f S | San | ta I | Иo | nic | a B | lvd | . to | Wi | lsh | ire | Bl | vd. | Of | f-R | am | p | | | | | | | | | | | a.1 | m. | | | | | | | | | | | p | .m. | | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1 12 | | Mondays through Thursdays | | C | C | С | C | Fridays | Saturdays | Sundays | | | С | С | С | С | Legend: C Freeway may be closed com No complete freeway closus | • | | | ed | • | | • | | | • | • | • | • | • | • | • | • | • | | • | • | <u>, </u> | 1 | | | Detour traffic to exit at Santa Monica Blvd. off-ramp; north on Cotner Ave. east on Santa Monica Blvd.; north on Sepulveda Blvd.; east on Wilshire Blvd. to the on-ramp to northbound Route 405 freeway. Place a portable changeable message sign at westbound Route 10 On-Connector gore area with the message; "FREEWAY / CLOSED / AHEAD - SANTA / MONICA TO / WILSHIRE". Place a second portable changeable message sign on the right shoulder of northbound Route 405 freeway in advance of the Route 10 freeway off-connector by Call Box # 284 with the message: "FREEWAY / CLOSED / AHEAD – SANTA / MONICA TO / WILSHIRE". A minimum of 15 special freeway detour signs shall be posted along the detour route as shown on the plan and as directed by the Engineer. Close eastbound Route 10 Connector to northbound 405 freeway - Detour traffic to continue on eastbound Route 10 freeway and exit at National Blvd./Overland Ave. off-ramp; west on National Pl.; north on Westwood Blvd.; west on Wilshire Blvd. to the on-ramp to northbound Route 405 freeway. Place a portable changeable message sign inside the connector closure with the message: "N 405 / EXIT / CLOSED – DETOUR / USE / NATIONAL". A minimum of 23 special freeway detour signs shall be posted along the detour route as shown on the plan and as directed by the Engineer. Close Olympic Blvd./Pico Blvd. on-ramp - Detour traffic to continue north on Cotner Ave.; east on Ohio Ave.; north on Sepulveda Blvd.; east on Wilshire Blvd. to the on-ramp to northbound Route 405 freeway. | | (| Coı | np | lete | | ha
ee | | | | ure | Н | oui | :s | | | | | | | | | | | | |--|-----|-----|-------------|------|-----|----------|-----|------|-----|-----|------|-----|------|-----|------|------|-----|-----|-----|----|---|---|--|--| | Location: Northbound Route 405 Fr | eev | way | 7; V | Vils | hir | е В | lvd | l. C | n-l | Ran | np(v | wes | stbo | unc | 1)1 | to S | Sun | set | Blv | vd | | | | | | a.m. p.m. FROM HOUR TO HOUR 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 | FROM HOUR TO HOUR 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 | | | | | | | | | | | | | | | 10 1 | 1 12 | | | | | | | | | | Mondays through Thursdays C C C C | Fridays | Saturdays | Sundays | | | С | С | C | C | Legend: C Freeway may be closed comp No complete freeway closure | | - | | ed | | | | | • | | • | • | | • | • | • | | • | • | • | · | • | | | Detour traffic to exit at westbound Wilshire Blvd. off-ramp; west on Wilshire Blvd.; north on Sepulveda Blvd. to the on-ramp to northbound Route 405 freeway at Sunset Blvd. Place a portable changeable message sign at northbound Route 405 freeway in advance of Santa Monica Blvd. off-ramp by Call Box # 304 with the message; "FREEWAY / CLOSED / AHEAD - WILSHIRE / TO / SUNSET". A minimum of 17 special freeway detour signs, as shown on the plans, shall be posted along the detour route. Close eastbound Wilshire Blvd. on-ramp and detour traffic as shown on Chart 23. Close Santa Monica Blvd. on-ramp - Detour traffic to continue north on Cotner Ave.; east on Ohio Ave.; north on Sepulveda Blvd. to northbound Route 405 freeway at Sunset Blvd. A minimum of 8 special freeway detour signs, as shown on the plans, shall be posted along the detour route. | | | Cor | np | lete | _ | | rt I
way | | | ure | H | ou | rs | | | | | | | | | | | | | |--|----|-----|----|------|---|-----|-------------|---|---|-----|----|----|----|-----|------|------|-----|------|----|-----|----|----|-----|------|----------| | Location: Southbound Route 405 F | | | _ | | | | _ | | | | | | | ils | hire | e Bl | lvd | . (w | es | tbo | un | d) | On- | Ran | np | | | | | | | | a.i | m. | | | | | | | | | | | p. | m | | | | | | | |
FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 : | 12 | | Mondays through Thursdays | C | C | C | C | Fridays | 1 | | | Saturdays | T | | | Sundays | | С | С | С | С | С | | | | | | | | | | | | | | | | | | 1 | | | Legend: C Freeway may be closed com No complete freeway closur | • | • | | ed | | | | • | • | • | | | | • | | • | • | | | • | • | • | | • | - | | REMARKS: | Detour traffic to exit at Getty Center, off-ramp; south on Sepulveda Blvd.; west on Wilshire Blvd. to the on-ramp to southbound Route 405 freeway. Place a portable changeable message sign on the right shoulder of southbound Route 405 freeway at Mulholland Dr. on-ramp gore area with the message: "FREEWAY / CLOSED / AHEAD – GETTY / TO / WILSHIRE ". A minimum of 22 special freeway detour signs, as shown on the plans, shall be posted along the detour route. Close Getty Center Dr./Sepulveda Blvd. on-ramp - Detour traffic continue south on Sepulveda Blvd.; west on Wilshire Blvd. to the on-ramp to southbound Route 405 freeway. | | | Cor | nn | leta | | Cha | | | | m | e H | Λ11 1 | rc | | | | | | | | | | | | | |----------------------------------|------|------|-----|------|---|-----|----|---|---|---|-----|--------------|----|-----|------|-----|-----|-----|-----|------|-----|-----|----|---|------| | Location: Southbound Route 405 F | | | _ | | | | | | | | | | | Ram | ıp t | o S | ant | a N | Лon | nica | ı B | lvo | d. | _ | | | | | | | | | a.: | m. | | | | | | | | | | | p | .m. | | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1 | 1 12 | | Mondays through Thursdays | C | C | C | C | Fridays | T | T | | | | | | Saturdays | Sundays | | C | C | С | С | С | Legend: | | | | | | | | • | | | , | | | | | • | | | | | | | | | | | C Freeway may be closed com | plet | ely | No complete freeway closur | e is | allo |)WC | ed | Detour traffic to exit at eastbound Wilshire Blvd. off-ramp; east on Wilshire Blvd.; south on Sepulveda Blvd.; west on Santa Monica Blvd. to the on-ramp to southbound Route 405 freeway. Place a portable changeable message sign on the right shoulder of southbound Route 405 freeway in advance of Sunset Blvd. off-ramp by Call Box # 345 with the message: "FREEWAY / CLOSED / AHEAD – WILSHIRE / TO SANTA / MONICA". A minimum of 17 special freeway detour signs, as shown on the plans, shall be posted along the detour route. Close westbound Wilshire Blvd. on-ramp and detour traffic as shown on Chart 28. Close Waterford St. on-ramp - Detour traffic to continue north on Church Ln.; east on Montana Ave.; south on Sepulveda Blvd.; west on Santa Monica Blvd. to the on-ramp to southbound Route 405 freeway. A minimum of 8 special freeway detour signs, as shown on the plans, shall be posted along the detour route. #### Chart No. 10 **Complete Freeway Closure Hours** Location: Southbound Route 405 Freeway; Santa Monica Blvd. to Eastbound Route 10 Freeway On-Connector a.m. FROM HOUR TO HOUR 8 9 10 11 12 1 5 6 7 8 9 10 11 12 12 1 2 3 6 7 2 3 Mondays through Thursdays |C|C|CFridays Saturdays Sundays C $C \mid C$ C C Legend: Freeway may be closed completely No complete freeway closure is allowed ## **REMARKS**: Detour traffic to exit at Santa Monica Blvd. off-ramp; east on Santa Monica Blvd.; south on Sepulveda Blvd. Detour southbound Route 405 traffic west on National Blvd. to the on-ramp to southbound Route 405 freeway. Detour Route 10 traffic east on National Blvd. to the on-ramps to Route 10 freeway. Place a portable changeable message sign on the right shoulder of southbound Route 405 freeway at Waterford St. on-ramp gore area with the message: "FREEWAY / CLOSED / AHEAD – SANTA / MONICA TO / ROUTE 10". Place a second portable changeable message sign on the right shoulder of southbound Route 405 freeway in advance of Getty Center Dr. off-ramp by Call Box # 357 with the message: "FREEWAY / CLOSED / AHEAD – SANTA / MONICA TO / ROUTE 10". Place a special portable freeway detour sign (SP-6) on the right shoulder of southbound Sepulveda Blvd. north of the intersection of Sepulveda and National Blvd. A minimum of 20 special freeway detour signs, as shown on the plans, shall be posted along the detour route. Close Southbound Route 405 connector to Route 10 freeway and detour traffic as shown on Alternative 1 of Chart 13. Close Santa Monica Blvd on-ramp and detour traffic as shown on Chart 20. Close eastbound Wilshire Blvd. on-ramp – Detour traffic to continue east on Wilshire Blvd.; south on Sepulveda Blvd.; west on National Blvd. to the on-ramp to southbound Route 405 freeway. Also east on National Blvd. to the on-ramps to Route 10 freeway. Close westbound Wilshire Blvd. on-ramp - Detour traffic onto south on Sepulveda Blvd.; west on National Blvd. to the on-ramp to southbound Route 405 freeway. Also east on National Blvd. to the on-ramps to Route 10 freeway. | Saturdays |--|-------|------|------|------|-----|-----|-----|------|-----|------|------|-----|----|---|---|---|---|----|----|-----|-----|---|-----|------| | Location: Eastbound Route 10 Free | way | / to | No | orth | ıbo | unc | Ro | oute | 40 |)5] | Free | ewa | ay | | | | | | | | | | | | | | | | | | | a.1 | n. | | | | | | | | | | | p. | m. | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 : | 10 1 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 8 | 3 9 | 1 | 0 1 | 1 12 | | Mondays through Thursdays | C | C | C | C | C | C | | | | | | | | | | | | | | | | C | C | C | | Fridays | C | C | C | С | C | C | | | | | | | | | | | | | | | | C | С | C | | Saturdays | C | C | C | С | С | С | C | C | C | | | | | | | | | | | | С | С | С | C | | Sundays | C | C | C | С | С | C | C | С | C | С | С | | | | | | | | | С | С | С | С | C | | C Connector may be closed Work permitted that does not | t rec | qui | re o | con | nec | tor | lan | e cl | osı | ure | | | | | | | | | | | | | | | ## **DETOUR** Detour traffic to continue on eastbound Route 10 freeway and exit at National Blvd./Overland Ave. off-ramp; west on National Pl.; north on Westwood Blyd.; west on Santa Monica Blyd. to the on-ramp to northbound Route 405 freeway. Place a portable changeable message sign inside the connector closure with the message: " N 405 / EXIT / CLOSED – DETOUR / USE / NATIONAL". A minimum of 19 special freeway detour signs, as shown on the plans, shall be posted along the detour route. | | | | Co | nn | C
ect | | t N
Clo | | | Hot | urs | | | | | | | | | | | | | | |---|--------|------|------|------|----------|-----|------------|------|-----|-----|------|----|-----|---|---|---|---|---|-----|---|-----|---|-----|------| | Location: Westbound Route 10 Fre | ewa | ıy t | o N | lort | hbo | oun | d R | out | e 4 | 05 | Fre | ew | vay | | | | | | | | | | | | | | | | | | | a.1 | n. | | | | | | | | | | | p | .m. | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 1 | 10 1 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 9 | 1 | 0 1 | 1 12 | | Mondays through Thursdays | C | C | C | C | C | С | | | | | | | | | | | | | | | | | C | С | | Fridays | С | C | C | С | С | С | | | | | | | | | | | | | | | | | | C | | Saturdays | С | С | C | С | С | С | С | | | | | | | | | | | | | | | | C | C | | Sundays | С | С | C | С | С | С | С | С | C | | | | | | | | | | | | | | C | C | | Legend: C Connector may be closed Work permitted that does no | ot red | qui | re o | con | nec | tor | lan | e cl | los | ure | • | • | • | • | • | • | • | • | • | • | • | • | | | ## **REMARKS**: ## **DETOUR** (Alternative 1) Detour traffic to continue on westbound Route 10 freeway and exit at Bundy Drive (north) off-ramp; north on Bundy Dr., east on Pico Blvd., north on Cotner Ave. to the on-ramp to northbound Route 405 freeway. Place a Portable Changeable Message sign on the right shoulder of westbound Route 10 freeway in advance of the connector by Call Box #63 the closure with the message "N 405 / EXIT / CLOSED – DETOUR / USE / BUNDY DR". A minimum of 14 special freeway detour signs, as shown on the plans, shall be posted along the detour route. # **DETOUR** (Alternative 2) Detour traffic to exit at Overland Ave. off-ramp; west on National Blvd.; north on Sepulveda Blvd.; west on Santa Monica Blvd. to the on-ramp to northbound Route 405 freeway. Place a portable changeable message sign on the right shoulder of westbound Route 10 freeway in advance of the connector by Call Box # 75 with the message: "N 405 / EXIT / CLOSED – DETOUR / USE / OVERLAND". A minimum of 19 special freeway detour signs, as shown on the plans, shall be posted along the detour route. | | | | C | nn | C | | | lo.
osu | | Ho | urs | | | | | | | | | | | | | | |--|-------|-----|------|-----|-----|-----|-----|------------|-----|-----|------|------|---|---|---|-----|---|---|-----|---|---|-----|-----|------| | Location: Southbound Route 405 F | reev | vay | / to | Ro | ute | 10 | Fr | eev | ay | | | | | | | | | | | | | | | | | ROM HOUR TO HOUR 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 1 | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 1 | 11 1 | 2 | 1 | 2 | 3 . | 4 | 5 | 6 ′ | 7 | 8 | 9 1 | 0 1 | 1 12 | | Mondays through Thursdays | С | C | C | C | C | | | | | | | | | | | | | |
| | | | | | | Fridays | С | С | C | C | C | Saturdays | | С | C | C | C | С | С | | | | | | | | | | | | | | | | | | | Sundays | | C | C | C | C | C | C | C | | | | | | | | | | | | | | | | | | Legend: C Connector may be closed Work permitted that does no | t rec | qui | re o | con | nec | tor | lan | e c | los | ure | | | | | | | | • | | | | | | | # **DETOUR** (Alternative 1) Detour traffic to exit at Santa Monica Blvd. off-ramp; east on Santa Monica Blvd.; south on Sepulveda Blvd.; east on National Blvd. to the on-ramps to Route 10 freeway. Place a portable changeable message sign on the right shoulder of southbound Route 405 freeway in advance of the Santa Monica Blvd. off-ramp by Call Box # 315 with the message: "RTE 10 / EXITS / CLOSED – DETOUR / SANTA / MONICA". A minimum of 19 special freeway detour signs, as shown on the plans, shall be posted along the detour route. ## **DETOUR (Alternative 2)** Detour traffic to continue on southbound Route 405 and exit at Venice Blvd. off-ramp; north on Sawtelle Blvd.; east on Venice Blvd.; south on Sepulveda Blvd. to the on-ramp to northbound Route 405 freeway. Place a portable changeable message sign on the right shoulder of southbound Route 405 freeway in advance of the Santa Monica Blvd. off-ramp by Call Box # 315 with the message: "RTE 10 / EXITS / CLOSED – DETOUR / USE / VENICE". A minimum of 12 special freeway detour signs, as shown on the plans, shall be posted along the detour route. | | | Ra | Ch
mp (| art I
Clos | | | ur | s | | | | | | | | | | | | | | |--|----------|-------|------------|---------------|------|------|------|------|------|-----|----|---|---|---|----|----|---|-----|-----|------|----| | Location: Northbound Route 405 f | reeway | on-ra | mp fi | om | Pico |)/(| Oly | mp | ic] | Blv | d. | | | | | | | | | | | | | | | í | a.m. | | | | | | | | | | | p. | m. | | | | | | | FROM HOUR TO HOUR | 12 1 2 | 2 3 | 4 5 | 6 | 7 | 8 | 9 1 | 10 1 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 9 |) 1 | 0 11 | 12 | | Mondays through Thursdays C C C C C C C C C C C | | | | | | | | | | | | | | | C. | C | | | | | | | Fridays C C C C C C C | | | | | | | | | | | | | | | C | | | | | | | | Fridays C </td <td>C</td> <td>C</td> | | | | | | | | | | | | | | | C | C | | | | | | | Sundays | C C | C C | C | CC | С | С | С | С | | | | | | | | | С | С | C | C | C | | Legend: C Ramp may be closed Work permitted anywhere the | nat does | not r | equir | e rai | mp l | lane | e cl | osu | ire | | | | | | | | | | | | | | REMARKS: Detour traffic to continue north on Monica Blvd. A minimum of 6 spe detour route. | Chai | rt N | o. 1 | 15 |--|-------|--|------|------|--|--------------|-------------|------|------------|----------|----------|---------|---|-----------|-----------|---|-----|----|----|-----------|---|-----------|------|-----|-----|---| | | | | | | mp Cl | Location: Southbound Route 405 fi | reew | ay (| off- | ra | mp to | Oly | mp | ic / | Pi | co | Blv | ≀d. | a.ı | | | | | | | | | | | | | • | m. | | | | | | | | | | 12 | | | | | | 7 { | 3 9 | 9] | 10 1 | 1 | 12 | 1 | 2 | 3 | 4 | . 5 | 5 | 6 | 7 | - | _ | | | 11 | 2 | | Mondays through Thursdays | C | | C | C | | | | | Fridays | C | | | C | | | | | | | | | | | | | | | | | | | C | C | C | | | Saturdays | C | | | C | | | C | | | | | | | | | | | | | | | | C | C | | | | Sundays | C | C | C | C | CC | C | C | C | C | | | | | | | | | | C | | C | C | C | C | C | | | Legend: C Ramp may be closed Work permitted anywhere the | nat d | loes | not | t re | equire | ram | p la | ane | e cl | osu | re | | | | | | | | | | | | | | | | | REMARKS: | _ | T. |) | Char | | | | | ~ | | | | | | | | | | | | | | | | | | Location: Northbound Route 405 ft | roou | 1937 | | | mp Cl | | | | | | lve | 1 | | | | | | | | | | | _ | | | _ | | Location: Ivortinouna Route 403 II | T | ray · | J11- | ıa | | | ıa 1 | VIO | | аБ | 11 V C | ı.
 | | | | | | n | m | | | | _ | | | Τ | | FROM HOUR TO HOUR | 12 | 1 3 | . 2 | ! | a.1
4 5 | in.
6 7 | 7 (| 2 (| o 1 | ۱۸ 1 | 1 | 12 | 1 | 2 | 2 | 1 | 4 | • | m. | | Q | Ω | 1 | Λ 1 | 1 1 | 1 | | Mondays through Thursdays | C | | C | | | 0 <i>/</i> | | | , , | | _ | 12 | 1 | T | Ť | 丁 | | | T | Ť | | Ť | | 0 1 | 1 1 | Í | | Fridays | C | | | C | | | | | | | | | | | - | - | | | | + | | _ | | | | | | Saturdays | + | | | C | | | | | | | | | | | _ | | | | | | | _ | | | | | | Sundays | | | | C | C C | С | Legend: | | | | | | | | | | <u> </u> | | | | | _ | | | | | | | | | | | | | C Ramp may be closed | Work permitted anywhere th | nat d | loes | not | t re | equire | ram | p la | ane | e cl | osu | re | | | | | | | | | | | | | | | | | REMARKS: | CI | 4 N T | | 17 | F | ิเล | Chai
mp Cl | | | | ur | S | | | | | | | | | | | | | | | | | | Location: Northbound Route 405 fi | reew | /ay (| | | | | | | | | lvc | 1. | | | | | | | | | | _ | | | | _ | | | | | | | a.1 | m. | | | | | | | | | | | | p. | m. | | | | | | | Τ | | FROM HOUR TO HOUR | 12 | 1 2 | 2 3 | , . | | 6 7 | 7 8 | 3 9 | 9 1 | 10 1 | 1 | 1
12 | 1 | 2 | 3 | 4 | . 4 | • | 6 | 7 | 8 | 9 |) 1 | 0 1 | 1 1 | 2 | | Mondays through Thursdays | C | C | С | С | С | C | | | Fridays | С | С | С | С | СС | \dagger | | | | | | l | | \dagger | \dagger | 1 | | | T | \dagger | 7 | \exists | | | | | | Saturdays | С | С | С | С | СС | С | С | | | | | | | | | | | | | | | | | | | • | | Sundays | С | С | С | С | СС | С | С | С | | | | | | | | | | | | | | | | С | С | | | Legend: C Ramp may be closed | | <u> </u> | l | | <u> </u> | 1 | | | | 1 | <u> </u> | 1 | 1 | | | | | | 1 | | | I | | | 1 | l | | Trainp may be closed | Work permitted anywhere th | nat d | loes | not | t re | equire | ram | p la | ane | e cl | osu | re | | | | | | | | | | | | | | | | | REMARKS: When the ramp is clo
off-ramp by Call Box # 286 with the | al I | Blv | d. | _ | | | | | | Ra | _ | har
Cl | | | | ur | S | | | | | | | | | | | | | | |---|-------|------|------|-------|-----|-----------|------|------|------|------|------|-----|-----|---|---|---|---|---|-----|---|---|-----|-----|------| | Location: Northbound Route 405 | freev | vay | on | -rai | np | fro | m S | San | ta N | Лоі | nica | а В | lvd | | | | | | | | | | | | | | | | | | | a.ı | n. | | | | | | | | | | | p | .m. | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 9 | 9 1 | 0 1 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 1 | 0 1 | 1 12 | | Mondays through Thursdays | С | C | C | C | C | C | | | | | | | | | | | | | | | | | C | С | | Fridays | С | С | C | C | C | C | | | | | | | | | | | | | | | | | C | C | | Saturdays | С | C | С | С | С | С | C | С | C | | | | | | | | | | | | | | С | С | | Sundays | С | С | С | С | С | С | C | С | C | С | | | | | | | | | | | С | С | С | С | | C Ramp may be closed Work permitted anywhere to | hat o | loe | s no | ot re | equ | ire | ran | np] | ane | e cl | osu | ıre | | | | | | | | | | | | | | REMARKS: Detour traffic to continue north or Blvd. to the on-ramp to northbour shown on the plans, shall be poste | d Ro | oute | 40 |)5 f | ree | way | 7. A | M m | | | | | | | | | | | | | | | | ire | | | | | | Ra | | har
Cl | | | 19
Ho | urs | S | | | | | | | | | | | | | | |--|-------|-----|------|-------|-----|-----------|-----|-------|----------|-------|-----|-----|----|-----|---|-----|---|----|-----|---|-----|------|-----|------| | Location: Southbound Route 405 f | reev | vay | off | -ra | mp | to | San | ıta İ | Mo | nic | а В | lvd | l. | | | | | | | | | | | | | | | | | | | a.r | n. | | | | | | | | | | | p. | m. | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 (| 6 | 7 | 8 9 | 9 1 | 0 1 | 1 1 | 12 | 1 : | 2 | 3 4 | 4 | 5 | 6 ′ | 7 | 8 9 |
) 10 |) 1 | 1 12 | | Mondays through Thursdays | С | C | C | C | C | C | | | | | | | | | | | | | | | | C | C | С | | Fridays | С | С | С | С | C | C | | | | | | | | | | | | | | | | | C | C | | Saturdays | С | С | С | С | C | C | C | С | | | | | | | | | | | | | | | C | C | | Sundays | С | С | C | С | С | C | C | С | С | С | | | | | | | | | | | С | C | C | С | | Legend: C Ramp may be closed Work permitted anywhere the | nat d | loe | s no | ot re | equ | ire | ran | np l | ane | e cle | osu | re | | | | | | | | | | | | | | REMARKS: | Chart No. 20
Ramp Closure Hours |--|----|------|---|---|---|---|---|---|---|---|------|------|----|---|---|---|---|---|---|---|---|---|----|----|----| | Location: Southbound Route 405 freeway on-ramp from Santa Monica Blvd. | a.m. | | | | | | | | | | p.m. | | | | | | | | | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 1 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | Mondays through Thursdays | С | С | С | C | C | C | | | | | | | | | | | | | | | | | C | C | 1 | | Fridays | С | С | С | С | C | С | | | | | | | | | | | | | | | | | | C | 7 | | Saturdays | С | С | С | С | С | С | С | С | | | | | | | | | | | | | | | | C | 7 | | Sundays | С | С | С | С | С | С | С | С | С | | | | | | | | | | | | | | + | C | 7 | | Legend: C Ramp may be closed Work permitted anywhere that does not require ramp lane closure | REMARKS: Detour traffic to continue west on Santa Monica Blvd.; south on Sawtelle Blvd.; east on National Blvd. to the on-ramp to southbound Route 405 freeway. A minimum of 15 special freeway detour signs, as shown on the plans, shall be posted along the detour route. | Chart No. 21 Ramp Closure Hours Location: Northbound Route 405 freeway off-ramp to Wilshire Blvd. | Chart No. 21
Ramp Closure Hours |--|---|-----|------|-------|-----|-----|-----|----|-----|------|------|------|----|---|---|---|---|---|---|---|-----|---|-----|------| | Location: Northbound Route 405 f | Location: Northbound Route 405 freeway off-ramp to Wilshire Blvd. | a.m. | | | | | | | | | | | p.m. | | | | | | | | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 1 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 3 9 | 1 | 0 1 | 1 12 | | Mondays through Thursdays | С | C | C | C | C | Fridays | С | C | С | С | C | Saturdays | С | C | С | С | C | C | Sundays | С | C | C | C | C | C | Legend: C Ramp may be closed Work permitted anywhere t | hat d | loe | s no | ot re | equ | ire | ran | np | lan | e cl | losu | ıre | | | | | | | | | | | | | | REMARKS: | Ra | - | | t N
osu | | | our | s | | | | | | | | | | | | | | |--|-------|-----|------|-------|-----|-----|------------|------|-----|------|------|----|----|---|---|---|---|---|-----|-----|------|-----|------|------| | Location: Northbound Route 405 fr | eev | vay | of | -ra | mp | to | Wi | lshi | re | Blv | d. | a.r | n. | | | | | | | | | | | p | .m. | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 (| 6 | 7 | 8 | 9 1 | 10 1 | 1 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 1 | 0 1 | 1 12 | | Mondays through Thursdays | С | C | C | C | C | | | | | | | | | | | | | | | | | | C | С | | Fridays | С | С | С | C | С | Saturdays | С | С | С | C | С | C | C | C | | | | | | | | | | | | | | | | | | Sundays | С | С | С | C | С | C | C | C | | | | | | | | | | | | | | | C | C | | Legend: C Ramp may be closed Work permitted anywhere the | nat o | doe | s no | ot re | equ | ire | ran | np l | lan | e cl | osu | re | | | | | | | | | • | | | | | REMARKS: When the ramp is close Blvd. off-ramp by Call Box # 304 v | | | | | | | | • | _ | | | | _ | • | - | | | | e o | f S | anta | М | onic | a | | | | | | Ra | _ | | | lo. : | | ur | s | | | | | | | | | | | | | |---|-------|------|------|-------|-----|-----|-----|-------|-----|------|-----|------|-----|----|------|--|----|----|---|---|---|---|---| | Location: Northbound Route 405 ft | reew | ay | on | -rai | np | fro | m I | East | boı | unc | l W | ilsł | ire | Bl | vd. | | | | | | | | | | | | | | | | a.1 | n. | | | | | | | | | | p. | m. | | | | | | | FROM HOUR TO HOUR 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 | | | | | | | | | | | | | | | 1 12 | | | | | | | | | | Mondays through Thursdays C C C C C C C C C | | | | | | | | | | | | | | | С | | | | | | | | | | Fridays | С | C | С | С | С | С | | | | | | | | | | | | | | | C | С | С | | Saturdays | С | С | С | С | С | С | С | С | C | С | С | | | | | | | С | C | С | C | С | С | | Sundays | С | С | С | С | С | С | С | С | C | С | С | С | С | С | | | | С | C | С | C | С | С | | Legend: C Ramp may be closed Work permitted anywhere the | nat d | loes | s no | ot re | equ | ire | ran | np l | ane | e cl | osu | re | | | | | | | | | | | | | REMARKS:
Detour traffic onto north on Sepulv
A minimum of 15 special freeway | lo. : | | | | | | | | | | | | | | | | | |---|------|------|------|-------|---------|-----|-----|--------------|------|------|------|-------|------|-----|-----|---|-----|----|-----|-----|-----|-----|------|------| | I and an New House I Day at A05 Co | | | | | mp | | | | | | | 7:1- | 1. 1 | . D | 11 | 1 | | | | | _ | | | | | Location: Northbound Route 405 fr | eev | vay | on | -rai | mp | iro | m v | wes | stbo | un | a w | / 11S | nır | e B | Iva | | | | | | | | | | | | | | | | | a.1 | n. | | | | | | | | | | | p. | m. | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 1 | 0 1 | 1 1 | 2 | 1 | 2 | 3 | 4 : | 5 | 6 ′ | 7 8 | 3 9 | 9 1 | 0 11 | 1 12 | | Mondays through Thursdays | C | C | C | C | C | C | | | | | | | | | | | | | | | | | C | C | | Fridays | С | С | C | C | С | С | Saturdays | C | С | C | С | C | С | C | C | C | C | | | | | | | | | | | | | | | | Sundays | С | С | С | С | С | С | С | С | С | С | С | С | | | | | | | | | | С | С | C | | C Ramp may be closed Work permitted anywhere the | at c | loes | s no | ot re | equ | ire | ran | np l | ane | e cl | osu | re | | | | | | | | | | | | | | REMARKS: Detour traffic to continue west on V Route 405 freeway at Sunset Blvd. be posted along the detour route. | nall | Ra | C
mp | | | lo. :
ire | | urs | S | | | | | | | | | | | | | | | Location: Southbound Route 405 fr | eev | vay | of | f-ra | mp | to | eas | tbo | unc | l W | ilsł | nire | Bl | vd. | | | | | | | | | | | | | | | | | | a.1 | n. | | | | | | | | | | | p. | m. | | | | | | | | | | | | _ | | rt I |---|------|-----|------|-------|-----|-----|------|------|-----|-----|------|------|----|-----|---|---|---|---|-----|----|---|---|----|---|------| | | | | | Rai | mp | Cl | ost | ıre | Ho | ur | `S | | | | | | | | | | | | | | | | Location: Southbound Route 405 fr | eew | ay | off | -rai | mp | to | eas | tbo | unc | l V | Vils | hire | B | lvd | | | | | | | | | | | | | | | | | | | a.1 | m. | | | | | | | | | | | ŗ | o.n | n. | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 4 | 4 : | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1 | 1 12 | | Mondays through Thursdays | C | C | C | C | C | C | | | | | | | | | | | | | | | | C | С | C | С | | Fridays | C | C | C | С | C | С | | | | | | | | | | | | | | | | С | С | С | С | | Saturdays | C | C | C | C | C | C | C | C | | | | | | | | | | | | | | | С | C | C | | Sundays | C | C | C | C | C | C | C | C | C | | | | | | | | | | | | | C | С | C | C | | Legend: C Ramp may be closed Work permitted anywhere th | at d | loe | s no | ot re | equ | ire | ran | np l | ane | e c | losu | ıre | | | | | | | | | | | | | | | REMARKS: | Ra | C
mp | | | lo.
ire | | ur | S | | | | | | | | | | | - | | |--|------|-----|-------------|------|---------|-----|-----|------------|-----|------|-----|------|------|----|-----|------|---|-----|---|---|---|---|---| | Location: Southbound Route 405 fr | eev | vay | on | -rai | mp | fro | m e | east | boı | und | l W | ilsł | nire | Bl | vd. | | | | | | | | | | | | | | | | a.ı | n. | | | | | | | | | | p | .m. | | | | | | | FROM HOUR TO HOUR 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 1 12 1 2 3 4 5 6 7 8 9 10 1 1 12 1 2 3 4 5 6 7
8 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | 0 1 | 1 12 | | | | | | | | | Mondays through Thursdays | C | С | C | C | C | C | | | | | | | | | | | | | | | | C | C | | Fridays | С | C | С | С | С | C | | | | | | | | | | | | | | | | C | С | | Saturdays | С | С | С | С | С | C | С | С | | | | | | | | | | | | С | C | C | С | | Sundays | С | С | С | С | С | C | С | С | С | С | | | | | | | | С | С | С | C | C | С | | Legend: | C Ramp may be closed | Work permitted anywhere th | at c | loe | s no | ot r | equ | ire | ran | np l | ane | e cl | osi | ıre | | | | | | | | | | | | | REMARKS: Detour traffic to continue east on W on-ramp to southbound Route 405 plans, shall be posted along the deto | free | wa | y. <i>I</i> | Ra | C
mp | har
Cl | | | | urs | S | | | | | | | | | | | | | | |--|-------|-----|------|-------|---------|-----------|-----|------|-----|------|------|------|-----|-----|----|---|---|----|----|---|-----|----|----|----| | Location: Southbound Route 405 f | reew | ay | off | f-ra | mp | to | wes | stbo | oun | d V | Vils | shii | e E | lvo | l. | | | | | | | | | | | | | | | | | a.ı | n. | | | | | | | | | | | p. | m. | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 1 | 0 1 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 9 | 10 | 11 | 12 | | Mondays through Thursdays | С | C | C | C | С | C | | | | | | | | | | | | | | | С | C | C | C | | Fridays | C | C | C | C | C | C | | | | | | | | | | | | | | | С | C | C | С | | Saturdays | C | C | С | C | C | C | C | С | | | | | | | | | | | | | С | C | C | С | | Sundays | C | C | C | C | C | C | C | С | С | C | С | | | | | | | | | | С | C | C | C | | Legend: C Ramp may be closed Work permitted anywhere the | nat d | loe | s no | ot re | equ | ire | ran | np l | ane | e cl | osu | ire | | | | | | | • | | | | | | | REMARKS: | Ra | Cl
mp | | t N
ost | | | our | S | | | | | | | | | | | | | | | |--|-------|-----|------|-------|----------|-----|------------|------|------|------|-----|------|------|-----|-----|---|---|---|----|---|---|---|----|----|----| | Location: Southbound Route 405 f | reev | vay | on | -rai | np | fro | m v | ves | tbo | unc | l W | /ils | hire | e B | lvd | | | | | | | | | | | | | | | | | | a.ı | n. | | | | | | | | | | | p | .m | | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 | 4 : | 5 | 6 | 7 | 8 | 9 1 | 0 1 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | Mondays through Thursdays | С | C | C | C | C | C | | | | | | | | | | | | | | | | | C | 1 | 7) | | Fridays | С | C | C | C | C | C | Saturdays | С | С | С | С | С | C | С | С | | | | | | | | | | | | | | | | | | | Sundays | С | С | С | C | C | C | C | C | С | | | | | | | | | | | | | | | | | | Legend: C Ramp may be closed Work permitted anywhere t | hat c | loe | s no | ot re | equ | ire | ran | np : | lane | e cl | osu | ıre | | | | | | | | | | | | | _ | | REMARKS: Detour traffic to continue west on ramp to southbound Route 405 fre | | | | | - | Rai | C
mp | har
Cl | | | | urs | 3 | | | | | | | | | | | | | | |---|---|-----|------|-------|---------|-----------|-----|------|-----|-------|-----|----|---|---|---|-----|-----|------|---|---|---|---|---|---| | Location: Southbound Route 405 fr | eew | vay | on | -rai | np | fro | m V | Wat | erf | ord | St. | | | | | | | | | | | | | | | a.m. p.m. p.m. | FROM HOUR TO HOUR | 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 1 | | | | | | | | | | | | | | |) 1 | 0 1 | 1 12 | | | | | | | | Mondays through Thursdays | | | | | | | | | | | | | | | | C | C | С | | | | | | | | Fridays | С | C | C | С | C | C | | | | C | C | С | C | C | C | | | | | C | C | C | C | C | | Saturdays | С | С | C | С | С | C | C | С | C | C | C | С | C | C | C | C | C | C | C | С | C | C | C | C | | Sundays | С | С | С | C | С | С | C | С | C | С | С | С | C | C | C | C | C | C | С | С | С | C | C | C | | Legend: C Ramp may be closed Work permitted anywhere th | at c | loe | s no | ot re | equ | ire | ran | np l | ane | e ele | osu | re | | | | | | | | | | | | | # REMARKS: shall be posted along the detour route. Detour traffic to continue north on Church Ln.; east on Montana Ave.; south on Sepulveda Blvd.; west on Wilshire Blvd. to the on-ramp to southbound Route 405 freeway. A minimum of 14 special freeway detour signs, as shown on the plans, shall be posted along the detour route. The full width of the traveled way shall be open for use by public traffic when construction operations are not actively in progress. | | | | | Ra | - | | t N
osu | | 30
Ho | ur | S | | | | | | | | | | | | | |--|--------------------------------------|-----|------|-------|-----|-----|------------|-----|----------|------|-----|-----|-----|----|-----|-------|----|-----|-----|--|--|---|---| | Location: Southbound Route 405 fr | eev | vay | of | f-ra | mp | to | wes | stb | oun | d S | uns | set | Blv | d. | / C | hur | ch | Ln. | | | | | | | | | | | | | a.ı | n. | | | | | | | | | | | p | .m. | | | | | | FROM HOUR TO HOUR 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 Mondays through Thursdays C C C C C C C C C | | | | | | | | | | | | | | | 10 | 11 12 | | | | | | | | | Mondays through Thursdays | ondays through Thursdays C C C C C C | | | | | | | | | | | | | | | C | C | | | | | | | | Fridays | С | С | C | С | C | C | | | | | | | | | | | | | | | | | C | | Saturdays | С | С | C | С | C | C | C | С | | | | | | | | | | | | | | | | | Sundays | С | C | C | C | C | C | C | С | С | | | | | | | | | | | | | C | C | | Legend: C Ramp may be closed Work permitted anywhere th | at c | loe | s no | ot re | equ | ire | ran | пр | lane | e cl | osu | re | | | | | | | | | | | | | | | | | Rai | - | | | lo.
ire | | urs | 5 | | | | | | | | | | | | | | |-----------------------------------|-----|-----|----|------|-----|------|-----|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|-----|------| | Location: Southbound Route 405 fr | eev | vay | on | -rar | np | froi | m e | ast | bou | ınd | Su | nse | t B | vd. | | | | | | | | | | | | | | | | | | a.r | n. | | | | | | | | | | | p.ı | m. | | | | | | | FROM HOUR TO HOUR | 12 | 1 | 2 | 3 4 | 4 : | 5 (| 6 | 7 | 8 9 | 9 1 | 0 1 | 1 1 | 2 | 1 2 | 2 3 | 3 4 | 1 5 | 5 6 | 5 7 | 7 8 | 3 9 | 1 | 0 1 | 1 12 | | Mondays through Thursdays | C | C | C | C | C | C | | | | C | C | C | C | C | C | | | | | C | C | C | C | С | | Fridays | С | C | C | C | C | C | | | | C | C | C | C | C | C | | | | | C | C | C | C | С | | Saturdays | С | C | С | C | C | C | C | С | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C | С | | Sundays | С | C | С | C | C | C | C | С | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C | С | | Legend: C Ramp may be closed | # REMARKS: Detour traffic onto north on Church Ln.; south on Sepulveda Blvd.; west on Wilshire Blvd. on-ramp to southbound Route 405 freeway. A minimum of 17 special freeway detour signs, as shown on the plans, shall be posted along the detour route. Work permitted anywhere that does not require ramp lane closure The full width of the traveled way shall be open for use by public traffic when construction operations are not actively in progress. | | | | | Ra | _ | | | lo. :
ire | | urs | S | | | | | | | | | | | | | | |----------------------------------|--|------|------|-------|-----|-----|-----|--------------|-----|------|------|------|------|------|------|------|-----|---|---|---|---|---|---|---| | Location: Southbound Route 405 f | reew | ay | on | -rai | np | fro | m v | ves | tbo | unc | l Sı | ınse | et E | Blvd | l. / | Chi | urc | h | | | | | | | | | a.m. p.m. FROM HOUR TO HOUR 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 | 0 1 | 1 12 | | | | | | | | | | Mondays through Thursdays | lays through Thursdays C C C C C C C C C C C C | | | | | | | | | | | | | | | C | C | С | | | | | | | | Fridays | C | C | С | С | C | C | | | | | | | | | | | | | | C | C | C | С | C | | Saturdays | С | C | С | С | С | С | C | С | С | C | С | C | С | C | C | C | С | С | С | С | С | C | C | C | | Sundays | С | C | С | С | C | C | C | С | C | C | С | C | C | C | C | C | С | С | С | C | C | C | С | C | | Legend: | C Ramp may be closed | Work permitted anywhere the | nat d | loes | s no | ot re | equ | ire | ran | np l | ane | e cl | osu | re | | | | | | | | | | | | | Detour traffic to continue north on Church Ln.; south on Sepulveda Blvd.; west on Wilshire Blvd. to the onramp to southbound Route 405 freeway. A minimum of 14 special freeway detour signs, as shown on the plans, shall be posted along the detour route. The full width of the traveled way shall be open for use by public traffic when construction operations are not actively in progress. | | | | | Ra | _ | har
Cl | | | - | urs | S | | | | | | | | | | | | | |
---|---|------|------|-------|-----|-----------|-----|------|-----|------|-----|-----|-----|-----|------|------|-----|-----|---|---|---|---|---|---| | Location: Southbound Route 405 f | reev | vay | on | -rai | np | fro | m (| Gett | y C | Cen | ter | Dr. | / S | ері | ılve | eda | Blv | vd. | | | | | | | | | a.m. p.m. p.m. FROM HOUR TO HOUR 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 1 | 0 1 | 1 12 | | | | | | | | | | Mondays through Thursdays C <td>C</td> <td>С</td> | | | | | | | | | | | | | | | C | С | | | | | | | | | | Fridays | | | | | | | | | | | | | | | | C | C | | | | | | | | | Saturdays | С | С | С | С | С | С | C | С | C | С | С | С | С | C | C | С | C | C | С | С | C | C | C | C | | Sundays | С | C | C | C | C | C | C | С | C | C | C | С | C | С | C | C | C | C | C | C | С | C | C | C | | C Ramp may be closed Work permitted anywhere the | nat c | loes | s no | ot re | equ | ire | ran | np l | ane | e cl | osu | re | | | | | | | | | | | | | | REMARKS: | Detour traffic continue south on Sepulveda Blvd.; south on Church Ln. to the on-ramp to southbound Route 405 freeway at Sunset Blvd. / Church Ln. A minimum of 13 special freeway detour signs, as shown on the plans, shall be posted along the detour route. The full width of the traveled way shall be open for use by public traffic when construction operations are not actively in progress. Pedestrian access facilities shall be provided through construction areas within the right of way as shown on the plans and as specified herein. Pedestrian walkways shall be surfaced with asphalt concrete, portland cement concrete or timber. The surface shall be skid resistant and free of irregularities. Hand railings shall be provided on each side of pedestrian walkways as necessary to protect pedestrian traffic from hazards due to construction operations or adjacent vehicular traffic. Protective overhead covering shall be provided as necessary to insure protection from falling objects and drip from overhead In addition to the required openings through falsework, pedestrian facilities shall be provided during pile driving, footing, wall, and other bridge construction operations. At least one walkway shall be available at all times. If the Contractor's operations require the closure of one walkway, then another walkway shall be provided nearby, off the traveled roadway. Railings shall be constructed of wood, S4S, and shall be painted white. Railings and walkways shall be maintained in good condition. Walkways shall be kept clear of obstructions. Full compensation for providing pedestrian facilities shall be considered as included in the prices paid for the various contract items of work involved and no additional compensation will be allowed therefor. Precast concrete members shall not be cast, assembled or stored within the right of way of Route 405. During work on the members, no workers, equipment or materials shall occupy any area within 1.2 m of the edge of the existing pavement except as permitted during lane closures. Erection of girders over Olympic Blvd. Route 405/2 Separation, Ohio Ave, Wilshire Blvd and Constitution Ave shall be undertaken on one span at a time. During girder erection, public traffic in the lanes over which girders are being placed shall be routed around the work area by means of a local detour as shown on the plans. Formwork for closure pours and protective covers shall be supported on the existing exterior girder and adjacent precast girder, and the formwork and protective covers shall not have less vertical clearance above any traffic lane or shoulder that is open to public traffic as shown below: OLYMPIC BOULEVARD UNDERCROSSING 4.6 meters ROUTE 405/2 SEPARATION 4.6 meters OHIO AVENUE UNDERCROSSING 4.6 meters WILSHIRE BOULEVARD UNDERCROSSING 4.6 meters CONSTITUTION AVENUE UNDERCROSSING 4.4 meters Regardless of the construction procedure, methods and equipment selected, the Contractor shall have necessary materials and equipment on the site to erect the girders in any one span prior to detouring public traffic, and shall erect the girders in an expeditious manner in order that inconvenience to public traffic will be at a minimum. ## 10-1.18 CLOSURE REQUIREMENTS AND CONDITIONS Lane closures shall conform to the provisions in "Maintaining Traffic" of these special provisions and these special provisions. The term closure, as used herein, is defined as the closure of a traffic lane or lanes, including ramp or connector lanes, within a single traffic control system. ## **CLOSURE SCHEDULE** By noon Monday, the Contractor shall submit a written schedule of planned closures for the following week period, defined as Friday noon through the following Friday noon. The Closure Schedule shall show the locations and times when the proposed closures are to be in effect. The Contractor shall use the Closure Schedule request forms furnished by the Engineer. Closure Schedules submitted to the Engineer with incomplete, unintelligible or inaccurate information will be returned for correction and resubmittal. The Contractor will be notified of disapproved closures or closures that require coordination with other parties as a condition of approval. Amendments to the Closure Schedule, including adding additional closures, shall be submitted to the Engineer, in writing, by noon at least 3 working days in advance of a planned closure. Approval of amendments to the Closure Schedule will be at the discretion of the Engineer. The Contractor shall cancel closures not needed 2 working days prior to the date on which the closure is to be made. Closures that are cancelled due to unsuitable weather may be rescheduled at the discretion of the Engineer. ## **CONTINGENCY PLAN** The Contractor shall prepare a contingency plan for reopening closures to public traffic. The Contractor shall submit the contingency plan for a given operation to the Engineer within one working day of the Engineer's request. # LATE REOPENING OF CLOSURES If a closure is not reopened to public traffic by the specified time, work shall be suspended in conformance with the provisions in Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications. The Contractor shall not make any further closures until the Engineer has accepted a work plan, submitted by the Contractor, that will insure that future closures will be reopened to public traffic at the specified time. The Engineer will have 2 working days to accept or reject the Contractor's proposed work plan. The Contractor will not be entitled to any compensation for the suspension of work resulting from the late reopening of closures. For each 10-minute interval, or fraction thereof past the time specified to reopen the closure, the Department will deduct \$5,800.00 per interval from moneys due or that may become due the Contractor under the contract. ## **COMPENSATION** The Contractor shall notify the Engineer of any delay in the Contractor's operations due to the following conditions, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of those conditions, and the Contractor's loss due to that delay could not have been avoided by rescheduling the affected closure or by judicious handling of forces, equipment and plant, the delay will be considered a right of way delay within the meaning of Section 8-1.09, "Right of Way Delays," and compensation for the delay will be determined in conformance with the provisions in Section 8-1.09: - A. The Contractor's proposed Closure Schedule is denied and his planned closures are within the time frame allowed for closures in "Maintaining Traffic" of these special provisions, except that the Contractor will not be entitled to any compensation for amendments to the Closure Schedule that are not approved. - B. The Contractor is denied a confirmed closure. Should the Engineer direct the Contractor to remove a closure prior to the time designated in the approved Closure Schedule, any delay to the Contractor's schedule due to removal of the closure will be considered a right of way delay within the meaning of Section 8-1.09, "Right of Way Delays," and compensation for the delay will be determined in conformance with the provisions in Section 8-1.09. #### 10-1.19 TRAFFIC CONTROL SYSTEM FOR LANE CLOSURE A traffic control system shall consist of closing traffic lanes and ramps in conformance with the details shown on the plans, the provisions in
Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications, the provisions under "Maintaining Traffic" and "Construction Area Signs" of these special provisions, and these special provisions. The provisions in this section will not relieve the Contractor of responsibility for providing additional devices or taking measures as may be necessary to comply with the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications. When performing traffic control in the high occupancy vehicle lane (HOV lane) or where the median shoulder is less than 2.4 meters, the Contractor shall conform to the requirements under the moving lane closure for truck mounted attenuator (TMA) of this special provision. During traffic stripe operations and pavement marker placement operations using bituminous adhesive, traffic shall be controlled, at the option of the Contractor, with either stationary or moving lane closures. During other operations, traffic shall be controlled with stationary lane closures. Attention is directed to the provisions in Section 84-1.04, "Protection From Damage," and Section 85-1.06, "Placement," of the Standard Specifications. If components in the traffic control system are displaced or cease to operate or function as specified, from any cause, during the progress of the work, the Contractor shall immediately repair the components to the original condition or replace the components and shall restore the components to the original location. # STATIONARY LANE CLOSURE When lane and ramp closures are made for work periods only, at the end of each work period, components of the traffic control system, except portable delineators placed along open trenches or excavation adjacent to the traveled way, shall be removed from the traveled way and shoulder. If the Contractor so elects, the components may be stored at selected central locations, designated by the Engineer within the limits of the highway right of way. Each vehicle used to place, maintain and remove components of a traffic control system on multilane highways shall be equipped with a Type II flashing arrow sign which shall be in operation when the vehicle is being used for placing, maintaining or removing the components. Vehicles equipped with Type II flashing arrow sign not involved in placing, maintaining or removing the components when operated within a stationary type lane closure shall only display the caution display mode. The sign shall be controllable by the operator of the vehicle while the vehicle is in motion. The flashing arrow sign shown on the plans shall not be used on the vehicles which are doing the placing, maintaining and removing of components of a traffic control system and shall be in place before a lane closure requiring the sign's use is completed. The 150-m section of a lane closure, shown along lane lines between the 300-m lane closure tapers on the plans entitled "Traffic Control System for Lane Closures on Freeways and Expressways" and "Traffic Control System for Lane and Complete Closures on Freeways and Expressways" shall not be used. ## MOVING LANE CLOSURE Flashing arrow signs used in moving lane closures shall be truck-mounted. Changeable message signs used in moving lane closure operations shall conform to the provisions in Section 12-3.12, "Portable Changeable Message Signs," of the Standard Specifications, except the signs shall be truck-mounted and the full operation height of the bottom of the sign may be less than 2.1 m above the ground, but should be as high as practicable. Flashing arrow signs shall be in the caution display mode when used on 2-lane, 2-way highways. Truck-mounted attenuators (TMA) for use in moving lane closures shall be any of the following approved models, or equal: - A. Hexfoam TMA Series 3000, Alpha 1000 TMA Series 1000 and Alpha 2001 TMA Series 2001, manufactured by Energy Absorption Systems, Inc., One East Wacker Drive, Chicago, IL 60601-2076, Telephone (312) 467-6750. - 1. Distributor (Northern): Traffic Control Service, Inc., 8585 Thys Court, Sacramento, CA 95828, Telephone 1-800-884-8274, FAX (916) 387-9734. - Distributor (Southern): Traffic Control Service, Inc., 1881 Betmor Lane, Anaheim, CA 92805, Telephone 1-800-222-8274. - B. Cal T-001 Model 2 or Model 3, manufacturer and distributor: Hexcel Corporation, 11711 Dublin Boulevard, P.O. Box 2312, Dublin, CA 94568, Telephone (510) 828-4200. - C. Renco Rengard Model Nos. CAM 8-815 and RAM 8-815, manufacturer and distributor: Renco Inc., 1582 Pflugerville Loop Road, P.O. Box 730, Pflugerville, TX 78660-0730, Telephone 1-800-654-8182. Each TMA shall be individually identified with the manufacturer's name, address, TMA model number, and a specific serial number. The names and numbers shall each be a minimum 13 mm high and located on the left (street) side at the lower front corner. The TMA shall have a message next to the name and model number in 13 mm high letters which states, "The bottom of this TMA shall be ____ mm \pm ___ mm above the ground at all points for proper impact performance." Any TMA which is damaged or appears to be in poor condition shall not be used unless recertified by the manufacturer. The Engineer shall be the sole judge as to whether used TMAs supplied under this contract need recertification. Each unit shall be certified by the manufacturer to meet the requirements for TMA in conformance with the standards established by the Transportation Laboratory. Approvals for new TMA designs proposed as equal to the above approved models shall be in conformance with the procedures (including crash testing) established by the Transportation Laboratory. For information regarding submittal of new designs for evaluation contact: Transportation Laboratory, 5900 Folsom Boulevard, Sacramento, California 95819. New TMAs proposed as equal to approved TMAs or approved TMAs determined by the Engineer to need recertification shall not be used until approved or recertified by the Transportation Laboratory. ## **PAYMENT** The contract lump sum price paid for traffic control system shall include full compensation for furnishing all labor, materials (including signs), tools, equipment, and incidentals, and for doing all the work involved in placing, removing, storing, maintaining, moving to new locations, replacing and disposing of the components of the traffic control system shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The adjustment provisions in Section 4-1.03, "Changes," of the Standard Specifications shall not apply to the item of traffic control system. Adjustments in compensation for traffic control system will be made only for increased or decreased traffic control system required by changes ordered by the Engineer and will be made on the basis of the cost of the increased or decreased traffic control necessary. The adjustment will be made on a force account basis as provided in Section 9-1.03, "Force Account Payment," of the Standard Specifications for increased work and estimated on the same basis in the case of decreased work. Traffic control system required by work which is classed as extra work, as provided in Section 4-1.03D of the Standard Specifications, will be paid for as a part of the extra work. #### 10-1.20 TRAFFIC CONTROL SYSTEM FOR RAMP CLOSURES At the times and locations specified under "Maintaining Traffic" of these special provisions, ramps shall be closed in conformance with the details shown on the plans, the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications, and these special provisions. The provisions in this section will not relieve the Contractor of the responsibility to provide additional devices or take measures as may be necessary to comply with the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications. If components used for closing a ramp are displaced or cease to operate or function as specified, from any cause, during the progress of the work, the Contractor shall immediately repair the components to the original condition or replace the components and shall restore the components to the original location. When ramp closures are made for work periods only, at the end of each work period, components used for the ramp closure, except portable delineators placed along open trenches or excavation adjacent to the traveled way, shall be removed from the traveled way and shoulder. If the Contractor so elects, the components may be stored at selected central locations designated by the Engineer within the limits of the highway right of way. RAMP CLOSED signs (SC6-3) shall be used to inform motorists of the temporary closing of a freeway or expressway entrance or exit ramp for not more than one day. RAMP CLOSED signs (SC6-4) shall be used to inform motorists of the temporary closing of a freeway or expressway entrance or exit ramp for more than one day. The SC6-3 or SC6-4 signs shall be installed at least 7 calendar days prior to closing the ramp, but not more than 14 days in advance of the ramp closure. The Contractor shall notify the Engineer not less than 2 calendar days prior to installing the SC6-3 or SC6-4 signs. The SC6-3 or SC6-4 signs shall be stationary mounted at locations shown on the plans and shall remain in place and visible to motorists during ramp closures. The Contractor shall be responsible for maintaining accurate and timely information on the SC6-3 or SC6-4 signs. The SC6-3 or SC6-4 signs, when no longer required or when the information becomes outdated, shall be immediately covered or removed, or the sign message shall be updated. Full compensation for providing the ramp closures shown on the plans, including furnishing, installing, maintaining, covering, and removing SC6-3 and SC6-4 signs, shall be considered as included in the contract prices paid for the various items of work involved and
no separate payment will be made therefor. ## 10-1.21 BARRICADE Barricades shall be furnished, placed and maintained at the locations shown on the plans, specified in the Standard Specifications or in these special provisions or where designated by the Engineer. Barricades shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. Attention is directed to "Prequalified and Tested Signing and Delineation Materials" of these special provisions regarding retroreflective sheeting for barricades. Construction area sign and marker panels conforming to the provisions in Section 12-3.06, "Construction Area Signs," of the Standard Specifications shall be installed on barricades in a manner determined by the Engineer at the locations shown on the plans. Sign panels for construction area signs and marker panels installed on barricades shall conform to the provisions in Section 12-3.06A. "Stationary Mounted Signs." of the Standard Specifications. Full compensation for furnishing, installing, maintaining, and removing construction area signs and marker panels on barricades shall be considered as included in the contract unit price paid for the type of barricade involved and no separate payment will be made therefor. Barricades shown on the plans as part of a traffic control system will be paid for as provided in "Traffic Control System for Lane Closure" of these special provisions and will not be included in the count for payment of barricades. ## 10-1.22 PORTABLE CHANGEABLE MESSAGE SIGN Portable changeable message signs shall be furnished, placed, operated, and maintained at those locations provided in these special provisions and as shown on the plan or where designated by the Engineer in conformance with the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. Attention is directed to Charts 5 through 13 in "Maintaining Traffic" of these special provisions regarding the use and locations of the portable changeable message signs. The message displayed on the portable changeable message sign, as specified in these special provisions, as shown on the plans or as directed by the Engineer, shall not be displayed until 5 minutes prior to the closure installation as permitted by these special provisions. Portable changeable message signs shall have 24 hour timer control or remote control capability. A Contractor's representative with a cellular phone shall be on the job site at all times for operations which require portable changeable message signs. The representative shall modify messages as directed by the Engineer. Full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing, placing, operating, maintaining, repairing, replacing, transporting from location to location, modifying the message, and removing portable changeable message signs as specified in these special provisions as shown on the plan shall be considered as included in the contract lump sum price paid for traffic control system and no separate payment will be made therefor. ## 10-1.23 TEMPORARY RAILING Temporary railing (Type K) shall be placed as shown on the plans, as specified in the Standard Specifications or these special provisions or where ordered by the Engineer and shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. Reflectors on temporary railing (Type K) shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Temporary railing (Type K), conforming to the details shown on Standard Plan T3 may be used. Temporary railing (Type K) fabricated prior to January 1, 1993, and conforming to 1988 Standard Plan B11-30 may be used, provided the fabrication date is printed on the required Certificate of Compliance and vertical holes are not drilled in the top of the temporary railing to secure temporary traffic screen to the temporary railing. Attention is directed to "Public Safety" and "Order of Work" of these special provisions. Temporary railing (Type K) placed in conformance with the provisions in "Public Safety" of these special provisions will be neither measured nor paid for. Concrete barrier (Type K) shall be measured and paid for by the meter in the same manner specified for temporary railing (Type K) in Section 12-4, "Measurement and Payment," of the Standard Specifications. Temporary terminal section (Type K) for connecting temporary railing (Type K) to Type 50 concrete barrier shall consist of either new or undamaged used precast units, as shown on the plans. Fabricating, placing, painting, and removing the units shall conform to the provisions specified for temporary railing (Type K). Closure plate for the temporary terminal section (Type K) shall be of a good commercial quality steel shaped to conform to cross section of the barriers. Mechanical expansion anchors for connecting closure plate to railings shall conform to the provisions specified for concrete anchorage devices in Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications. Temporary terminal section (Type K) will be measured by the unit from actual count in place. The contract unit price paid for temporary terminal section (Type K) shall include full compensation for furnishing all labor, materials (including reinforcement and concrete anchorage devices), tools, equipment, and incidentals, and for doing all the work involved in furnishing, placing, maintaining, repairing, replacing, and removing temporary terminal section (Type K), complete in place, including excavation, backfill, grout and concrete, and connecting to concrete barrier, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ## 10-1.24 CHANNELIZER Channelizers shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. Channelizers shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. When no longer required for the work as determined by the Engineer, channelizers and underlying adhesive used to cement the channelizer bases to the pavement shall be removed. Removed channelizers and adhesive shall become the property of the Contractor and shall be removed from the site of work. ## 10-1.25 TEMPORARY TRAFFIC SCREEN Temporary traffic screen shall be furnished, installed, and maintained on top of temporary railing (Type K) at the locations designated on the plans, specified in the special provisions or directed by the Engineer and shall conform to the provisions specified for traffic handling equipment and devices in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. Temporary traffic screen panels shall be new or used CDX Grade, or better, plywood or weather resistant strandboard mounted and anchored on temporary railing (Type K). Wale boards shall be new or used Douglas fir, rough sawn, Construction Grade, or better. Pipe screen supports shall be new or used galvanized steel pipe, Schedule 40. Nuts, bolts, and washers shall be cadmium plated. Screws shall be black or cadmium plated flat head, cross slotted screws with full thread length. When no longer required, as determined by the Engineer, temporary traffic screen shall be removed from the site of the work and shall become the property of the Contractor. # 10-1.26 TEMPORARY CRASH CUSHION MODULE This work shall consist of furnishing, installing, and maintaining sand filled temporary crash cushion modules in groupings or arrays at each location shown on the plans, as specified in these special provisions or where designated by the Engineer. The grouping or array of sand filled modules shall form a complete sand filled temporary crash cushion in conformance with the details shown on the plans and these special provisions. Attention is directed to "Public Safety", "Order of Work", and "Temporary Railing" of these special provisions. Whenever the work or the Contractor's operations establishes a fixed obstacle, the exposed fixed obstacle shall be protected with a sand filled temporary crash cushion. The sand filled temporary crash cushion shall be in place prior to opening the lanes adjacent to the fixed obstacle to public traffic. Sand filled temporary crash cushions shall be maintained in place at each location, including times when work is not actively in progress. Sand filled temporary crash cushions may be removed during a work period for access to the work provided that the exposed fixed obstacle is 4.6 m or more from a lane carrying public traffic and the temporary crash cushion is reset to protect the obstacle prior to the end of the work period in which the fixed obstacle was exposed. When no longer required, as determined by the Engineer, sand filled temporary crash cushions shall be removed from the site of the work. At the Contractor's option, the modules for use in sand filled temporary crash cushions shall be either Energite III Inertial Modules, Fitch Inertial Modules or TrafFix Sand Barrels manufactured after March 31, 1997, or equal: - A. Energite III and Fitch Inertial Modules, manufactured by Energy Absorption Systems, Inc., One East Wacker Drive, Chicago, IL 60601-2076. Telephone 1-312-467-6750, FAX 1-800-770-6755 - 1. Distributor (North): Traffic Control Service, Inc., 8585 Thys Court, Sacramento, CA 95828. Telephone 1-800-884-8274, FAX 1-916-387-9734 - 2. Distributor (South): Traffic Control Service, Inc., 1881 Betmor Lane, Anaheim, CA 92805. Telephone 1-800-222-8274, FAX 1-714-937-1070 - B. TrafFix Sand Barrels,
manufactured by TrafFix Devices, Inc., 220 Calle Pintoresco, San Clemente, CA 92672. Telephone 1-949 361-5663, FAX 1-949 361-9205 - Distributor (North): United Rentals, Inc., 1533 Berger Drive, San Jose, CA 95112. Telephone 1-408 287-4303, FAX 1-408 287-1929 - Distributor (South): Statewide Safety & Sign, Inc., P.O. Box 1440, Pismo Beach, CA 93448. Telephone 1-800-559-7080, FAX 1-805 929-5786 Modules contained in each temporary crash cushion shall be of the same type at each location. The color of the modules shall be the standard yellow color, as furnished by the vendor, with black lids. The modules shall exhibit good workmanship free from structural flaws and objectionable surface defects. The modules need not be new. Good used undamaged modules conforming to color and quality of the types specified herein may be utilized. If used Fitch modules requiring a seal are furnished, the top edge of the seal shall be securely fastened to the wall of the module by a continuous strip of heavy duty tape. Modules shall be filled with sand in conformance with the manufacturer's directions, and to the sand capacity in kilograms for each module shown on the plans. Sand for filling the modules shall be clean washed concrete sand of commercial quality. At the time of placing in the modules, the sand shall contain not more than 7 percent water as determined by California Test 226. Modules damaged due to the Contractor's operations shall be repaired immediately by the Contractor at the Contractor's expense. Modules damaged beyond repair, as determined by the Engineer, due to the Contractor's operations shall be removed and replaced by the Contractor at the Contractor's expense. Temporary crash cushion modules shall be placed on movable pallets or frames conforming to the dimensions shown on the plans. The pallets or frames shall provide a full bearing base beneath the modules. The modules and supporting pallets or frames shall not be moved by sliding or skidding along the pavement or bridge deck. A Type R or P marker panel shall be attached to the front of the crash cushion as shown on the plans, when the closest point of the crash cushion array is within 3.6 m of the traveled way. The marker panel, when required, shall be firmly fastened to the crash cushion with commercial quality hardware or by other methods determined by the Engineer. At the completion of the project, temporary crash cushion modules, sand filling, pallets or frames, and marker panels shall become the property of the Contractor and shall be removed from the site of the work. Temporary crash cushion modules shall not be installed in the permanent work. Temporary crash cushion modules will be measured by the unit as determined from the actual count of modules used in the work or ordered by the Engineer at each location. Temporary crash cushion modules placed in conformance with the provisions in "Public Safety" of these special provisions and modules placed in excess of the number specified or shown will not be measured nor paid for. Repairing modules damaged by public traffic will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. Modules damaged beyond repair by public traffic, when ordered by the Engineer, shall be removed and replaced immediately by the Contractor. Modules replaced due to damage by public traffic will be measured and paid for as temporary crash cushion module. If the Engineer orders a lateral move of the sand filled temporary crash cushions and the repositioning is not shown on the plans, moving the sand filled temporary crash cushion will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications and these temporary crash cushion modules will not be counted for payment in the new position. The contract unit price paid for temporary crash cushion module shall include full compensation for furnishing all labor, materials (including sand, pallets or frames and marker panels), tools, equipment, and incidentals, and for doing all the work involved in furnishing, installing, maintaining, moving, and resetting during a work period for access to the work, and removing from the site of the work when no longer required (including those damaged by public traffic) sand filled temporary crash cushion modules, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ## 10-1.27 EXISTING HIGHWAY FACILITIES The work performed in connection with various existing highway facilities shall conform to the provisions in Section 15, "Existing Highway Facilities," of the Standard Specifications and these special provisions. All metal bridge rail shall be salvaged. Except as otherwise provided for damaged materials in Section 15-2.04, "Salvage," of the Standard Specifications, the materials to be salvaged shall remain the property of the State, and shall be cleaned, packaged, bundled, tagged, and hauled to the maintenance yard at Maintenance Special Crews/Electrical Office, 7300 E. Bandini Avenue, Commerce, CA 91040 and stockpiled. The Contractor shall notify the Engineer and the maintenance supervisor, telephone (213) 620-2874 a minimum of 48 hours prior to hauling salvaged material to the Recycle Center. Plans of the existing bridges may be requested by fax from the Office of Structure Maintenance and Investigations, 1801 30th Street, Sacramento, CA, Fax (916) 227-8357, and are available at the Office of Structure Maintenance and Investigations, Norwalk, CA, Telephone (562) 868-3828. Plans of the existing bridges available to the Contractor are reproductions of the original contract plans with significant changes noted and working drawings and do not necessarily show normal construction tolerances and variances. Where dimensions of new construction required by this contract are dependent on the dimensions of the existing bridges, the Contractor shall verify the controlling field dimensions and shall be responsible for adjusting dimensions of the work to fit existing conditions. Existing footing concrete which is below ground and outside of the footing limits shown on the contract plans or original contract plans shall be removed as directed by the Engineer and such work will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. Additional exploratory work of bridge members for unforeseen damage shall be done as directed by the Engineer and will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. ## REMOVE METAL BEAM GUARD RAILING Existing metal beam guard railing, where shown on the plans to be removed, shall be removed and disposed of. Existing concrete anchors or steel foundation tubes shall be completely removed and disposed of. Full compensation for removing concrete anchors shall be considered as included in the contract price paid per meter for remove metal beam guard railing and no separate payment will be made therefor. Full compensation for removing cable anchor assemblies, terminal anchor assemblies or steel foundation tubes shall be considered as included in the contract price paid per meter for remove metal beam guard railing and no separate payment will be made therefor. ## REMOVE SIGN STRUCTURE Existing sign structures, where shown on the plans to be removed, shall be removed and disposed of. Overhead sign structure removal shall consist of removing posts, frames, portions of foundations, sign panels, walkways with safety railings, and sign lighting electrical equipment. Bridge mounted sign structure removal shall consist of removing sign panels and frames, sign lighting electrical equipment, walkways with safety railings, structural braces and supports, and hardware. A sign structure shall not be removed until the structure is no longer required for the direction of public traffic. Concrete foundations may be abandoned in place, except that the top portion, including anchor bolts, reinforcing steel, and conduits shall be removed to a depth of not less than one m below the adjacent finished grade. The resulting holes shall be backfilled and compacted with material equivalent to the surrounding material. Electrical wiring shall be removed to the nearest pull box. Fuses within spliced connections in the pull box shall be removed and disposed of. ## REMOVE PAVEMENT MARKER Existing pavement markers, including underlying adhesive, when no longer required for traffic lane delineation as determined by the Engineer, shall be removed and disposed of. ## REMOVE TRAFFIC STRIPE AND PAVEMENT MARKING Traffic stripe and pavement marking shall be removed at the locations shown on the plans and as directed by the Engineer. Attention is directed to "Water Pollution Control" of these special provisions. Waste from removal of yellow thermoplastic and yellow painted traffic stripe and pavement marking contains lead chromate in average concentrations greater than or equal to 5 mg/L Soluble Lead or 1000 mg/kg Total Lead. Yellow thermoplastic and yellow painted traffic stripe and pavement marking exist as shown on the plans. Residue produced from when yellow thermoplastic and yellow paint are removed may contain heavy metals in concentrations that exceed thresholds established by the California Health and Safety Code and may produce toxic fumes when heated. The removed yellow thermoplastic and yellow paint shall be disposed of at a Class 1 disposal facility or a Class 2 disposal facility permitted by the Regional Water Quality Control Board in conformance with the requirements of the disposal facility operator within 90 days after accumulating 100 kg of residue and dust. The Contractor shall make necessary arrangements with the operator of the disposal facility to test the yellow thermoplastic and yellow paint residue as required by the facility and these special provisions. Testing shall include, at a minimum, (1) Total Lead and Chromium by
EPA Method 7000 series and (2) Soluble Lead and Chromium by California Waste Extraction Test. From the first 3360 L of waste or portion thereof, if less than 3360 L of waste are produced, a minimum of four randomly selected samples shall be taken and analyzed. From each additional 840 L of waste or portion thereof, if less than 840 L are produced, a minimum of one additional random sample shall be taken and analyzed. The Contractor shall submit the name and location of the disposal facility and analytical laboratory along with the testing requirements to the Engineer not less than 5 days prior to the start of removal of yellow thermoplastic and yellow painted traffic stripe and pavement marking. The analytical laboratory shall be certified by the Department of Health Services Environmental Laboratory Accreditation Program. Test results shall be provided to the Engineer for review prior to signing a waste profile as requested by the disposal facility, prior to issuing an EPA identification number, and prior to allowing removal of the waste from the site. The Contractor shall prepare a project specific Lead Compliance Plan to prevent or minimize worker exposure to lead while handling removed yellow thermoplastic and yellow paint residue. Attention is directed to Title 8, California Code of Regulations, Section 1532.1, "Lead," for specific Cal-OSHA requirements when working with lead. The Lead Compliance Plan shall contain the elements listed in Title 8, California Code of Regulations, Section 1532.1(e)(2)(B). Before submission to the Engineer, the Lead Compliance Plan shall be approved by an Industrial Hygienist certified in Comprehensive Practice by the American Board of Industrial Hygiene. The Plan shall be submitted to the Engineer at least 7 days prior to beginning removal of yellow thermoplastic and yellow paint. Prior to removing yellow thermoplastic and yellow painted traffic stripe and pavement marking, personnel who have no prior training, including State personnel, shall complete a safety training program provided by the Contractor that meets the requirements of Title 8, California Code of Regulations, Section 1532.1, "Lead," and the Contractor's Lead Compliance Program. Personal protective equipment, training, and washing facilities required by the Contractor's Lead Compliance Plan shall be supplied to State personnel by the Contractor. The number of State personnel will be 5. Where grinding or other methods approved by the Engineer are used to remove yellow thermoplastic and yellow painted traffic stripe and pavement marking, the removed residue, including dust, shall be contained and collected immediately. Sweeping equipment shall not be used. Collection shall be by a high efficiency particulate air (HEPA) filter equipped vacuum attachment operated concurrently with the removal operations or other equally effective methods approved by the Engineer. The Contractor shall submit a written work plan for the removal, storage, and disposal of yellow thermoplastic and yellow painted traffic stripe and pavement marking to the Engineer for approval not less than 7 days prior to the start of the removal operations. Removal operations shall not be started until the Engineer has approved the work plan. The removed yellow thermoplastic and yellow painted traffic stripe and pavement marking residue shall be stored and labeled in covered containers. Labels shall conform to the provisions of Title 22, California Code of Regulations, Sections 66262.31 and 66262.32. Labels shall be marked with date when the waste is generated, the words "Hazardous Waste", composition and physical state of the waste (for example, asphalt grindings with thermoplastic or paint), the word "Toxic", the name and address of the Engineer, the Engineer's telephone number, contract number, and Contractor or subcontractor. The containers shall be a type approved by the United States Department of Transportation for the transportation and temporary storage of the removed residue. The containers shall be handled so that no spillage will occur. The containers shall be stored in a secured enclosure at a location within the project limits until disposal, as approved by the Engineer. If the yellow thermoplastic and yellow painted traffic stripe and pavement marking residue is transported to a Class 1 disposal facility, a manifest shall be used, and the transporter shall be registered with the California Department of Toxic Substance Control. The Engineer will obtain the United States Environmental Protection Agency Identification Number and sign all manifests as the generator within 2 working days of receiving sample test results and approving the test methods. The Contractor shall assume that the yellow paint removed is not regulated under the Federal Resource Conservation and Recovery Act (RCRA). Additional disposal costs for removal residue regulated under RCRA, as determined by test results required by the disposal facility, will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. Nothing in these special provisions shall relieve the Contractor of the Contractor's responsibilities as specified in Section 7-1.09, "Public Safety," of the Standard Specifications. Attention is directed to "Material Containing Aerially Deposited Lead" of these special provisions regarding payment for the Lead Compliance Plan. Full compensation for providing a written work plan for the removal, storage, and disposal of yellow thermoplastic and yellow painted traffic stripe and pavement marking shall be considered as included in the contract prices paid per meter for remove yellow thermoplastic traffic stripe and remove yellow painted traffic stripe or per square meter for remove pavement marking and no separate payment will be made therefor. ## REMOVE DRAINAGE FACILITY Existing pipe, inlets, cleanouts, concrete line ditch and headwalls, where shown on the plans to be removed, shall be completely removed and disposed of. Removal of existing inlets and cleanouts shall consist of removing and disposing of inlets and cleanouts, including frames and gates as shown on the plans. #### REMOVE ROADSIDE SIGN Existing roadside signs, at those locations shown on the plans to be removed, shall be removed and disposed of. Existing roadside signs shall not be removed until replacement signs have been installed or until the existing signs are no longer required for the direction of public traffic, unless otherwise directed by the Engineer. ## RECONSTRUCT CHAIN LINK FENCE Existing chain link fence, at the locations shown on the plans, shall be removed and reconstructed. Fence removed in excess of that required for reconstructing chain link fence shall be disposed of. Full compensation for removing and disposing of excess fence shall be considered as included in the contract price paid per meter for reconstruct chain link fence and no separate payment will be made therefor. ## RECONSTRUCT METAL BEAM GUARD RAILING Existing metal beam guard railing, where shown on the plans to be reconstructed, shall be reconstructed. Attention is directed to "Order of Work" of these special provisions regarding the reconstruction of metal beam guard railing at those locations exposed to public traffic. Cable anchor assemblies or terminal anchor assemblies, including concrete anchors and steel foundation tubes, shall be completely removed and disposed of. New posts, blocks, and hardware shall be added as necessary to conform to the post spacing shown on the plans for new metal beam guard railing. New posts and blocks shall be alternated with existing posts and blocks in the new location. New posts, blocks, and hardware shall conform to the provisions in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications. Posts, blocks, and other components of the removed metal beam guard railing, including terminal sections, that are not used in the reconstruction work shall be disposed of. Full compensation for furnishing and installing new posts, blocks, and hardware; for connecting reconstructed metal beam guard railing to existing structures, other flat concrete surfaces or terminal systems; and for removing and disposing of anchor assemblies shall be considered as included in the contract price paid per meter for reconstruct metal beam guard railing (wood post) and no separate payment will be made therefor. Terminal anchor assemblies (Type SFT) for reconstructed metal beam guard railing will be measured and paid for separately and shall conform to the provisions in "Metal Beam Guard Railing" of these special provisions. Terminal System (Type ET) and Terminal System (Type SRT) for connection to reconstructed metal beam guard railing will be measured and paid for separately in conformance with the provisions in "Terminal System (Type ET)" and "Terminal System (Type SRT)" of these special provisions. # RELOCATE SIGN STRUCTURE Relocating sign structures shall consist of removing and relocating existing sign structures as shown on the plans. Each existing concrete foundation, including anchor bolts, reinforcing steel, and conduit shall be removed to a depth of not less than one m below the adjacent finished grade. Electrical wiring, if any, shall be removed to the nearest pull box. Removed portions of the concrete foundations shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. New foundation work for relocated sign structures shall conform to the provisions in Section 56-1, "Overhead Sign Structures," of the Standard Specifications, except that full compensation for furnishing and installing a new anchor bolt assembly on each new foundation shall be considered as included in the contract price paid per meter for the size of cast-in-drilled-hole concrete pile (sign foundation) involved and no separate
payment will be made therefor. Sign lighting electrical work is provided for in Section 10-3, "Signals, Lighting And Electrical Systems," of these special provisions. ## RELOCATE ROADSIDE SIGN Existing roadside signs shall be removed and relocated to the new locations shown on the plans. Each roadside sign shall be installed at the new location on the same day that the sign is removed from its original location. Two holes shall be drilled in each existing post as required to provide the breakaway feature shown on the plans. ## MODIFY INLET Existing inlets shall be modified as shown on the plans. Existing frames and covers shall be removed and disposal of. New metal components shall conform to the provisions in "Miscellaneous Iron and Steel" of these special provisions. The contract unit price paid for modify inlet shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in modifying inlets, including removing portions of inlets, bar reinforcing steel, concrete and structure excavation and structure backfill, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. #### REMOVE BASE AND SURFACING Existing base and bituminous surfacing shown on the plans to be removed, shall be removed to a depth of at least 150 mm below the grade of the existing surfacing. Resulting holes and depressions shall be backfilled with earthy material selected from excavation to the lines and grade established by the Engineer. The material removed shall be disposed of outside the highway right of way in conformance with the provisions in Section 15-2.03, "Disposal," of the Standard Specifications. Removing base and surfacing will be measured by the cubic meter in the same manner specified for roadway excavation in conformance with the provisions in Section 19, "Earthwork," of the Standard Specifications and will be paid for at the contract price per cubic meter for remove base and surfacing. ## **CAP INLET** Existing pipe inlets and concrete drainage inlets, where shown on the plans to be capped, shall be capped and the bottoms of the inlets shall be rounded with portland cement concrete as shown on the plans. Portland cement concrete shall be minor concrete or may be produced from commercial quality aggregates and cement containing not less than 350 kg of cement per cubic meter. Inlets shall be removed to a depth of at least 0.3-m below the grading plane. Concrete removal shall be performed without damage to portions of the inlet that are to remain in place. Damage to existing concrete, which is to remain in place, shall be repaired by the Contractor to a condition equal to that existing prior to the beginning of removal operations. The repair of existing concrete damaged by the Contractor's operations shall be at the Contractor's expense. Existing reinforcement that is to be incorporated in the new work shall be protected from damage and shall be thoroughly cleaned of adhering material before being embedded in the new concrete. The quantity of capping inlets will be determined as units from actual count. The contract unit price paid for cap inlet shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in capping inlets, including removing portions of inlets, rounding bottoms of inlets, bar reinforcing steel, and structure excavation and structure backfill, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ## **EXISTING LOOP DETECTORS** If part of the loop conductor, including the portion leading to the adjacent pull box, is damaged by the Contractor's operations, the entire detector loop shall be replaced at the Contractor's expense. Adjacent loops damaged during the replacement shall also be replaced. ## **BRIDGE REMOVAL** Removing bridges or portions of bridges shall conform to the provisions in Section 15-4, "Bridge Removal," of the Standard Specifications and these special provisions. Portions of existing structures including superstructures, abutments, footings, piles, barriers, retaining walls, and other portions as shown on the plans shall be removed from bridges and retaining walls at the following locations: Bridge Removal (Retaining Wall 165) RETAINING WALL NO. 165 Bridge Removal (Retaining Wall 113) RETAINING WALL NO. 113 The existing Retaining Wall No. 113 is a Type 1 wall, approximately 2 meters in height. Bridge Removal (Retaining Wall 157) RETAINING WALL NO. 157 The existing Retaining Wall No. 157 is a Type 1 cantilever retaining wall and varies in height from approximately 2.4 to 4.3 meters Location A EXPOSITION OVERHEAD Location B RETAINING WALL NO. 115 Location C OLYMPIC BOULEVARD UNDERCROSSING Location D ROUTE 405/2 SEPARATION Location E OHIO AVENUE UNDERCROSSING Location F WILSHIRE BOULEVARD UNDERCROSSING Location G CONSTITUTION AVENUE UNDERCROSSING Removed materials that are not to be salvaged or used in the reconstruction shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Full compensation for all work involved in salvaging portions of the existing bridges shall be considered as included in the contract price paid for the various bridge removal items of work and no additional compensation will be allowed therefor. The Contractor shall submit a complete bridge removal plan to the Engineer for each bridge listed above, detailing procedures, sequences, and all features required to perform the removal in a safe and controlled manner. The bridge removal plan shall include, but not be limited to the following: - A. The removal sequence, including staging of removal operations. - B. Equipment locations on the structure during removal operations. - C. Temporary support shoring or temporary bracing. Contract No. 07-195904 - D. Locations where work is to be performed over traffic or utilities. - E. Details, locations, and types of protective covers to be used. - F. Measures to assure that people, property, utilities, and improvements will not be endangered. - G. Details and measures for preventing material, equipment, and debris from falling onto public traffic. When protective covers are required for removal of portions of a bridge, or when superstructure removal work on bridges is involved, the Contractor shall submit working drawings, with design calculations, to the Engineer for the proposed bridge removal plan, and the bridge removal plan shall be prepared and signed by an engineer who is registered as a Civil Engineer in the State of California. The design calculations shall be adequate to demonstrate the stability of the structure during all stages of the removal operations. Calculations shall be provided for each stage of bridge removal and shall include dead and live load values assumed in the design of protective covers. Temporary support shoring, temporary bracing, and protective covers, as required, shall be designed and constructed in conformance with the provisions in Section 51-1.06, "Falsework," of the Standard Specifications and these special provisions. The assumed horizontal load to be resisted by the temporary support shoring and temporary bracing, for removal operations only, shall be the sum of the actual horizontal loads due to equipment, construction sequence or other causes, and an allowance for wind, but in no case shall the assumed horizontal load to be resisted in any direction be less than 5 percent of the total dead load of the structure to be removed. The bridge removal plan shall conform to the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The number of sets of drawings, design calculations, and the time for reviewing bridge removal plans shall be the same as specified for falsework working drawings in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications. The following additional requirements apply to the removal of portions of bridges whenever the removal work is to be performed over public traffic: - A. A protective cover shall be constructed before beginning bridge removal work. The protective cover shall be supported by shoring, falsework, or members of the existing structure. The Contractor shall be responsible for designing and constructing safe and adequate protective covers, shoring, and falsework with sufficient strength and rigidity to support the entire load to be imposed. - B. The construction and removal of the protective cover, and the installation and removal of temporary railings shall conform to the provisions in "Order of Work," "Maintaining Traffic," "Temporary Railings" of these special provisions. - C. Bridge removal methods shall be described in the working drawings, supported by calculations with sufficient details to substantiate live loads used in the protective cover design. Dead and live load values assumed for designing the protective cover shall be shown on the working drawings. - D. The protective cover shall prevent any materials, equipment, or debris from falling onto public traffic. The protective cover shall have a minimum strength equivalent to that provided by good, sound Douglas fir planking having a nominal thickness of 50 mm. Additional layers of material shall be furnished as necessary to prevent fine materials or debris from sifting down upon the traveled way, shoulders and sidewalks. - E. During the removal of bridge segments, and when portions of the bridge, such as deck slabs or box girder slabs, comply with the requirements for the protective cover, a separate protective cover need not be constructed. - F. At locations where only bridge railing is to be removed, the protective cover shall extend
from the face of the exterior girder or at least 0.6-m inside of the bridge railing to be removed, whichever is less, to at least 1.2 m beyond the outside face of the bridge railing. - G. The protective cover shall provide the openings specified under "Maintaining Traffic" of these special provisions, except that when no openings are specified for bridge removal, a vertical opening of 4.6 m and a horizontal opening of 9.8 m shall be provided for the passage of public traffic. - H. Falsework or supports for protective covers shall not extend below the vertical clearance level nor to the ground line at any location within the roadbed. - I. The construction of the protective cover as specified herein shall not relieve the Contractor of responsibilities specified in Section 7-1.12A, "Indemnification," and Section 7-1.12B, "Insurance," of the Standard Specifications. - J. Before removal of the protective cover, the Contractor shall clean the protective cover of all debris and fine material. For bridge removal that requires the Contractor's registered engineer to prepare and sign the bridge removal plan, the Contractor's registered engineer shall be present at all times when bridge removal operations are in progress. The Contractor's registered engineer shall inspect the bridge removal operation and report in writing on a daily basis the progress of the operation and the status of the remaining structure. A copy of the daily report shall be available at the site of the work at all times. Should an unplanned event occur or the bridge operation deviate from the approved bridge removal plan, the Contractor's registered engineer shall submit immediately to the Engineer for approval, the procedure of operation proposed to correct or remedy the occurrence. ## PREPARE CONCRETE BRIDGE DECK SURFACE This work shall consist of preparing the concrete deck surface by removing approximately 6 mm of the portland cement concrete deck surface and membrane seal by using high pressure water jet equipment, cold milling equipment, or by steel shot-blasting and blowing clean the deck surface, as shown on the plans and as described in these special provisions. High pressure water jet equipment shall have rotating jets and be rated at no less than 200 MPa. After use of water jet equipment on the deck, the residue shall be removed and the deck surface shall be abrasive blast cleaned. The deck shall be dry when blast cleaning is performed. Adequate means shall be used to prevent water from the jetting operation from flowing across traffic lanes, or flowing into gutters or waterways. Cold milling equipment shall have the capability to 1) remove concrete a minimum depth of 6 mm, 2) provide a surface relief of no more than 6 mm, and 3) maintain a 4-mm grade tolerance; and shall have the following features: - A. 3 or 4 riding tracks. - B. An automatic grade control system with an electronic averaging system having 3 sensors on each side of the equipment. - C. A conveyer system that leaves no debris on the bridge deck. - D. A drum that operates in an up-milling direction. - E. Bullet tooth tools with tungsten carbide steel cutting tips. - F. A 16-mm maximum tool spacing. - G. A maximum operating mass of 25400 kg. The Contractor shall select which sensors are activated during the milling operation to produce the profile required as shown on the plans. The cold milling equipment shall have a complete set of new tooth tools at the beginning of the job, and the tooth tools shall be replaced as necessary to perform the work satisfactorily. The Contractor shall provide personnel on each side of the milling drum to monitor the milling operation and maintain radio communication with the operator at all times during the milling operation. Coarse aggregate remaining above the removal limit shall be firmly embedded in the remaining concrete. If the surface becomes contaminated at any time prior to placing the overlay, the surface shall be cleaned by abrasive blasting. Where abrasive blasting is being performed within 3 m of a lane occupied by public traffic, the residue including dust shall be removed immediately after contact between the abrasive and the surface being treated. Removal of the residue shall be performed by a vacuum attachment operating concurrently with the abrasive blasting operation. Nothing in these special provisions shall relieve the Contractor from the responsibility to conform with the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications. Equipment shall be fitted with suitable traps, filters, drip pans, or other devices, as necessary, to prevent oil or other deleterious material from being deposited on the deck. Equipment or procedures that leave fractured aggregate or otherwise damage the concrete surface which is to remain shall not be used. Removal of slurry or chip seal contrast treatment will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. All removed materials shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Preparing concrete bridge deck surface will be measured by the square meter of surface which is prepared to receive the overlay, based on dimensions shown on the plans. The contract price paid per square meter for prepare concrete bridge deck surface shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in preparing the concrete bridge deck surface, except removal of slurry or chip seal contrast treatment, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ## REMOVE CONCRETE DECK SURFACE This work shall consist of removing portions of the portland cement concrete deck surface to a depth of 25 mm, abrasive blasting, and blowing clean the deck surface, as shown on the plans and as described in these special provisions. The method of concrete removal shall be selected by the Contractor except that scarifiers, coldplaners, scabblers, and similar types of equipment or procedures that leave fractured aggregate or otherwise damage the concrete surface to remain shall not be used. Cold milling equipment may be used only when the depth of concrete removal is 25 mm or less. Coarse aggregate remaining above the specified removal depth shall be firmly embedded in the remaining concrete. High pressure water jet equipment, when used, shall have rotating jets and be rated at no less than 200 MPa. Adequate means shall be used to prevent water from the jetting operation from flowing across traffic lanes, or flowing into gutters or waterways. Cold milling equipment shall have the capability to 1) remove concrete a minimum depth of 6 mm, 2) provide a surface relief of no more than 6 mm, and 3) maintain a 4-mm grade tolerance; and shall have the following features: - A. 3 or 4 riding tracks. - B. An automatic grade control system with an electronic averaging system having 3 sensors on each side of the equipment. - C. A conveyer system that leaves no debris on the bridge. - D. A drum that operates in an up-milling direction. - E. Bullet tooth tools with tungsten carbide steel cutting tips. - F. A 16-mm maximum tool spacing. - G. A maximum operating mass of 25400 kg. The Contractor shall select which sensors are activated during the milling operation to produce the profile required as shown on the plans. The cold milling equipment shall have a complete set of new tooth tools at the beginning of the job, and the tooth tools shall be replaced as necessary to perform the work satisfactorily. The Contractor shall provide personnel on each side of the milling equipment to monitor the milling operation and maintain radio communication with the operator at all times during the milling operation. The surface of the deck, following concrete removal, shall be abrasive blast cleaned. The deck shall be dry when blast cleaning is performed. If the surface becomes contaminated at any time prior to placing the overlay, the surface shall be cleaned by abrasive blasting. Where abrasive blasting is being performed within 3 m of a lane occupied by public traffic, the residue including dust shall be removed immediately after contact between the abrasive and the surface being treated. Removal of the residue shall be performed by a vacuum attachment operating concurrently with the abrasive blasting operation. Nothing in these special provisions shall relieve the Contractor from the responsibility to conform with the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications. Equipment shall be fitted with suitable traps, filters, drip pans, or other devices, as necessary, to prevent oil or other deleterious material from being deposited on the deck. All removed materials shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Remove concrete deck surface will be measured by the square meter of concrete deck surface to be removed based on dimensions shown on the plans. The contract price paid per square meter for remove concrete deck surface shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in removing concrete deck surface, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ## REMOVE CONCRETE (STRUCTURE) Concrete (Structure), where shown on the plans to be removed, shall be removed. The pay quantities of concrete (structure) to be removed will be measured by the cubic meter, measured before and during removal operations.
Concrete (structure) removed shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. # REMOVE CONCRETE BARRIER, CURB AND SIDEWALK Concrete barrier, curb and sidewalk, where shown on the plans to be removed, shall be removed. Removing concrete curb, concrete barrier, and concrete sidewalk will be measured by the meter, measured along the curb, barrier or sidewalk before removal operations. The remnants of steel cable, fence posts, and concrete foundations of an abandoned cable railing may be encountered within the concrete barrier. Full compensation for the removal and disposal of these objects shall be included in the contract price per meter for remove concrete barrier. Concrete barrier, curb and sidewalk removed shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. ## 10-1.28 CLEARING AND GRUBBING Clearing and grubbing shall conform to the provisions in Section 16, "Clearing and Grubbing," of the Standard Specifications and these special provisions. Existing vegetation outside the areas to be cleared and grubbed shall be protected from injury or damage resulting from the Contractor's operations. Activities controlled by the Contractor, except cleanup or other required work, shall be confined within the graded areas of the roadway. Nothing herein shall be construed as relieving the Contractor of the Contractor's responsibility for final cleanup of the highway as provided in Section 4-1.02, "Final Cleaning Up," of the Standard Specifications. ## 10-1.29 EARTHWORK Earthwork shall conform to the provisions in Section 19, "Earthwork," of the Standard Specifications and these special provisions. Attention is directed to "Material Containing Aerially Deposited Lead" of these special provisions. The grading plane of embankments beneath structure approach slabs and beneath the thickened portion of sleeper slabs shall not project above the grade established by the Engineer. Surplus excavated material not designated or determined to contain aerially deposited lead shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Where a portion of the existing surfacing is to be removed, the outline of the area to be removed shall be cut on a neat line with a power-driven saw to a minimum depth of 50 mm before removing the surfacing. Full compensation for cutting the existing surfacing shall be considered as included in the contract price paid per cubic meter for roadway excavation and no additional compensation will be allowed therefor. Reinforcement or metal attached to reinforced concrete rubble placed in embankments shall not protrude above the grading plane. Prior to placement within 0.6-m below the grading plane of embankments, reinforcement or metal shall be trimmed to no greater than 20 mm from the face of reinforced concrete rubble. Full compensation for trimming reinforcement or metal shall be considered as included in the contract prices paid per cubic meter for the types of excavation shown in the Engineer's estimate, or the contract prices paid for furnishing and placing imported borrow or embankment material, as the case may be, and no additional compensation will be allowed therefor. At the locations and to the limits shown on the plans, material below the bottom of retaining wall footings shall be removed and replaced with structure backfill material in conformance with requirements of Section 19-3.06, "Structure Backfill," of the Standard Specifications. The relative compaction shall be not less than 95 percent. Removal of the material will be measured and paid for by the cubic meter as structure excavation (retaining wall) and furnishing, placing, and compacting the replacement material will be measured and paid for by the cubic meter as structure backfill (retaining wall). Pervious backfill material in connection with bridge work will be measured and paid for by the cubic meter as structure backfill (bridge). If structure excavation or structure backfill involved in bridges is not otherwise designated by type, and payment for the structure excavation or structure backfill has not otherwise been provided for in the Standard Specifications or these special provisions, the structure excavation or structure backfill will be paid for at the contract price per cubic meter for structure excavation (bridge) or structure backfill (bridge). ## 10-1.30 CONTROLLED LOW STRENGTH MATERIAL Controlled low strength material shall consist of a workable mixture of aggregate, cementitious materials, and water and shall conform to the provisions for slurry cement backfill in Section 19-3.062, "Slurry Cement Backfill," of the Standard Specifications and these special provisions. At the option of the Contractor, controlled low strength material may be used as structure backfill for pipe culverts, except that controlled low strength material shall not be used as structure backfill for aluminum and aluminum-coated culverts nor for culverts having a diameter or span greater than 6.1 m. When controlled low strength material is used for structure backfill, the width of the excavation shown on the plans may be reduced so that the clear distance between the outside of the pipe and the side of the excavation, on each side of the pipe, is a minimum of 300 mm. This minimum may be reduced to 150 mm when the height of cover is less than or equal to 6.1 m or the pipe diameter or span is less than 1050 mm. Controlled low strength material in new construction shall not be permanently placed higher than the basement soil. For trenches in existing pavements, permanent placement shall be no higher than the bottom of the existing pavement permeable drainage layer. If a drainage layer does not exist, permanent placement in existing pavements shall be no higher than 25 mm below the bottom of the existing asphalt concrete surfacing or no higher than the top of base below the existing portland cement concrete pavement. The minimum height that controlled low strength material shall be placed, relative to the culvert invert, is 0.5 diameter or 0.5 height for rigid culverts and 0.7 diameter or 0.7 height for flexible culverts. When controlled low strength material is proposed for use, the Contractor shall submit a mix design and test data to the Engineer for approval prior to excavating the trench for which controlled low strength material is proposed for use. The test data and mix design shall provide for the following: - A. A 28-day compressive strength between 345 kPa and 690 kPa for pipe culverts having a height of cover of 6.1 m or less and a minimum 28-day compressive strength of 690 kPa for pipe culverts having a height of cover greater than 6.1 m. Compressive strength shall be determined in conformance with the requirements in ASTM Designation: D 4832. - B. When controlled low strength material is used as structure backfill for pipe culverts, the sections of pipe culvert in contact with the controlled low strength material shall conform to the requirements of Chapter 850 of the Highway Design Manual using the minimum resistivity, pH, chloride content, and sulfate content of the hardened controlled low strength material. Minimum resistivity and pH shall be determined in conformance with the requirements of California Test 643. The chloride content shall be determined in conformance with the requirements of California Test 422 and the sulfate content shall be determined in conformance with the requirements of California Test 417. - C. Cement shall be any type of portland cement conforming to the requirements in ASTM Designation: C 150; or any type of blended hydraulic cement conforming to the requirements in ASTM Designation: C 595M or the physical requirements in ASTM Designation: C 1157M. Testing of cement will not be required. - D. Admixtures may be used in conformance with the provisions in Section 90-4, "Admixtures," of the Standard Specifications. Chemical admixtures containing chlorides as Cl in excess of one percent by mass of admixture, as determined in conformance with the requirements of California Test 415, shall not be used. If an air-entraining admixture is used, the maximum air content shall be limited to 20 percent. Mineral admixtures shall be used at the Contractor's option. Materials for controlled low strength material shall be thoroughly machine-mixed in a pugmill, rotary drum or other approved mixer. Mixing shall continue until the cementitious material and water are thoroughly dispersed throughout the material. Controlled low strength material shall be placed in the work within 3 hours after introduction of the cement to the aggregates. When controlled low strength material is to be placed within the traveled way or otherwise to be covered by paving or embankment materials, the material shall achieve a maximum indentation diameter of 76 mm prior to covering and opening to public traffic. Penetration resistance shall be measured in conformance with the requirements in ASTM Designation: D 6024. Controlled low strength material used as structure backfill for pipe culverts will be considered structure backfill for compensation purposes. ## 10-1.31 MATERIAL CONTAINING AERIALLY DEPOSITED LEAD Earthwork involving materials containing aerially deposited lead shall conform to the provisions in "Earthwork" and this section "Material Containing Aerially Deposited Lead" of these special provisions. Attention is directed to "Aerially Deposited Lead" of these special provisions. Type Y material contains aerially deposited lead in average concentrations greater than or equal to 5.0 mg/L Soluble Lead and between 0
- 350 mg/kg (inclusive) Total Lead, as tested using the California Waste Extraction Test. Type Y material exists as shown on the plans. These materials shall be placed as shown on the plans, unless otherwise directed by the Engineer, and covered with a minimum 0.3-m layer of non-hazardous soil or pavement. These materials are hazardous waste regulated by the State of California that may be reused as permitted under the Variance of the Department of Toxic Substances Control. Temporary surplus material may be generated on this project due to the requirements of stage construction. Temporary surplus material shall not be transported outside the project limits. In order to conform to the requirements of these provisions, it may be necessary to stockpile materials for subsequent stages or construct some embankments out of stage or handle temporary surplus material more than once. ## LEAD COMPLIANCE PLAN The Contractor shall prepare a project specific Lead Compliance Plan to prevent or minimize worker exposure to lead while handling material containing aerially deposited lead. Attention is directed to Title 8, California Code of Regulations, Section 1532.1, "Lead," for specific Cal-OSHA requirements when working with lead. The Lead Compliance Plan shall contain the elements listed in Title 8, California Code of Regulations, Section 1532.1(e)(2)(B). Before submission to the Engineer, the Lead Compliance Plan shall be approved by an Industrial Hygienist certified in Comprehensive Practice by the American Board of Industrial Hygiene. The Plan shall be submitted to the Engineer for review and acceptance at least 15 days prior to beginning work in areas containing aerially deposited lead. The Contractor shall not work in areas containing aerially deposited lead within the project limits, unless authorized in writing by the Engineer, until the Engineer has accepted the Lead Compliance Plan. Prior to performing work in areas containing aerially deposited lead, personnel who have no prior training or are not current in their training status, including State personnel, shall complete a safety training program provided by the Contractor. The safety training program shall meet the requirements of Title 8, California Code of Regulations, Section 1532.1, "Lead." Personal protective equipment, training, and washing facilities required by the Contractor's Lead Compliance Plan shall be supplied to State personnel by the Contractor. The number of State personnel will be 3. The Engineer will notify the Contractor of acceptance or rejection of any submitted or revised Lead Compliance Plan not more than 10 days after submittal of the plan. The contract lump sum price paid for Lead Compliance Plan shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in preparing the Lead Compliance Plan, including paying the Certified Industrial Hygienist, and for providing personal protective equipment, training and medical surveillance, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ## EXCAVATION AND TRANSPORTATION PLAN Within 15 days after approval of the contract, the Contractor shall submit 3 copies of the Excavation and Transportation Plan to the Engineer. The Engineer will have 7 days to review the Excavation and Transportation Plan. If revisions are required, as determined by the Engineer, the Contractor shall revise and resubmit the Excavation and Transportation Plan within 7 days of receipt of the Engineer's comments. The Engineer will have 7 days to review the revisions. Upon the Engineer's approval of the Excavation and Transportation Plan, 3 additional copies of the Excavation and Transportation Plan incorporating the required changes shall be submitted to the Engineer. Minor changes or clarifications to the initial submittal may be made and attached as amendments to the Excavation and Transportation Plan. In order to allow construction to proceed, the Engineer may conditionally approve the Excavation and Transportation Plan while minor revisions or amendments to the Plan are being completed. The Contractor shall prepare a written, project specific Excavation and Transportation Plan establishing the procedures the Contractor will use to comply with requirements for excavating, transporting, and placing (or disposing) of material containing aerially deposited lead. The Excavation and Transportation Plan shall conform to the regulations of the Department of Toxic Substance Control and the California Division of Occupational Safety and Health Administration (Cal-OSHA). The sampling and analysis plans shall meet the requirements for the design and development of the sampling plan, statistical analysis, and reporting of test results contained in USEPA, SW 846, "Test Methods for Evaluating Solid Waste," Volume II: Field Manual Physical/Chemical, Chapter Nine, Section 9.1. The plan shall contain, but not be limited to the following elements: - A. Excavation schedule (by location and date) - B. Temporary locations of stockpiled material - C. Sampling and analysis plans for areas after removal of a stockpile - 1. Location and number of samples - 2. Analytical laboratory - D. Sampling and analysis plan for soil cover - E. Sampling and analysis plan for post excavation as shown on the plans. - F. Dust control measures - G. Air monitoring - 1. Location and type of equipment - 2. Sampling frequency - 3. Analytical laboratory - H. Transportation equipment and routes - I. Method for preventing spills and tracking material onto public roads - J. Truck waiting and staging areas - K. Spill Contingency Plan for material containing aerially deposited lead ## **DUST CONTROL** Excavation, transportation, placement, and handling of materials containing aerially deposited lead shall result in no visible dust migration. The Contractor shall have a water truck or tank on the job site at all times while clearing and grubbing and performing earthwork operations in work areas containing aerially deposited lead. Stockpiles of material containing aerially deposited lead shall not be placed where affected by surface run-on or run-off. Stockpiles shall be covered with plastic sheeting 0.33 mm minimum thickness or 0.3 m of non-hazardous material. Stockpiles shall not be placed in environmentally sensitive areas. Stockpiled material shall not enter storm drains, inlets, or waters of the State. ## MATERIAL TRANSPORTATION Prior to traveling on public roads, loose and extraneous material shall be removed from surfaces outside the cargo areas of the transporting vehicles and the cargo shall be covered with tarpaulins, or other cover, as outlined in the approved Excavation and Transportation Plan. The Contractor shall be responsible for costs due to spillage of material containing lead during transport. The Department will not consider the Contractor a generator of these hazardous materials, and the Contractor will not be obligated for further cleanup, removal, or remedial action for such materials handled or disposed of in conformance with the requirements specified in these special provisions and the appropriate State and Federal laws and regulations and county and municipal ordinances and regulations regarding hazardous waste. #### DISPOSAL The Engineer will obtain the Environmental Protection Agency (EPA) Generator Identification Number for hazardous material disposal. The Engineer will sign all hazardous waste manifests. The Contractor shall notify the Engineer five days before the manifests are to be signed. Sampling, analyzing, transporting, and disposing of materials containing aerially deposited lead excavated outside the pay limits of excavation will be at the Contractor's expense. ## MEASUREMENT AND PAYMENT Quantities of roadway excavation (aerially deposited lead) and structure excavation (aerially deposited lead), of the types shown in the Engineer's Estimate, will be measured and paid for in the same manner specified for roadway excavation and structure excavation, respectively, in Section 19, "Earthwork," of the Standard Specifications. Full compensation for preparing an approved Excavation and Transportation Plan, transporting material containing aerially deposited lead reused in the work from location to location, and transporting and disposing of material containing aerially deposited lead shall be considered as included in the contract prices paid per cubic meter for the items of roadway excavation (aerially deposited lead) and structure excavation (aerially deposited lead) involved, and no additional compensation will be allowed therefor. No payment for stockpiling of material containing aerially deposited lead will be made, unless the stockpiling is ordered by the Engineer. ## 10-1.32 EROSION CONTROL (TYPE D) Erosion control (Type D) shall conform to the provisions in Section 20-3, "Erosion Control," of the Standard Specifications and these special provisions and shall consist of applying erosion control materials to embankment and excavation slopes and other areas disturbed by construction activities, as determined by the Engineer. If the slope on which the erosion control is to be placed is finished during the rainy season as specified in "Water Pollution Control" of these special provisions, the erosion control shall be applied immediately to the slope. Prior to installing erosion control materials, soil surface preparation shall conform to the provisions in Section 19-2.05, "Slopes," of the Standard Specifications, except that rills and gullies exceeding 50 mm in depth or width shall be leveled. Vegetative growth, temporary erosion control materials, and other debris shall be removed from areas to receive erosion control. ## **MATERIALS** Materials shall conform to the provisions in Section 20-2, "Materials," of the Standard Specifications and these special provisions. ## Seed Seed shall conform to the
provisions in Section 20-2.10, "Seed," of the Standard Specifications. Individual seed species shall be measured and mixed in the presence of the Engineer. Seed shall be delivered to the project site in unopened separate containers with the seed tag attached. Containers without a seed tag attached will not be accepted. A sample of approximately 30 g of seed will be taken from each seed container by the Engineer. ## Non-Legume Seed Non-legume seed shall consist of the following: ## NON-LEGUME SEED | Botanical Name
(Common Name) | Percent Germination (Minimum) | Kilograms Pure Live Seed Per Hectare (Slope Measurement) | |---------------------------------|-------------------------------|--| | Gazania Splendens | 35 | 28 | | | | | #### **Commercial Fertilizer** Commercial fertilizer shall conform to the provisions in Section 20-2.02, "Commercial Fertilizer," of the Standard Specifications and shall have a guaranteed chemical analysis of 12 percent nitrogen, 12 percent phosphoric acid and 12 percent water soluble potash. ## **Stabilizing Emulsion** Stabilizing emulsion shall conform to the provisions in Section 20-2.11, "Stabilizing Emulsion," of the Standard Specifications and these special provisions. Stabilizing emulsion shall be in a dry powder form, may be reemulsifiable, and shall be a processed organic adhesive used as a soil tackifier. ## APPLICATION Erosion control materials shall be applied in separate applications in the following sequence: A. The following mixture in the rates indicated shall be applied with hydro-seeding equipment within 60 minutes after the seed has been added to the mixture: | Material | Kilograms Per Hectare (Slope Measurement) | |-----------------|---| | Non-Legume Seed | 28 | | Fiber | 560 | B. The following mixture in the rates indicated shall be applied with hydro-seeding equipment: | Material | Kilograms Per Hectare (Slope Measurement) | |-----------------------|---| | Fiber | 1020 | | Commercial Fertilizer | 220 | Once work is started in an area, stabilizing emulsion applications shall be completed in that area on the same working day. The rates of erosion control materials may be changed by the Engineer to meet field conditions. ## 10-1.33 IRRIGATION CROSSOVERS Irrigation crossovers shall conform to the provisions in Section 20-5, "Irrigation Systems," of the Standard Specifications and these special provisions. Conduits shall be installed under existing paving by jacking or drilling methods in conformance with the provisions in Section 20-5.03B, "Conduit for Irrigation Crossovers," of the Standard Specifications. # 10-1.34 EXTEND IRRIGATION CROSSOVERS Extend existing irrigation crossovers shall conform to the provisions in Section 20-5, "Irrigation Systems," of the Standard Specifications and these special provisions. Extend irrigation crossovers shall include conduit, water line crossover, and sprinkler control crossover extensions and appurtenances, locating existing irrigation crossovers and pressure testing existing and new water line crossovers. The sizes of conduit, water line crossover, and sprinkler control crossover extensions shall be as shown on the plans. Before work is started in an area where an existing irrigation crossover conduit is to be extended, the existing conduit shall be located by the Contractor. When exploratory holes are used to locate the existing conduit, the exploratory holes shall be excavated in conformance with the provisions in Section 20-5.03B, "Conduit for Irrigation Crossovers," of the Standard Specifications. If debris is encountered in the ends of conduits to be extended, the debris shall be removed prior to extending conduits. Removal of debris within the first meter in the conduits shall be at the Contractor's expense. If debris is encountered in the conduit more than one meter from the ends of the conduits to be extended, the additional debris shall be removed as directed by the Engineer and will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. Prior to installation of water line crossover extensions, the existing water lines shall be pressure tested for leakage in conformance with the provisions in Section 20-5.03H, "Pressure Testing," of the Standard Specifications. Repairs to the existing water line crossover, when ordered by the Engineer, will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. Conduit extensions shall be corrugated high density polyethylene (CHDPE) pipe. Water line crossover extensions shall be plastic pipe (PR 315) (supply line). Sprinkler control crossover extensions shall be Type 3 electrical conduit. Conductors shall be removed from existing sprinkler control crossovers to be extended. After installation of the sprinkler control crossover extensions, new conductors shall be installed without splices in existing and extended sprinkler control crossovers. New conductors shall match the removed conductors in color and size and shall be spliced to the existing conductors in adjacent pull boxes. After the new conductors are installed, the conductors shall be tested in the same manner specified for traffic signal, sign illumination, and lighting circuits in conformance with the provisions in Section 86-2.14B, "Field Testing," of the Standard Specifications. After water line crossover extensions have been installed, existing and extended water line crossovers shall be retested for leakage in conformance with the provisions in Section 20-5.03H, "Pressure Testing," of the Standard Specifications. Leaks that develop shall be repaired at the Contractor's expense and the water line crossovers shall be retested until a satisfactory pressure test is achieved. ## 10-1.35 WATER SUPPLY LINE (BRIDGE) Water supply lines identified on the plans as irrigation or landscape conduit shall be of the sizes shown and shall conform to the details shown on the plans, the provisions in Section 20-5, "Irrigation Systems," of the Standard Specifications, and these special provisions. ## **MATERIALS** ## Pipe and Fittings for Supply Lines Less Than NPS 4 Pipe and fittings for conduits less than NPS 4 shall conform to the provisions in Section 20-2.15A, "Steel Pipe," of the Standard Specifications. ## Expansion Assemblies for Supply Lines Less Than NPS 4 Expansion assemblies for supply lines less than NPS 4 shall be the hose type. Hose shall be medium or heavy weight, oil resistant, flexible, rubber or synthetic rubber cover and tube, reinforced with a minimum of 2-ply synthetic yarn or steel wire and shall be equipped with steel flanges. The hose and flange assembly shall have the same nominal inside diameter as the supply line and shall be rated for a minimum working pressure of 1.4 MPa. Hoses carrying potable water shall meet Food and Drug Administration standards. ## **Insulated Flange Connections** Each insulated flange connection shall consist of a dielectric flange gasket, insulating washers, and sleeves held in place with steel bolts and nuts. The gasket shall have a minimum dielectric rating of 500 V/0.025-mm. ## **Pipe Wrapping Tape** Wrapping tape for pipe in contact with the earth shall be a pressure sensitive polyvinyl chloride or polyethylene tape with a minimum thickness of 1.27 mm. Each pipe hanger assembly shall consist of a concrete clevis plate, welded eye rods, an adjustable steel yoke, a cast iron pipe roller, a steel roller rod, hex nuts, and shield plate. Parts shall be galvanized. The pipe hanger assembly shall be suitable for the type and size of pipe installed and shall be as shown on the plans. Steel hangers, shield plate, anchor bolts, pipe clamps, nuts and bolts, and other fittings shall be suitable for the type and size of the supply lines and shall conform to the provisions in Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications. # INSTALLATION Water supply lines in bridge structures shall be supported as shown on the plans and in conformance with these special provisions. Openings for supply lines through bridge superstructure concrete shall either be formed or shall consist of pipe sleeves. ## **Cleaning and Closing of Pipe** The interior of the pipe shall be cleaned before installation. Openings shall be capped or plugged as soon as the pipe is installed to prevent the entrance of foreign material. The caps or plugs shall remain in place until the adjacent pipe sections are to be installed. # Wrapping and Coating Pipe Damaged coating on supply line pipe in contact with the earth shall be wrapped with tape as follows: - A. Pipe to be wrapped shall be thoroughly cleaned and primed as recommended by the tape manufacturer. - B. Tape shall be tightly applied with one-half uniform lap, free from wrinkles and voids to provide not less than 2.5 mm thickness. - C. Field joints and fittings for wrapped pipe shall be covered by double wrapping 1.27 mm thick tape. Wrapping at joints shall extend a minimum of 150 mm over adjacent pipe coverings. Width of tape for wrapping fittings shall not exceed 50 mm. Adequate tension shall be applied so that the tape will conform closely to the contours of the joint. #### TESTING Water supply lines less than NPS 4 shall be tested in conformance with the provisions in Section 20-5.03H(1), "Method A," of the Standard Specifications, except that the testing period shall be 4 hours minimum with no leakage or pressure drop. The Contractor shall furnish pipe anchorages to resist thrust forces occurring during testing. Leaks shall be repaired and defective materials shall be replaced by the Contractor at the Contractor's expense. Pressure testing and necessary repairing of water lines shall be completed prior to backfilling, placing deck slabs over supply lines in box girder cells, or otherwise covering the supply lines.
Each end of the supply line shall be capped prior to and after the testing. The supply line shall be tested as one unit. The limits of the unit shall be 1.5 m beyond the casing at each end of the bridge. ## MEASUREMENT AND PAYMENT Conduits for irrigation and landscaping shall be measured and paid for as supply line (bridge) for each size listed in the Engineer's Estimate in the same manner as galvanized steel pipe and plastic pipe supply lines in Section 20-5.04, "Measurement," and Section 20-5.05, "Payment," of the Standard Specifications. Full compensation for furnishing and installing steel hangers, steel brackets and other fittings, shield plates, pipe end seals, pipe anchorages, pipe wrapping tape, expansion assemblies, for cleaning, closing, wrapping, and coating pipe, and for pressure testing, shall be considered as included in the contract prices paid per meter for the sizes of water supply line (bridge) involved, and no additional compensation will be allowed therefor. ## 10-1.36 AGGREGATE BASE Aggregate base shall be Class 3 and shall conform to the provisions in Section 26, "Aggregate Bases," of the Standard Specifications and these special provisions. The restriction that the amount of reclaimed material included in Class 3 aggregate base not exceed 50 percent of the total volume of the aggregate used shall not apply. Aggregate for Class 3 aggregate base may include reclaimed glass. Aggregate base incorporating reclaimed glass shall not be placed at locations where surfacing will not be placed over the aggregate base. ## 10-1.37 LEAN CONCRETE BASE Lean concrete base shall conform to the provisions in Section 28, "Lean Concrete Base," of the Standard Specifications. #### 10-1.38 ASPHALT CONCRETE Asphalt concrete shall be Type B and shall conform to the provisions in Section 11-1, "Quality Control / Quality Assurance" of these special provisions. Surfacing of miscellaneous areas with asphalt concrete shall conform to the provisions in "Asphalt Concrete (Miscellaneous Areas)" of these special provisions. Paint binder (tack coat) shall be applied to existing surfaces to be surfaced and between layers of asphalt concrete, except when eliminated by the Engineer. Paint binder (tack coat) shall be, at the option of the Contractor, either slow-setting asphaltic emulsion, rapid-setting asphaltic emulsion, or paving asphalt. Slow-setting asphaltic emulsion and rapid-setting asphaltic emulsion shall conform to the provisions in Section 39-8.02 of Section 11-1, "Quality Control / Quality Assurance," of these special provisions, and the provisions in Section 94, "Asphaltic Emulsions," of the Standard Specifications. When paving asphalt is used for paint binder; the grade will be determined by the Engineer. Paving asphalt shall be applied at a temperature of not less than 140°C or more than 175°C. Paving asphalt shall conform to the provisions in Section 39-8.02 of Section 11-1, "Quality Control / Quality Assurance," of these special provisions, and the provisions in Section 92, "Asphalts," of the Standard Specifications. Paint binder (tack coat) shall be applied in the liter per square meter range limits specified for the surfaces to receive asphalt concrete in the tables below. The exact application rate within the range will be determined by the Engineer. | Application Rates for Asphaltic Emulsion Paint Binder (Tack Coat) on Asphalt Concrete (except Open Graded) and | | | | |--|---------------------------------|----------------------------------|--| | on Portland Cement Concrete Pavement (PCCP) | | | | | Type of surface to receive | Slow-Setting Asphaltic Emulsion | Rapid-Setting Asphaltic Emulsion | | | Paint binder (tack coat) | L/m ² (Note A) | L/m ² (Note B) | | | Dense, compact surfaces, | 0.20 - 0.35 | 0.10 - 0.20 | | | between layers, and on PCCP | | | | | Open, textured or dry, | 0.35 - 0.90 | 0.20 - 0.40 | | | Aged surfaces | | | | Note A: Slow-setting asphaltic emulsion is asphaltic emulsion diluted with additional water. Water shall be added and mixed with the asphaltic emulsion (containing up to 43 percent water) so the resulting mixture contains one part asphaltic emulsion and not more than one part added water. The water shall be added by the emulsion producer or at a facility that has the capability to mix or agitate the combined blend. Note B: Undiluted rapid-setting asphaltic emulsion | Application Rates for Paint Binder (Tack Coat) on Asphalt Concrete (except Open Graded) and on Portland Cement | | | |--|------------------|--| | Concrete Pavement (PCCP) | | | | Type of surface to receive paint binder (tack coat) | Paving Asphalt | | | | L/m ² | | | Dense, compact surfaces, between layers, and on | 0.05 - 0.10 | | | PCCP | | | | Open, textured or dry, aged surfaces | 0.10 - 0.25 | | The Contractor may obtain a copy of the Department's "Manual for Quality Control and Quality Assurance for Asphalt Concrete" at www.dot.ca.gov/hq/construc/qcqa.html. In addition to the straightedge requirements in Section 39-10.04, "Compacting," in Section 11-1, "Quality Control / Quality Assurance," of these special provisions, asphalt concrete pavement shall conform to the surface tolerances specified herein. The top surface of the uppermost layer of Type B asphalt concrete surfacing shall be profiled by the Contractor, in the presence of the Engineer. Two profiles shall be obtained in each lane. The profiles shall be approximately one meter from and parallel with the edge of the lane. Profiles shall be performed using a California Profilograph or equivalent in conformance with the requirements in California test 526 and as specified in these special provisions. Prior to beginning profiles, the profilograph shall be calibrated in the presence of the Engineer. Asphalt concrete pavement shall conform to the following Profile Index requirements: - A. Pavement on tangent alignment and pavement on horizontal curves having a centerline curve radius of 600 m or more shall have a Profile Index of 8 mm or less for each 0.1-km section profiled. - B. Pavement on horizontal curves having a centerline curve radius of 300 m or more but less than 600 m, including the pavement within the superelevation transition of these curves, shall have a Profile Index of 16 mm or less for each 0.1-km section profiled. - C. Pavement containing high point areas with deviations indicated by the profilograph in excess of 7.5 mm in a length of 7.5 m or less shall be corrected by the Contractor regardless of the Profile Index of the each 0.1-km section profiled. Profile Index requirements will not apply to the following areas of asphalt concrete pavement, but these areas shall conform to the straightedge requirements in Section 39-10.04, "Compacting," in Section 11-1, "Quality Control / Quality Assurance," of these special provisions: - A. Pavement on horizontal curves with a centerline curve radius of less than 300 m and pavement within the superelevation transition on those curves. - B. Pavement with a total thickness of 75 mm or less. - C. Pavement placed in a single lift when required by the special provisions. - D. Pavement with extensive grade or cross slope correction which does not receive advance leveling operations in conformance with the provisions in Section 39-10.03, "Spreading," in Section 11-1, "Quality Control / Quality Assurance," of these special provisions. - E. Pavement for ramps and connectors with steep grades and high rates of superelevation, as determined by the Engineer. - F. Pavement on city or county streets and roads. - G. Pavement on turn lanes and collector lanes that are less than 500 meters in length. - H. Shoulders and miscellaneous areas. - I. Pavement placed one meter from and parallel with the joint between asphalt concrete pavement and existing curbs, gutters or existing pavement. - J. Pavement within 15 m of a transverse joint that separates the pavement from an existing pavement, approach slab or structure surface not constructed under the contract. The Contractor shall complete initial runs of the profilograph prior to opening new pavement to public traffic. Profilograph operations shall be in conformance with the lane closure requirement in "Maintaining Traffic" of these special provisions. In the event that initial profiles can not be made prior to opening the pavement to public traffic, they shall be made the next day that lane closures are permitted for the area to be profiled. Areas of the top surface of the uppermost layer of Type B asphalt concrete pavement that do not meet the specified surface tolerances shall be brought within tolerance by abrasive grinding. Abrasive grinding shall conform to the provisions in the first paragraph and the last 4 paragraphs in Section 42-2.02, "Construction," of the Standard Specifications, except that the grinding residue shall be disposed of outside the highway right of way. Abrasive grinding shall be performed to reduce individual deviations in excess of 7.5 mm, and to reduce the Profile Index of the pavement to be within the specified tolerance. Deviations in excess of 7.5 mm which cannot be brought into specified tolerances by abrasive grinding shall be corrected by either (1) removal and replacement or (2) placing an overlay of asphalt concrete. The corrective method for each area shall be selected by the Contractor and shall be approved by the Engineer prior to beginning the corrective work. Replacement or overlay pavement not meeting the specified tolerances shall be corrected by the methods specified above. Corrective work shall be at the Contractor's expense except that flagging costs will be paid for in conformance to the provisions in Section 12-2, "Flagging," of the Standard Specifications. The Contractor shall profile the areas that
have received abrasive grinding or corrective work until the final Profile Index of the area is within the specified tolerance. When abrasive grinding is used to bring the top surface of the uppermost layer of asphalt concrete surfacing within the specified surface tolerances, additional abrasive grinding shall be performed as necessary to extend the area ground in each lateral direction so that the lateral limits of grinding are at a constant offset from, and parallel with, the nearest lane line or pavement edge, and in each longitudinal direction so that the grinding begins and ends at lines normal to the pavement centerline, within a ground area. Ground areas shall be neat rectangular areas of uniform surface appearance. The original of the final profilograms that indicate the pavement surface is within the Profile Index specified shall become the property of the State and shall be delivered to the Engineer prior to acceptance of the contract. Full compensation for performing profiles corrective work shall be considered as included in the contract price paid per tonne for asphalt concrete (Type B) and no additional compensation will be allowed therefor. The area to which paint binder has been applied shall be closed to public traffic. Care shall be taken to avoid tracking binder material onto existing pavement surfaces beyond the limits of construction. Half-width surfacing operations shall be conducted in such manner that, at the end of each day's work, the distance between the ends of adjacent surfaced lanes shall not be greater than can be completed in the following day of normal surfacing operations. Where the existing pavement is to be widened by constructing a new structural section adjacent to the existing pavement, the new structural section, on both sides of the existing pavement, shall be completed to match the elevation of the edge of the existing pavement at each location prior to spreading and compacting asphalt concrete over the adjacent existing pavement. Additional asphalt concrete surfacing material shall be placed along the edge of the surfacing at road connections and private drives, hand raked, if necessary, and compacted to form smooth tapered conforms. Full compensation for furnishing all labor and tools and doing all the work necessary to hand rake said conforms shall be considered as included in the contract prices paid per tonne for the various contract items of asphalt concrete surfacing involved and no additional compensation will be allowed therefor. The miscellaneous areas to be paid for at the contract price per square meter for place asphalt concrete (miscellaneous area), in addition to the prices paid for the materials involved, shall be limited to ditches, overside drains, aprons at the ends of drainage structures, as shown on the plans. Aggregate for asphalt concrete dikes shall be in conformance with the provisions for 9.5-mm Maximum grading in Section 39-2.02, "Aggregate," of the Standard Specifications. If the Contractor selects the batch mixing method, asphalt concrete shall be produced by the automatic batch mixing method in conformance with the provisions in Section 39-3.03A(2), "Automatic Proportioning," of the Standard Specifications. If the finished surface of the asphalt concrete on Route 405 traffic lanes does not meet the specified surface tolerances, the surfacing shall be brought within tolerance by either (1) abrasive grinding (with fog seal coat on the areas which have been ground), (2) removal and replacement or (3) placing an overlay of asphalt concrete. The method will be selected by the Engineer. The corrective work shall be at the Contractor's expense. If abrasive grinding is used to bring the finished surface to the specified surface tolerances, additional grinding shall be performed, as necessary, to extend the area ground in each lateral direction so that the lateral limits of grinding are at a constant offset from, and parallel to, the nearest lane line or pavement edge, and in each longitudinal direction so that the grinding begins and ends at lines normal to the pavement centerline, within any ground area. Ground areas shall be neat rectangular areas of uniform surface appearance. Abrasive grinding shall conform to the provisions in the first paragraph and the last 4 paragraphs in Section 42-2.02, "Construction," of the Standard Specifications. In addition to the straightedge provisions in Section 39-6.03, "Compacting," of the Standard Specifications, asphalt concrete pavement shall conform to the surface tolerances specified herein. # **General Criteria for Profiling** The uppermost layer of Type B asphalt concrete surfacing shall be profiled in the presence of the Engineer using a California Profilograph or equivalent in conformance with California Test 526 and as specified in these special provisions. The California Profilograph or equivalent will not be required for the following areas of the pavement surface but shall conform to the straightedge requirements in Section 39-6.03, "Compacting," of the Standard Specifications: - A. Pavement with a total thickness less than 75 mm. - B. Pavement on horizontal curves with a centerline curve radius of less than 300 m and the pavement within the superelevation transition on those curves. - C. Pavement placed in a single lift when required by the special provisions. - D. Pavement with extensive grade or cross slope correction which does not receive advance leveling operations in conformance with the provisions in Section 39-6.02, "Spreading," of the Standard Specifications. - E. Pavement for ramps and connectors with steep grades and high rates of superelevation, as determined by the Engineer. - F. Pavement sections of city or county streets and roads, and turn lanes and collector lanes that are less than 500 m in length. - G. Shoulders and miscellaneous areas. - H. Pavement placed within one meter from and parallel with the joint between asphalt concrete pavement and existing curbs, gutters or existing pavement. - I. Pavement surface within 15 m of a transverse joint that separates the pavement from an existing pavement, approach slab or structure surface not constructed under the contract. The Contractor shall conform to California Test 526, except a zero (null) blanking band shall be used for determining the Profile Index. Prior to beginning profiles, the profilograph shall be calibrated in the presence of the Engineer. Two profiles shall be obtained within each traffic lane, one meter from and parallel with the edges of the lane. Pavements profiled shall conform to the following Profile Index requirements: - A. Pavement on tangent alignment and pavement on horizontal curves having a centerline curve radius of 600 m or more shall have a Profile Index of 48 mm or less for each 0.1-km section profiled. - B. Pavement on horizontal curves having a centerline curve radius of 300 m or more but less than 600 m, including the pavement within the superelevation transition of these curves, shall have a Profile Index of 96 mm or less for each 0.1-km section profiled. - C. Pavement within any 0.1-km section, containing high point areas with deviations in excess of 7.5 mm in a length of 7.5 m or less, when tested in conformance with the requirements in California Test 526, shall be corrected by the Contractor regardless of the Profile Index. The Contractor shall complete initial runs of the profilograph prior to opening the pavement to public traffic. Profilograph operations shall be in conformance with the lane closure requirements in "Maintaining Traffic" of these special provisions. If initial profiles can not made prior to opening the pavement to public traffic, the initial runs of the profilograph shall be made the next day that traffic control is permitted for the area to be profiled. Areas of the top surface of the uppermost layer of Type B asphalt concrete pavement that do not meet the specified surface tolerances shall be brought within tolerance by abrasive grinding. Abrasive grinding shall be performed to reduce individual deviations in excess of 7.5 mm, and to reduce the Profile Index of the pavement to be within the specified tolerance. Areas which have been subjected to abrasive grinding shall receive a seal coat. Deviations in excess of 7.5 mm which cannot be brought into specified tolerance by abrasive grinding shall be corrected by either (1) removal and replacement or (2) placing an overlay of asphalt concrete. The corrective method for each area shall be selected by the Contractor and shall be approved by the Engineer prior to beginning the corrective work. Replacement or overlay pavement not meeting the specified tolerances shall be corrected by the methods specified above. Corrective work shall be at the Contractor's expense except that flagging costs will be paid for in conformance to the provisions in Section 12-2, "Flagging," of the Standard Specifications. The Contractor shall run profilograms on the areas that have received abrasive grinding or corrective work until the final profilograms indicate the Profile Index of the area is within the specified tolerance. When abrasive grinding is used to bring the top surface of the uppermost layer of asphalt concrete surfacing within the specified surface tolerances, additional abrasive grinding shall be performed as necessary to extend the area ground in each lateral direction so that the lateral limits of grinding are at a constant offset from, and parallel with, the nearest lane line or pavement edge, and in each longitudinal direction so that the grinding begins and ends at lines normal to the pavement centerline, within a ground area. Ground areas shall be neat rectangular areas of uniform surface appearance. The original of the final profilograms that indicate the pavement surface is within the Profile Index specified shall become the property of the State and shall be delivered to the Engineer prior to acceptance of the contract. Full
compensation for performing all profile checks for Profile Index and furnishing final profilograms to the Engineer, for performing all corrective work to the pavement surface including abrasive grinding, removing, and replacing asphalt concrete or placing an asphalt concrete overlay to bring the surface within the tolerance specified shall be considered as included in the contract price paid per tonne for asphalt concrete (Type B) and no separate payment will be made therefor. ## 10-1.39 CONCRETE PAVEMENT ## **GENERAL** Concrete pavement shall be constructed in conformance with the provisions in Section 40, "Portland Cement Concrete Pavement," of the Standard Specifications and these special provisions, and as shown on the plans. Insert method for forming joints in pavement shall not be used. ## PREPAVING CONFERENCE Supervisory personnel of the Contractor and subcontractors who are to be involved in the concrete paving work shall meet with the Engineer at a prepaving conference, at a mutually agreed time, to discuss methods of accomplishing the paving work. The Contractor shall provide a facility for the prepaving conference within 5 km of the construction site or at a nearby location agreed to by the Engineer. Attendance at the prepaving conference is mandatory for the Contractor's project superintendent, paving construction foreman, subcontractor's workers, including foremen and personnel performing saw cutting, joint sealing, concrete plant manager, and concrete plant operator. Conference attendees shall sign an attendance sheet provided by the Engineer. Production and placement shall not begin nor proceed unless the above-mentioned personnel have attended the mandatory prepaving conference. ## JUST-IN-TIME TRAINING Attending a 4-hour Just-In-Time Training (JITT) shall be mandatory, and consist of a formal joint training class on portland cement concrete and paving techniques. Construction operations for portland cement concrete paving shall not begin until the Contractor's and the Engineer's personnel have completed the mandatory JITT. The Contractor's personnel included in the list of participants for the prepaving conference as well as the Engineer's representatives shall attend JITT. JITT shall be in addition to the prepaving conference. The JITT class will be conducted for not less than 4 hours on portland cement concrete pavement and paving techniques. The training class may be an extension of the prepaving conference and shall be conducted at a project field location convenient for both the Contractor and the Engineer. The JITT class shall be completed at least 15 days, not including Saturdays, Sundays or holidays, prior to the start of portland cement concrete paving operations. The class shall be held during normal working hours. The JITT instructor shall be experienced in the construction methods, materials, and test methods associated with construction of portland cement concrete pavement and paving techniques. The instructor shall not be an employee of the Contractor or a member of the Engineer's field staff. A copy of the course syllabus, handouts, and presentation material shall be submitted to the Engineer at least 7 days before the day of the training. The Contractor and the Engineer shall mutually agree to course instructor, the course content, and training site. The instructor shall issue a certificate of completion to the participants upon completion of the class. The certificate of completion shall include the course title, date and location of the class, the name of the participant, instructor's name, location and telephone number. The Contractor's or Engineer's personnel involved with portland cement concrete paving operations will not be required to attend JITT if they have completed equivalent training within the previous 12 months of the date of the JITT for this project. The Contractor shall provide a certificate of class completion as described above for each staff member to be excluded from the JITT class. The Engineer will provide the final determination for exclusion of staff member's participation. Attendees of the JITT shall complete, and submit to the Engineer, an evaluation of the training. The Engineer will provide the course evaluation form. Just-In-Time Training shall not relieve the Contractor of responsibility under the contract for the successful completion of the work in conformance with the requirements of the plans and specifications. ## TEST STRIP At the beginning of paving operations, the Contractor shall construct a test strip of concrete pavement from 200 m to 300 m in length. The paving width for the test strip shall be the same as that intended by the Contractor for production work. The Contractor shall use the same equipment to construct the test strip for the remainder of the paving operations, except as specified in this section. The Contractor shall not begin paving operations until the test strip has been evaluated in conformance with the provisions in Section 40-1.10, "Final Finishing," of the Standard Specifications regarding surface straight edge requirements, and "Profile Index" in this section; for dowel and tie bar alignment verification; concrete quality (except modulus of rupture); and pavement thickness. Additional test strips will be required when: - A. A portion of a test strip fails to conform to the provisions in Section 40-1.10, "Final Finishing," of the Standard Specifications for straight edge requirements; - B. A portion of the test strip fails to conform to profile requirements; - C. The Contractor proposes different paving equipment, including a batch plant, paver, dowel bar inserter, tie bar inserter, tining, or curing equipment; - D. The dowel bar tolerances are not met; - E. The pavement thickness deficiency is greater than 15 mm after grinding; or - F. A change in concrete mix proportions has occurred. The Contractor shall perform coring of the test strips as part of the dowel and tie bar placement tolerance verification, and pavement thickness verification. The Engineer will select a minimum of six dowel bars that will be cored for each test strip. The Engineer will have the option of selecting up to 6 tie bars that will be cored for each test strip. After removal of cores, voids in concrete pavement shall be cleaned and filled with hydraulic cement grout conforming to the provisions in "Core Drilling for Dowel Placement Alignment Assurance Testing" in this section. Before mechanical dowel bar inserters are used, the Contractor shall demonstrate that the insertion equipment will not leave surface irregularities such as depressions, dips, or high areas adjacent to the dowel bar insertion point, or voids or segregation around dowel bars. Before placement of the test strip, the Contractor shall submit a written procedure to locate transverse weakened plane joints that will coincide with the center of the dowel bars being placed and locating the tie bars along the longitudinal joints. This procedure shall be submitted prior to the prepaving conference, and shall describe the control of inadvertent covering of paint markings after applying curing compound, excessive paint spray producing too large a paint dot marking for the accuracy required, misalignment by transferring marking spots, and inadequate staking of joints. Construction of concrete pavement shall not proceed until the Engineer has completed an evaluation of the test strip. The Engineer shall be allowed 3 days, not including Saturdays, Sundays and legal holidays, to evaluate the test strip. If, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the Engineer not completing the evaluation of the test strip within the time specified, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Test strips failing to conform to the specifications for concrete pavement shall be removed. Additional test strips shall be constructed until the Contractor constructs a test strip that conforms to the specifications for concrete pavement. Additional test strips shall conform to the requirements in this section, except the test strip shall be 200 m in length. Prior to constructing additional test strips, the Contractor shall change methods or equipment to construct a test strip that conforms to the provisions in Section 40-1.10, "Final Finishing," of the Standard Specifications, "Profile Index" of this section, and dowel bar alignment verification, without grinding or other corrective work. The Engineer may waive the initial test strip if the Contractor proposes to use a batch plant mixer and paving equipment with the same personnel that were satisfactorily used on a Department project within the preceding 12 months. The personnel shall be individuals listed in the prepaying conference used on a preceding Department project. Materials resulting from the construction and removal of rejected test strips shall become the property of the Contractor and shall be removed and disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. #### **MATERIALS** ## Concrete Attention is directed to Section 90, "Portland Cement Concrete," of the Standard Specifications, regarding mix proportions for concrete being determined by the Contractor. Primary aggregate gradings shall conform to the gradation requirements of Section 90-3, "Aggregate Gradings," of the Standard Specifications. When combined in the proportions determined by the Contractor, the percent passing the 9.5 mm sieve and retained on the 2.36 mm sieve shall not be less than 16 percent of the total aggregate. The cementitious material content shall not exceed 400 kg/m³. #### Tie Bars Tie bars shall be deformed reinforcing steel bars conforming to the requirements of ASTM Designation: A
615/A 615M, Grade 280 or 420; ASTM Designation: A 615/A 615M (Grade 280 or 420), A996/A996M or A706/A706M. Tie bars shall be epoxy-coated in conformance with the requirements in ASTM Designation: A 934/A 934M or A 775/A 775M and the provisions in Section 52-1.02B, "Epoxy-coated Reinforcement," of the Standard Specifications, except the epoxy-coating thickness after curing shall be between 175 to 400 micrometers (7 to 16 mils). Fabrication, sampling and jobsite handling shall conform to the requirements in ASTM Designation: D 3963 and the provisions in Section 52-1.02B, "Epoxy-coated Reinforcement," of the Standard Specifications, except the 2 samples shall be 750 mm long. Epoxy-coated tie bars shall not be bent. # **Epoxy (Drill and Bond)** Epoxy for bonding tie bars and dowel bars to portland cement concrete shall be a two-component, epoxy-resin, conforming to the requirements of ASTM Designation: C 881, Type V, Grade 3 (Non-Sagging), Class A, B or C. The class used shall be dependent on the internal temperature of the hardened concrete at the time the epoxy is to be applied. Class A shall be used when the internal temperature is below 4°C, but not lower than recommended by the manufacturer. Class B shall be used when the internal temperature is above 15°C, but not higher than recommended by the manufacturer. A Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications shall be furnished with the epoxy. A copy of the manufacturer's recommended installation procedure shall be provided to the Engineer at least 7 days prior to the start of work. Epoxy shall be applied in conformance with the manufacturer's recommendations. ## **Dowel Bars** Dowel bars shall be plain round smooth, epoxy-coated steel conforming to the requirements in ASTM Designation: A 615/A 615M, Grade 280 or 420, the details shown on the plans and the provisions in Section 52-1.02B, "Epoxy-coated Reinforcement," of the Standard Specifications, except that the two samples required in ASTM Designation D 3963/D 3963M shall be 460 mm long. Epoxy coating of dowel bars shall conform to the provisions in ASTM Designation: A 884/A 884M, Class A, Type 1 or Type 2, except that the bend test shall not apply. Dowel bars shall be free from burrs or other deformations detrimental to free movement of the bars in the concrete. ## **Bond Breaker** Dowel bars shall be lubricated with a bond breaker over the entire bar. A bond breaker application of petroleum paraffin based lubricant or white-pigmented curing compound shall be used to coat the dowel bars completely prior to placement. Oil and asphalt based bond breakers shall not be used. Paraffin based lubricant shall be Dayton Superior DSC BB-Coat or Valvoline Tectyl 506 or an approved equal. Paraffin based lubricant shall be factory applied. White pigmented curing compound shall conform to the requirements of ASTM Designation: C 309, Type 2, Class A, and shall contain 22 percent minimum nonvolatile vehicles consisting of at least 50 percent paraffin wax. Curing compound shall be applied in 2 separate applications, the last application not more than 8 hours prior to placement of the dowel bars. Each application of curing compound shall be applied at the approximate rate of one liter per 3.7 m². ## **Dowel Bar Baskets** Dowel bar baskets shall be manufactured with a minimum welded wire gage number of MW 65. Baskets shall be either U-frame or A-frame shape. J-frame shapes shall not be used. Baskets shall be fabricated in conformance with the requirements in ASTM Designation: A 82. Welding of baskets shall conform to the requirements in AASHTO Designation: M 254. A broken weld will be a cause for rejection of the basket. Baskets shall be Class A, Type 1 epoxy-coated in conformance with the requirements in ASTM Designation: A 884/A 884M. Fabrication and job-site handling shall conform to the requirements in ASTM Designation: D 3963 and the provisions in Section 52-1.02B, "Epoxy-coated Reinforcement," of the Standard Specifications, except that sampling of epoxy-coated wire reinforcement will not be required. A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," shall be furnished for each shipment of epoxy-coated wire reinforcement certifying that the coated bars conform to the requirements in ASTM Designation: A 884/A 884M and the provisions in Section 52-1.02B, "Epoxy-coated Bar Reinforcement," of the Standard Specifications. The Certificate of Compliance shall include the certifications specified in ASTM Designation: A 884/A 884M and a statement that the coating material has been pre-qualified by acceptance testing performed by the Valley Forge Laboratories, Inc., Devon, Pennsylvania. Concrete fasteners shall be used for anchoring dowel bar baskets to lean concrete base, asphalt concrete base, asphalt treated permeable base. Concrete fasteners shall be driven fasteners such as concrete nails, used specifically for fastening to hardened concrete, or asphalt concrete base. Concrete fasteners shall conform to the requirements of ASTM Designation: F 1667. Concrete nails used as fasteners on lean concrete base or asphalt concrete base shall have a minimum shank diameter of 4 mm with a minimum shank length of 64 mm. Concrete nails used as fasteners on asphalt treated or cement treated permeable base shall have a minimum shank diameter of 4 mm with a minimum shank length of 120 mm. Shank length shall be the distance from the point to the bottom of the nail head. Clips and washers shall be commercial quality manufactured for use with dowel bar baskets. The surface of concrete fasteners, clips, and washers shall be either zinc electroplated or galvanized with a minimum coating thickness of 0.005-mm. ## Tie Bar Baskets Tie bar baskets shall be manufactured with a minimum welded wire gage number of MW 65. Baskets shall be either U-frame or A-frame shape. J-frame shapes shall not be used. Tie bar baskets shall be fabricated in conformance with the requirements in ASTM Designation: A 82. Welding of baskets shall conform to the requirements in AASHTO Designation: M 254. A broken weld will be a cause for rejection of the basket. Baskets shall be Class A, Type 1 epoxy-coated in conformance with the requirements in ASTM Designation: A 884/A 884M. Fabrication and job-site handling shall conform to the requirements in ASTM Designation: D 3963 and the provisions in Section 52-1.02B, "Epoxy-coated Reinforcement," of the Standard Specifications, except that sampling of epoxy-coated wire reinforcement will not be required. A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," shall be furnished for each shipment of epoxy-coated wire reinforcement certifying that the coated bars conform to the requirements in ASTM Designation: A 884/A 884M and the provisions in Section 52-1.02B, "Epoxy-coated Bar Reinforcement," of the Standard Specifications. The Certificate of Compliance shall include the certifications specified in ASTM Designation: A 884/A 884M and a statement that the coating material has been pre-qualified by acceptance testing performed by the Valley Forge Laboratories, Inc., Devon, Pennsylvania. Concrete fasteners shall be used for anchoring tie bar baskets to lean concrete base, asphalt concrete base, asphalt treated permeable base, or cement treated permeable base. Concrete fasteners shall be driven fasteners such as concrete nails, used specifically for fastening to hardened concrete, or asphalt concrete base. Concrete fasteners shall conform to the requirements of ASTM Designation: F 1667. Concrete nails used as fasteners on lean concrete base or asphalt concrete base shall have a minimum shank diameter of 4 mm with a minimum shank length of 64 mm. Concrete nails used as fasteners on asphalt treated or cement treated permeable base shall have a minimum shank diameter of 4 mm with a minimum shank length of 120 mm. Shank length shall be the distance from the point to the bottom of the nail head. Clips and washers shall be commercial quality manufactured for use with tie bar baskets. The surface of concrete fasteners, clips, and washers shall be either zinc electroplated or galvanized with a minimum coating thickness of 0.005-mm. ## Reinforcement Reinforcement shall be epoxy coated and shall conform to the provisions in Section 52, "Reinforcement," of the Standard Specifications. ## Silicone Joint Sealant Low modulus silicone joint sealant shall be furnished in a one-part silicone formulation. Acid cure sealant shall not be used. The compound shall be compatible with the surface to which it is applied and shall conform to the following requirements: | Property | Test Method | Requirement | |--|-------------------------|--| | Tensile stress, 150% elongation, 7-day cure at 25°± 1°C and 45% | ASTM D 412 | 310 kPa max. | | to 55% R.H. ^e | (Die C) | | | Flow at $25^{\circ} \pm 1^{\circ}$ C | ASTM C 639a | Shall not flow from channel | | Extrusion Rate at $25^{\circ} \pm 1^{\circ}$ C | ASTM C 603b | 75-250 g/min. | | Specific Gravity | ASTM D 792 | 1.01 to 1.51 | | | Method A | | | Durometer Hardness, at -18° C, Shore A, cured 7 days at $25^{\circ} \pm 1^{\circ}$ C | ASTM C 661 | 10 to 25 | | Ozone and Ultraviolet Resistance, after 5000 hours | ASTM C 793 | No chalking, cracking or bond loss | | Tack free at $25^{\circ} \pm 1^{\circ}$ C and 45% to 55% R.H. ^e | ASTM C 679 | Less than 75 minutes | | Elongation, 7 day cure at 25° ± 1°C and 45% to 55% R.H.e | ASTM D 412
(Die C) | 500 percent min. | | Set to Touch, at 25° ± 1°C and 45% to 55% R.H.e | ASTM D 1640 | Less than 75 minutes | | Shelf Life,
from date of shipment | _ | 6 months min. | | Bond, to concrete mortar-concrete briquettes, air cured 7 days at | AASHTO | | | $25^{\circ} \pm 1^{\circ}\text{C}$ | T 132° | 345 kPa min. | | Movement Capability and Adhesion, 100% extension at -18° C after, air cured 7 days at $25^{\circ} \pm 1^{\circ}$ C, and followed by 7 days in water at $25^{\circ} \pm 1^{\circ}$ C | ASTM C 719 ^d | No adhesive or cohesive failure after 5 cycles | #### Notes: - a. ASTM Designation: C 639 Modified (15 percent slope channel A). - b. ASTM Designation: C 603, through 3-mm opening at 345 kPa. - c. Mold briquettes in conformance with AASHTO Designation: T 132, sawed in half and bonded with a 1.5 mm maximum thickness of sealant and tested in conformance with AASHTO Designation: T 132. Briquettes shall be dried to constant mass at $100 \pm 5^{\circ}$ C. - d. Movement Capability and Adhesion: Prepare 305 mm x 25 mm x 75 mm concrete blocks in conformance with ASTM Designation: C 719. A sawed face shall be used for bond surface. Seal 50 mm of block leaving 12.5 mm on each end of specimen unsealed. The depth of sealant shall be 9.5 mm and the width 12.5-mm. - e. R.H. equals relative humidity. The silicone joint sealant shall be formulated to cure rapidly enough to prevent flow after application on grades of up to 15 percent. A Certificate of Compliance for the silicone sealant shall be furnished to the Engineer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate shall also be accompanied with a certified test report of the results of the required tests performed on the sealant material within the previous 12 months prior to proposed use. The Certificate and accompanying test report shall be provided for each lot of silicone joint sealant prior to use on the project. ## Foam Backer Rods Foam backer rods shall be Type 1, conforming to the requirements of ASTM Designation: D 5249. Foam backer rods shall have a diameter prior to placement at least 25 percent greater than the width of the sawcut and shall be expanded, crosslinked, closed-cell polyethylene foam that is compatible with the joint sealant so that no bond or adverse reaction occurs between the rod and sealant. Hot applied sealant that will melt the foam backer rod shall not be used. The Contractor shall submit a manufacturer's data sheet verifying that the foam backer rod is compatible with the sealant to be used. # **Joint Filler Material** Joint filler material shall be preformed expansion joint filler for concrete (bituminous type), conforming to the requirements of ASTM Designation: D 994. A Certificate of Compliance for the joint filler material shall be furnished to the Engineer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The certificate shall be accompanied with a certified test report of the results of the required tests performed on the joint filler material within the previous 12 months prior to proposed use. The certificate and accompanying test report shall be provided for each lot of joint filler material prior to use on the project. ## **Hydraulic Cement Grout (non-shrink)** Hydraulic cement grout (non-shrink) shall conform to the requirements in ASTM Designation: C 1107. At the Contractor's option, clean, uniformly rounded aggregate filler may be used to extend the grout. The extension of grout shall not exceed 60 percent of the mass of the grout or the maximum amount of grout extension recommended by the manufacturer, whichever is less. The moisture content of the aggregate filler shall not exceed 0.5 percent. Grading of the aggregate filler shall conform to the following: | Sieve Size | Percentage Passing | |------------|--------------------| | 12.5 mm | 100 | | 9.5 mm | 85-100 | | 4.75 mm | 10-30 | | 2.36 mm | 0-10 | | 1.10 mm | 0-5 | ## PAVEMENT CONCRETE MIX PROPORTIONS The Contractor shall determine the mix proportions for pavement concrete. Section 40-1.015, "Cement Content," of the Standard Specifications shall not apply. The laboratory used to develop the mix proportions shall meet the requirements of ASTM Designation: C 1077, and shall have current AASHTO accreditation for test methods AASHTO Designation: T 97 or ASTM Designation: C 78, and AASHTO Designation: T 126 or ASTM Designation: C 192. The minimum cementitious materials content or the maximum water to cementitious materials ratio shall be determined in conformance with the requirements in California Test 559. Trial mixtures shall be made no more than 24 months before field qualification. The minimum cementitious materials content or the maximum water to cementitious materials ratio shall be that determined from the trial mixtures curve to produce a minimum modulus of rupture of 3.9 MPa at 28 days age and 4.5 MPa at 42 days age. To account for variances in materials, production of concrete, and modulus of rupture testing, the Contractor shall include as part of the proposed mix proportions an increase to the cementitious material content or a decrease to the water to cementitious materials ratio, determined from trial mixtures, to ensure that portland cement concrete produced during paving operations conforms to the requirements in "Modulus of Rupture," in this section. At least 14 days prior to field qualification, the Contractor shall submit the proposed pavement concrete mix proportions with laboratory test reports. Laboratory test reports shall include modulus of rupture determined for each trial mixture at ages of 10, 21, 28 and 42 days in conformance with the applicable portions of California Test 559. # Field Qualification Field qualification of proposed mix proportions will be required prior to placement of pavement concrete. The Contractor shall perform field qualification and submit certified test data to the Engineer. Field qualification data shall be based upon the proposed use of materials, mix proportions, mixing equipment, procedures and size of batch. Proposed concrete mix proportions will be field qualified when the test results of five beams from a single batch of concrete indicate the average modulus of rupture is at least 3.9 MPa with no single beam lower than 3.8 MPa at an age of the Contractor's choice but not later than 28 days. Beams shall be tested for modulus of rupture at a minimum of 10, 21, and 28 days of age. Test specimens shall be made and tested in conformance with the requirements in California Test 523. The certified field qualification test data reports shall include the following: - A. Date of mixing, - B. Mixing equipment and procedures used, - C. Volume of batch in cubic meters and the mass or volume. - D. Type and source of ingredients used, - E. Penetration and slump of the concrete, - F. The air content of the concrete, and - G. The age at time of testing and strength of concrete specimens tested. Field qualification test data reports shall be signed by a certified representative in charge of the laboratory that performed the tests. If the Contractor changes a source of supply or proportions, the Contractor shall submit a new proposed mix design and furnish samples from the new source, or sources, at least 60 days prior to their intended use. The new mix proportions shall be trial batched and field qualified, unless, the Engineer determines the change is not substantive. No extension of contract time will be allowed for the time required to perform the sampling, testing, preparing and qualifying new mix proportions for new aggregate sources proposed by the Contractor. #### MODULUS OF RUPTURE The Engineer will test portland cement concrete pavement for modulus of rupture in conformance with the requirements in California Test 523. Acceptance will be on a lot basis. Each lot shall not to exceed 750 m³ of concrete pavement. The Engineer will determine sample locations. A minimum of six beam specimens shall be made from each sample. Beam specimens will be tested for modulus of rupture at 10, 21, and 28 days. The modulus of rupture for each lot will be calculated by averaging the results of two beams representing that lot tested at 28 days of age. The difference in modulus of rupture between each individual beam result shall not exceed 0.44-MPa. The Contractor shall perform sampling and testing of beam specimens to determine if concrete pavement has achieved a modulus of rupture of 2.4 MPa when requesting early use of concrete pavement in conformance with the provisions in Section 90-8.03, "Protecting Concrete Pavement," of the Standard Specifications. Beam specimens shall be made and tested in conformance with the requirements in California Test 523. #### INSTALLING TIE BARS Tie bars shall be installed at longitudinal contact joints and longitudinal weakened plane joints as shown on the plans. Contiguous width of new portland cement concrete pavement tied together with tie bars shall not exceed 15 m. Tie bars shall not be installed at joints between portland cement concrete and asphalt concrete pavements. Tie bars shall be installed at longitudinal joints by one of the following methods: - A. Drilling and bonding tie bars with two-component, epoxy-resin that conforms to this section. Drilled holes shall be cleaned in conformance with the epoxy manufacturer's instructions and shall be dry at the time of placing the epoxy and tie bars. Tie bars will be rotated 180° while being inserted into the epoxy filled holes. Immediately after inserting the tie bars into the epoxy, the tie bars shall be supported as necessary to prevent movement during curing and shall remain undisturbed until the epoxy has cured as specified by the manufacturer instructions. Tie bars that are improperly placed or bonded, as determined by the Engineer, will be rejected. If rejected, new holes shall be drilled and new tie bars shall be placed and securely bonded to the concrete. Rejected tie bars shall be cut flush with the joint
face. Exposed ends of tie bars shall be epoxy coated. The center of the new holes shall be offset 75 mm horizontally from the center of the rejected hole to maintain the minimum clearance to the dowel bar. Work necessary to correct improperly bonded tie bars shall be performed at the Contractor's expense. - B. Inserting tie bars into the plastic slipformed concrete before finishing the concrete. Inserted tie bars shall have full contact between the bar and the concrete. When tie bars are inserted through the pavement surface, the concrete over the tie bars shall be reworked and refinished so that there is no evidence on the surface of the completed pavement that there has been an insertion performed. Loose tie bars shall be replaced by drilling and bonding as described in A above, at the Contractor's expense. - C. Using threaded dowel splice couplers fabricated from deformed bar reinforcement material, free of external welding or machining. Threaded dowel splice couplers shall be accompanied by a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications, and shall be accompanied with installation instructions. Installation of threaded dowel splice couplers shall conform to the requirements of the manufacturer's recommendations. - D. Using tie bar baskets that conform to these special provisions. Tie bars shall be oriented perpendicular to the pavement joint and parallel with the surface of the pavement at mid-slab depth. Tie bar alignment tolerances shall conform to the requirements for dowel bars except embedment length tolerance shall be ± 50 mm. If tie bar baskets are used, they shall be anchored to the base to hold the tie bars at the specified depth and alignment during concrete placement without displacement. A minimum of 8 alternating, equally spaced, concrete fasteners with clips shall be used to anchor each basket (4 per lower runner wire). Temporary spacer wires shall be cut or removed after the baskets are anchored into position before concrete placement. Concrete pavement shall not be placed if the baskets are not in place at least 60 m in advance of the concrete placement operation. The Engineer may waive this requirement upon written request by the Contractor in areas where access is restricted or other construction limitations are encountered. The Contractor shall demonstrate that the baskets are anchored and shall not shift during concrete placement. The Contractor shall provide longer concrete nails than the minimum lengths for the varying bases beneath the portland cement concrete when baskets demonstrate movement. Full compensation for providing longer concrete nails shall be considered as included in the contract unit price paid per cubic meter for concrete pavement and no additional compensation will be allowed therefor. ## DOWEL PLACEMENT Dowel bars shall be centered on the joint within a tolerance of ± 50 mm in the longitudinal direction directly over the contact joint or sawcut for the transverse weakened plane joints, as shown on the plans. Prior to placement of dowel bars, the Contractor shall submit to the Engineer a written procedure to identify the transverse weakened plane joint locations relative to the middle of the dowel bars and the procedure for consolidating concrete around the dowel bars. Dowel bars shall be placed at transverse weakened plane joints within shoulder areas except at drainage inlets. Dowel bars shall be placed as shown on the plans by using dowel bar baskets or by mechanical insertion. When dowel bars are placed by mechanical insertion, the concrete over the dowel bars shall be reworked and refinished so that there is no evidence on the surface of the completed pavement that there has been any insertion performed. When drill and bonding of dowel bars is performed at contact joints, a grout retention ring shall be used. When dowel bar baskets are used, they shall be anchored to the base to hold the dowel bars at the specified depth and alignment during concrete placement without displacement. A minimum of 8 alternating, equally spaced, concrete fasteners with clips shall be used to anchor each 3.6 m dowel bar basket (4 per lower runner wire). At least 10 concrete fasteners shall be used for basket sections greater than 3.6 m and less than or equal to 4.9 m. Temporary spacer wires connecting dowel bar baskets shall be cut or removed after the dowel bar baskets are anchored into position prior to concrete placement. Paving shall be suspended when dowel bar baskets are not in place at least 60 m in advance of the concrete placement operation. The Engineer may waive this requirement upon written request by the Contractor, in areas, where access is restricted, or other construction limitations are encountered. The Contractor shall demonstrate to the Engineer's satisfaction that dowel bar baskets are adequately anchored and not shift during concrete placement. The Contractor shall provide longer concrete nails than the minimum lengths for the varying bases beneath the portland cement concrete when anchored dowel bar baskets demonstrate movement. Full compensation for providing longer concrete nails shall be considered as included in the contract unit price paid per cubic meter for concrete pavement and no additional compensation will be allowed therefor. | Dowel bar placement at transverse and longitudinal weakened plane joints | | |--|--| | Horizontal offset | ±25 mm | | Longitudinal translation | ±50 mm | | Horizontal skew | 9 mm | | Vertical skew | 9 mm | | Vertical depth | (d/3 +12 mm) from pavement surface to top of dowel | | | bar or -15 mm below planned placement | Note: d = pavement thickness in mm #### CORE DRILLING FOR DOWEL BAR AND TIE BAR PLACEMENT ALIGNMENT ASSURANCE TESTING Coring to confirm dowel bar and tie bar placement, alignment, and concrete consolidation shall be provided by the Contractor throughout the project, at locations determined by the Engineer. Each day's paving shall be cored within 2 days by performing a minimum of 2 and a maximum of 4 tests for dowel bar placement and position for every 1670 m² of doweled pavement or fraction thereof and one test for tie bar placement and position for every 3340 m² of pavement with tie bars. One test shall consist of drilling two cores, one on each end of a dowel bar to expose both ends and allow measurement for proper alignment. The minimum core hole diameter shall be 127 mm. If the cores indicate that dowel bars or tie bars are not within the allowable tolerances or if air voids exist surrounding the dowel bars or tie bars, additional cores will be required to determine the limits and severity of unacceptable work. The holes shall be cored by methods that will not damage the concrete adjacent to the holes. Immediately after coring, the concrete cores shall be submitted to the Engineer for inspection, and the cores shall be identified by the Contractor with a location description. After removal of cores, core hole voids in concrete pavement shall be cleaned and filled with hydraulic cement grout (non-shrink). After placement of hydraulic cement grout, the material while still plastic shall be finished and textured to match the adjacent pavement surface. The backfill material shall be the same level as the pavement surface. Water for core drilling operations shall be from a local domestic water supply, and shall contain not more than 1000 parts per million of chlorides as CL, nor more than 1300 parts per million of sulfates as SO₄, nor shall it contain impurities in a sufficient amount to cause discoloration of the concrete or produce etching of the surface. Water from core drilling operations shall not be permitted to fall on public traffic, to flow across shoulders or lanes occupied by public traffic, or to flow into gutters or other drainage facilities. Dowel bar and tie bar alignment shall be within the specified tolerances. If dowel bars or tie bars are found to be installed improperly, the paving operations shall not continue until the Contractor has demonstrated to the Engineer that the problem which caused the improper dowel bar or tie bar positioning has been corrected. Dowel bars in rejected joints shall be replaced by the Contractor by saw cutting on each side of the rejected joint a minimum of 0.9-m, lifting out concrete to be removed, installing new dowel bars at the new transverse joints, installing dowel bars and preformed sponge rubber expansion joint filler along the longitudinal joints, placing concrete, and installing new joints. Preformed sponge rubber expansion joint filler shall conform to the requirements in ASTM Designation: D 1752. New dowel bar holes shall be drilled, not more than 3 mm greater than the dowel bar diameter, by the use of an automatic dowel-drilling rig for the dowels to be installed at the contact joints. Dowel bars shall be placed, as shown on the plans, for the 2 new transverse contact joints. Original exposed tie bars, located within the slab replacement area, shall be cut flush with the lane or pavement edge and dowel bars shall be installed to replace the tie bars at an offset of 75 mm, horizontally from the tie bar location. Holes for dowel bars to be placed along the longitudinal joint shall be drilled, not more than 3 mm greater than the dowel bar diameter, by the use of an automatic dowel-drilling rig for the dowel bars to be installed at the contact joints. When requested by the Contractor and approved by the Engineer, dowel bars which are more than ±50 mm but less than ±75 mm from being centered directly over the sawcut for the transverse weakened plane joint, may remain in place, and the Contractor shall pay to the State the amount of \$32.30 per square meter for the quantity of concrete pavement panels represented by the cores
indicating incorrect dowel bar alignment or improper concrete consolidation around dowels. The quantity of concrete pavement area used to determine the amount of payment to the State will be calculated using the panel dimensions for panels adjacent to and inclusive of the joints with incorrect dowel bar alignment or improper concrete consolidation around dowel bars. The Department will reduce compensation from moneys due, or that may become due to the Contractor under the contract. This reduced compensation shall be in addition to other adjustments for incorrect tie bar alignment or improper concrete consolidation around tie bars as specified in these special provisions and for pavement thickness deficiency in conformance with the provisions in Section 40-1.135, "Pavement Thickness," of the Standard Specifications and in addition to other adjustments for deficient Cleanness Value and coarse aggregate grading; and for deficient Sand Equivalent and fine aggregate grading in conformance with the provisions in Section 90-2.02, "Aggregate," of the Standard Specifications. Tie bars which are not within the specified tolerance for placement and position, as determined from inspection and measurements of cores, may remain in place when requested by the Contractor and approved by the Engineer. The Contractor shall pay to the State the amount of \$16.15 per square meter for the quantity of concrete pavement panels represented by the cores indicating incorrect tie bar alignment or improper concrete consolidation around tie bars. The quantity of concrete pavement area used to determine the amount of payment to the State will be calculated using the panel dimensions for panels adjacent to and inclusive of the joints with incorrect tie bar alignment or improper concrete consolidation around tie bars. The Department will reduce compensation from moneys due, or that may become due to the Contractor under the contract. This reduced compensation will be in addition to other adjustments for incorrect dowel bar alignment or improper concrete consolidation around dowel bars as specified in these special provisions and for pavement thickness deficiency in conformance with the provisions in Section 40-1.135, "Pavement Thickness," of the Standard Specifications and in addition to other adjustments for deficient Cleanness Value and coarse aggregate grading; and for deficient Sand Equivalent and fine aggregate grading in conformance with the provisions in Section 90-2.02, "Aggregate," of the Standard Specifications. ## LIQUID JOINT SEALANT INSTALLATION The joint sealant detail for transverse and longitudinal joints, as shown on the plans, shall apply only to weakened plane joints. Weakened plane joints shall be constructed by the sawing method. Should grinding or grooving be required over or adjacent to joints after sealant has been placed, the joint materials shall be removed and disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications, and replaced at the Contractor's expense. Immediately after sawing, a water wash using less than 0.7 MPa pressure shall be used to remove the slurry from the sawing operation. Transverse weakened plane joints shall be Type A1 or B as shown on the plans. Longitudinal weakened plane joints shall be Type A2 or B as shown on the plans. Seven days after the concrete pavement placement and not more than 4 hours before placing backer rods and joint sealant materials, the joint walls shall be cleaned by the dry sand blast method and other means as necessary to remove from the joint objectionable material such as soil, asphalt, curing compound, paint and rust. Sand blasting shall be performed in at least 2 passes, one for each side of the joint, with the nozzle held at an angle to the joint within 25 to 51 mm of the pavement. After cleaning the joint, traces of sand, dust and loose material shall be removed from and near the joint for a distance along the pavement surfaces of at least 50 mm on each side of the joint by the use of a vacuum device. Surface moisture or dampness shall be removed at the joints by means of compressed air or moderate hot compressed air or other means approved by the Engineer. Drying procedures that leave a residue or film on the joint wall shall not be used. Sandblasting equipment shall have a maximum nozzle diameter size of 6 ± 1 -mm and a minimum pressure of 0.62-MPa. Backer rods shall be installed when the temperature of the portland cement concrete pavement is above the dew point of the air and when the air temperature is 4°C or above. Backer rod shall be installed when the joints to be sealed have been properly patched, cleaned and dried, as determined by the Engineer. Methods of placing backer rod that leave a residue or film on joint walls shall not be used. Immediately after placement of the backer rod, joint sealant shall be placed in the clean, dry, prepared joints as shown on the plans. The joint sealant shall be applied using a mechanical device with a nozzle shaped to fit inside the joint to introduce the sealant from inside the joint. Adequate pressure shall be applied to the sealant to ensure that the sealant material is extruded evenly and that full continuous contact is made with the joint walls. After application of the sealant, the surface of the sealant shall be recessed as shown on the plans. Failure of the joint material in either adhesion or cohesion will be cause for rejection of the joint. The finished surface of joint sealant shall conform to the dimensions and allowable tolerances shown on the plans. Rejected joint materials or joint material whose finished surface does not conform to the dimensions shown on the plans, as determined by the Engineer, shall be repaired or replaced, at the Contractor's expense, with joint material that conforms to the requirements. After each joint is sealed, surplus joint sealer on the pavement surface shall be removed. Traffic shall not be permitted over the sealed joints until the sealant is tack free and set sufficiently to prevent embedment of roadway debris into the sealant. #### CONSTRUCTING TRANSVERSE CONTACT JOINTS A transverse contact (construction) joint shall be constructed, including dowel bars, at the end of each day's work or where concrete placement is interrupted for more than 30 minutes, to coincide with the next weakened plane joint location. If sufficient concrete has not been mixed to form a slab to match the next weakened plane joint, when an interruption occurs, the excess concrete shall be removed and disposed of back to the last preceding joint. The cost of removing and disposing of excess concrete shall be at the Contractor's expense. Excess material shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. A metal or wooden bulkhead (header) shall be used to form the joint. The bulkhead shall be designed to accommodate the installation of dowel bars. #### CONSTRUCTING LONGITUDINAL ISOLATION JOINTS Final alignment of perpendicular transverse weakened plane joints in pavement shall not be made to match the spacing or skew of the weakened plane joints in the existing parallel concrete pavement. Tie bars shall not be placed across longitudinal isolation joints. The edge of the existing pavement shall be saw cut a width 3 mm and to the full depth of the existing concrete pavement to produce a flat vertical face. Prior to placing concrete, joint filler material shall be placed as shown on the plans. The joint filler shall be secured to the face of the existing pavement joint face by a method that will hold the joint filler in place and prevent the new concrete from adhering to the existing concrete, during placement of concrete. Sealant for longitudinal isolation joints shall be silicone and placed in conformance with the requirements for liquid joint sealant installation as specified above, except references to backer rods shall not apply. #### CONSTRUCTING TRANSVERSE JOINT CONNECTIONS AND ANCHORS Concrete pavement joints at transitions to asphalt concrete pavement, pavement end anchors and bridge approach slabs shall conform to the details as shown on the plans. Paint binder shall be applied to the concrete surface that asphalt concrete pavement will contact. Paint binder shall be applied in conformance with the provisions in Section 39, "Asphalt Concrete," of the Standard Specifications. # PROFILE INDEX The pavement surface shall be profiled, by the Contractor not more than 10 days following concrete placement, in the presence of the Engineer, using a California Profilograph or equivalent in conformance with the requirements in California Test 526, except a blanking band of zero (null) shall be used to determine the Profile Index. Two profiles shall be made within each traffic lane, one meter from and parallel with each lane line. Profiled pavement shall conform to the following Profile Index requirements: - A. Pavement on tangent alignment and pavement on horizontal curves having a centerline radius of curve 600 m or more shall have a Profile Index of 64 mm or less for each 0.1-km. - B. Pavement on horizontal curves having a centerline radius of curve 300 m or more but less than 600 m and pavement within the superelevation transition of those curves shall have a Profile Index of 128 mm or less for each 0.1-km. Concrete shoulders shall be profiled. Two profiles shall be made within the shoulder, one meter from and parallel with each edge of the shoulder. Concrete shoulders profiled shall conform to the Profile Index requirements in this section. Individual high points in excess of 7.5 mm, as determined by measurements of the profilogram in conformance with the requirements in California Test 526, except using a blanking band of zero (null), shall be
reduced by grinding in conformance with the requirements in Section 40-1.10, "Final Finishing," of the Standard Specifications until the high points as indicated by reruns of the profilograph do not exceed 7.5 mm. Pavement grinding shall not be performed before 10 days have elapsed after concrete placement, nor before the concrete has developed a modulus of rupture of at least 3.8 MPa. ## CONSTRUCTING WEAKENED PLANE JOINTS (EARLY ENTRY SAW METHOD) The Contractor may construct weakened plane joints using lighter weight concrete saws (early entry saws) specifically designed for sawing fresh concrete without the use of water. The early entry saws shall be capable of sawing joints within 2 hours of cure time after placement of the concrete pavement without ravelling or tearing, as defined in Section 40-1.08B(1), "Sawing Method," of the Standard Specifications. Joints sawed with early entry saws that develop random cracking shall be removed to the nearest controlled joint and replaced with concrete pavement containing dowel bars and tie bars in conformance with these special provisions and as shown on the plans. The removal and replacement work shall be at the Contractor's expense. Weakened plane joints not sawed within 2 hours of placing concrete pavement shall be sawed by conventional power driven wet-type concrete saws in conformance with the requirements of Section 40-1.08B(1), "Sawing Method," of the Standard Specifications. Sawed grooves shall be cut to a maximum of 3 mm in width for longitudinal and transverse weakened plane joints made with early entry saws. The minimum depth of cut shall be calculated utilizing the formula in Section 40-1.08B(1), "Sawing Method," of the Standard Specifications except d = t/4. #### TIE BARS ALONG LONGITUDINAL JOINT FOR SHORT RADIUS CURVES When paving along short radius curves, the transverse joints shall be maintained in a single continuous straight line across lanes, through the radius point. Tie bars shall maintain minimum clearance from the transverse joint as shown on the plans. If the inside or outside curve of the panel does not allow equal uniform spacing of tie bars at 710 mm between tie bars, then the tie bars shall be equally spaced so that a minimum spacing of 375 mm to a maximum spacing of 710 mm is maintained between tie bars. Additional tie bars shall be considered as included in the contract price paid per cubic meter for concrete pavement and no additional compensation will be allowed therefore. If dowel bars are specified along longitudinal joint for short radius curves, then dowel bars shall conform to the requirements of this special provision for tie bars spacing and tolerance. ## MEASUREMENT AND PAYMENT Sealing longitudinal and transverse weakened plane joints, and longitudinal isolation joints in portland cement concrete pavement will be measured by the meter. When a test strip conforms to the specifications for concrete pavement and remains a part of the project paving surface, the sealed pavement joints will be measured and paid for as seal pavement joint. The contract price paid per meter for seal pavement joint shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in sealing pavement joints complete in place, including sawing, cleaning and preparing the joints in the concrete pavement, furnishing and installing backer rod, repairing and patching spalled or raveled sawed joints, and replacing or repairing rejected joints, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract price paid per meter for seal longitudinal isolation joint shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in sealing longitudinal isolation joints complete in place, including sawing, cleaning and preparing the joints in the concrete pavement, furnishing and installing joint filler material, repairing and patching spalled or raveled sawed joints, and replacing or repairing rejected joints, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Concrete pavement will be measured by the cubic meter in conformance with the provisions in Section 40-1.13, "Measurement," of the Standard Specifications. No deduction will be made for the volume of epoxy-coated dowel bars, epoxy-coated tie bars and, when used, tie bar baskets with fasteners and dowel bar baskets with fasteners, in the concrete pavement. When a test strip conforms to the specifications for concrete pavement and remains a part of the project paving surface, the concrete will be measured and paid for as concrete pavement. The contract price paid per cubic meter for concrete pavement shall include full compensation for furnishing all labor, materials (including cementitious material in the amount determined by the Contractor), tools, equipment, and incidentals, and for doing all the work involved in constructing the portland cement concrete pavement complete in place, including furnishing and placing epoxy-coated dowel bars, epoxy-coated tie bars and, when used, any tie bar baskets and dowel bar baskets with fasteners, submittal to the Engineer all test data for determination of mix proportions of concrete pavement and for providing the facility, Contractor personnel and all the work involved in arranging and holding the prepaving conference, for constructing and repairing all joints; for performing all profile checks for Profile Index and furnishing final profilograms to the Engineer; for grooving and grinding required for final finishing; and for removing, and replacing pavement for deficient thickness, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Full compensation for drilling holes and bonding tie bars with epoxy resin shall be considered as included in the contract price paid per cubic meter for concrete pavement and no additional compensation will be allowed therefor. Full compensation for coring test strips for evaluation by the Engineer and for back-filling core holes with hydraulic cement grout when the test strip remains in place as part of the concrete pavement; and for constructing, coring and removing and disposing of test strips that are rejected shall be considered as included in the contract price paid per cubic meter for concrete pavement and no additional compensation will be allowed therefor. Costs for providing JITT will be determined in conformance with the provisions in Section 9-1.03, "Force Account Payment," of the Standard Specifications, except no markups shall be added, and the Contractor will be paid for one half of the JITT cost. Costs for providing JITT shall include training materials, class site, and the JITT instructor including the JITT instructor's travel, lodging, meals and presentation materials. All costs incurred by the Contractor or Engineer for attending JITT shall be borne by the party incurring the costs. Full compensation for core drilling for dowel bar or tie bar alignment and backfilling with hydraulic cement grout shall be considered as included in the contract price per cubic meter for concrete pavement and no additional compensation will be allowed therefor. If the initial cores show that dowel bars or tie bars are out of alignment tolerances and the Engineer orders additional dowel bar or tie bar coring, full compensation for drilling the additional cores shall be considered as included in the contract price per cubic meter for concrete pavement and no additional compensation will be allowed therefor. If the initial cores show that dowel bars or tie bars are within alignment tolerances and the Engineer orders more dowel bar coring the additional cores will be paid for as extra work in conformance with the provisions in Section 4-1.03D, "Extra Work," of the Standard Specifications. Full compensation for drilling holes and bonding dowel bars with epoxy resin shall be considered as included in the contract price paid per cubic meter for concrete payement and no additional compensation will be allowed therefore. Full compensation for furnishing and placing epoxy coated reinforcement for transition end panel shall be considered as included in the contract price paid per cubic meter for concrete pavement and no additional compensation will be allowed therefore Full compensation for furnishing and placing paint binder (tack coat) for transition end panel shall be considered as included in the contract price paid per cubic meter for concrete pavement and no additional compensation will be allowed therefore. ## 10-1.40 EXIT RAMP TERMINI Portland cement concrete pavement at exit ramp termini shall be constructed as shown on the plans and as provided in Section 40, "Portland Cement Concrete Pavement," of the Standard Specifications. ## 10-1.41 PROFILE GRINDING FOR CONCRETE PAVEMENT This work shall consist of grinding portland cement concrete as shown on the plans, as specified in Section 42-2, "Grinding," of the Standard Specifications and these special provisions, and as directed by the Engineer. Grinding equipment for grinding concrete pavements shall use diamond blades mounted on a self-propelled machine designed for grinding and texturing concrete pavements. Grinding equipment that causes raveling, aggregate fracturing, or spalling, or that damages the transverse or longitudinal joints shall not be used. Grinding shall be performed in the longitudinal direction of the traveled way and shall be done full lane width so that the grinding begins and ends at lines perpendicular to the pavement centerline. Grinding concrete pavement shall result in a parallel corduroy texture consisting of grooves 2 mm to 3 mm wide with 183 to 193 grooves per meter width of grinding.
Tops of ridges shall be between 1.5 mm and 2.0 mm from the bottom of the blade grooves. The ground surface at transverse joints or cracks will be tested with a 3.6 m \pm 0.06-m long straightedge laid on the pavement parallel with the centerline with its midpoint at the joint or crack. The surface shall not vary by more than 2 mm from the lower edge of the straightedge. Cross-slope uniformity and positive drainage shall be maintained across the entire traveled way and shoulder. The cross-slope shall be uniform so that when tested with a 3.6 m \pm 0.06-m long straightedge placed perpendicular to the centerline, the ground pavement surface shall not vary more than 6 mm from the lower edge of the straightedge. After grinding has been completed, the pavement surface shall be profiled in conformance with the requirements of Section 40-1.10, "Final Finishing," of the Standard Specifications. Two profiles shall be obtained in each lane approximately one meter from the lane lines. The average profile index shall be determined by averaging the two profiles in each lane. Additional grinding shall be performed, where necessary, to bring the ground pavement surface within the Profile Index requirements specified in Section 40-1.10, "Final Finishing," of the Standard Specifications. Full compensation for profiling the ground pavement surface with a California profilograph or equivalent and any necessary additional grinding to bring the finished surface within the specified tolerances and for furnishing final profilograms to the Engineer shall be considered as included in the contract price paid per meter for profile grinding for concrete pavement and no additional compensation will be allowed therefor. ## 10-1.42 TEST BORINGS If the Contractor proposes an alternative micropile type, then additional test borings shall be performed. Test borings shall consist of drilling test borings, taking samples, logging borings and furnishing test boring submittals to the Engineer. Attention is directed to the "Order of Work," elsewhere in these special provisions. The "Soil and Rock Logging Classification Manual" is included in the "Information Handout" available to the Contractor in conformance with the provisions in Section 2-1.03, "Examination of Plans, Specifications, Contract, and Site of Work," of the Standard Specifications. The Contractor shall determine the number of additional test borings, except the minimum number shall be 2 borings. The Contractor shall notify the Engineer in writing not less than 10 working days in advance of drilling test borings. All test borings shall be made under the site supervision of, the log of test borings stamped by, and the test boring submittal signed by a Geologist or Civil Engineer who is registered in the State of California and has at least 5 years of geotechnical engineering experience of deep foundations in both soil and rock. Test borings shall be made by rotary drill methods and shall be at least 76 mm in diameter. Test borings shall be drilled to a depth at least 6 m below the alternative micropile tip elevation. Standard Penetration Tests (SPT) shall be made in all soil types and performed in conformance with the requirements in ASTM Designation: D1586 in each test boring at 1.5-m maximum intervals and terminate when bedrock is encountered. Soil classification and descriptions shall conform to the requirements for visual-manual procedures in ASTM Designation: D2488. The log of test borings including the soil and rock classification shall conform to the document "Soil and Rock Logging Classification Manual: Field Manual," published by the Engineering Service Center, Caltrans, dated August 1995. After completion of all test borings, the Contractor shall furnish to the Office of Structure Design (OSD), in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, a test boring submittal that includes a test boring report and the log of test borings. All log of test borings shall be 559 mm x 864 mm in size. For initial review, 4 sets of drawings shall be submitted. Within 3 weeks after final approval of the test boring submittal, one set of the corrected prints on 90-g/m² (minimum) good quality bond paper, 559 mm x 864 mm in size, prepared by the Contractor shall be furnished to OSD. Log of test borings shall show the State assigned designations for the contract number, bridge number, full name of the structure as shown on the contract plans, and District-County-Route-Post mile on each sheet. The test boring/geotechnical subcontractor name, address, and phone number shall be shown on the working drawings. Each sheet shall be numbered in the lower right hand corner and shall contain a blank space in the upper right hand corner for future contract sheet numbers. The following shall be shown on the log of test borings: - A. Stationing and offset of boring. - B. Northing and easting coordinates. - C. Reference elevation and datum. - D. Boring start and completion date. - E. Geotechnical notes and miscellaneous explanations. - F. Drill bit and sampler types and diameters. - G. Sample numbers. - H. SPT data. - I. Depth increments of borings. - J. Graphic log. - K. Soil classifications and descriptions. - L. Log symbol legend. - M. Signature and seal of the Geologist or Civil Engineer. The test boring report shall include the following: - A. Summary of drilling methods, drilling equipment, drill platforms, and any drilling difficulties encountered. - B. Location map of the surveyed position of the test borings relative to the existing pier and to the new pile locations (in California Coordinate System and bridge stationing). - C. Bore hole surveying notes. - D. Copies of original daily drilling notes. The Engineer will notify the Contractor in writing when a test boring submittal is complete and approved. The Contractor shall determine the tip elevation for the alternative micropiles. All materials utilized in making test boring shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Full compensation for all costs associated with additional test borings shall be considered as included in the contract price paid for micropiling, there will be no adjustment for different pile lengths, and no additional compensation will be allowed therefore. ## 10-1.43 PILING ## **GENERAL** Piling shall conform to the provisions in Section 49, "Piling," of the Standard Specifications, and these special provisions. Unless otherwise specified, welding of any work performed in conformance with the provisions in Section 49, "Piling," of the Standard Specifications, shall be in conformance with the requirements in AWS D1.1. Foundation recommendations are included in the "Information Handout" available to the Contractor as provided for in Section 2-1.03, "Examination of Plans, Specifications, Contract, and Site of Work," of the Standard Specifications. Attention is directed to "Precast Concrete Quality Control" of these special provisions. Attention is directed to "Welding" of these special provisions. Difficult pile installation is anticipated due to the presence of dense soils, caving soils, hazardous and contaminated materials, high ground water, underground utilities, overhead utilities, sound control, traffic control, the close proximity of existing piles and the installation of cast-in-drilled-hole piles on a batter. #### **Drilling** Drilling to obtain the specified penetration in conformance with the provisions in Section 49-1.05, "Driving Equipment," of the Standard Specifications may only be used for driven type piles. The bottom of hole elevation shall not be deeper than 1.5 meters above the specified tip elevations. Materials resulting from drilling holes shall be disposed of in conformance with the provisions in Section 19-2.06, "Surplus Material," of the Standard Specifications. #### CAST-IN-DRILLED-HOLE CONCRETE PILES Cast-in-drilled-hole concrete piling shall conform to the provisions in Section 49-4, "Cast-In-Place Concrete Piles," of the Standard Specifications and these special provisions. The provisions of "Welding" of these special provisions shall not apply to temporary steel casings. Cast-in-drilled-hole concrete piles 600 mm in diameter or larger may be constructed by excavation and depositing concrete under slurry. #### Materials Concrete deposited under slurry shall have a nominal penetration equal to or greater than 90 mm. Concrete shall be proportioned to prevent excessive bleed water and segregation. Concrete deposited under slurry shall contain not less than 400 kg of cementitious material per cubic meter. The combined aggregate grading used in concrete for cast-in-drilled-hole concrete piling shall be either the 25-mm maximum grading, the 12.5-mm maximum grading, or the 9.5-mm maximum grading and shall conform to the requirements in Section 90-3 "Aggregate Gradings," of the Standard Specifications. ## **Mineral Slurry** Mineral slurry shall be mixed and thoroughly hydrated in slurry tanks, and slurry shall be sampled from the slurry tanks and tested before placement in the drilled hole. Slurry shall be recirculated or continuously agitated in the drilled hole to maintain the specified properties. Recirculation shall include removal of drill cuttings from the slurry before discharging the slurry back into the drilled hole. When recirculation is used, the slurry shall be sampled and tested at least every 2 hours after beginning its use until tests show that the samples taken from the slurry tank and from near the bottom of the hole have consistent specified properties. Subsequently, slurry shall be sampled at least twice per shift as long as the specified properties remain consistent. Slurry that is not recirculated in the drilled hole shall be sampled and tested at least every 2 hours after beginning its use. The slurry
shall be sampled midheight and near the bottom of the hole. Slurry shall be recirculated when tests show that the samples taken from midheight and near the bottom of the hole do not have consistent specified properties. Slurry shall also be sampled and tested prior to final cleaning of the bottom of the hole and again just prior to placing concrete. Samples shall be taken from midheight and near the bottom of the hole. Cleaning of the bottom of the hole and placement of the concrete shall not start until tests show that the samples taken from midheight and near the bottom of the hole have consistent specified properties. Mineral slurry shall be tested for conformance to the requirements shown in the following table: | MINERAL SLURRY | | | |--|-----------------------|---| | PROPERTY | REQUIREMENT | TEST | | Density (kg/m ³) | | | | - before placement
in the drilled hole
- during drilling | 1030* to 1110* | Mud Weight
(Density)
API 13B-1 | | - prior to final cleaning - immediately prior | 1030* to 1200* | Section 1 | | to placing concrete | | | | Viscosity
(seconds/liter) | | Marsh Funnel and
Cup | | bentonite | 29 to 53 | API 13B-1
Section 2.2 | | attapulgite | 29 to 42 | ~ | | рН | 8 to 10.5 | Glass Electrode pH
Meter or pH Paper | | Sand Content
(percent) | | Sand
API 13B-1 | | - prior to final | less than or equal to | Section 5 | | cleaning - immediately prior to placing concrete | 4.0 | | | *When approved by the Engineer, slurry may be used in salt | | | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 . Any caked slurry on the sides or bottom of hole shall be removed before placing reinforcement. If concrete is not placed immediately after placing reinforcement, the reinforcement shall be removed and cleaned of slurry, the sides of the drilled hole cleaned of caked slurry, and the reinforcement again placed in the hole for concrete placement. # **Synthetic Slurry** Synthetic slurries shall be used in conformance with the manufacturer's recommendations and these special provisions. The following synthetic slurries may be used: | PRODUCT | MANUFACTURER | |-----------------|--------------------------------| | SlurryPro CDP | KB Technologies Ltd. | | | 3648 FM 1960 West | | | Suite 107 | | | Houston, TX 77068 | | | (800) 525-5237 | | Super Mud | PDS Company | | | c/o Champion Equipment Company | | | 8140 East Rosecrans Ave. | | | Paramount, CA 90723 | | | (562) 634-8180 | | Shore Pac GCV | CETCO Drilling Products Group | | | 1350 West Shure Drive | | | Arlington Heights, IL 60004 | | | (847) 392-5800 | | Novagel Polymer | Geo-Tech Drilling Fluids | | | 220 N. Zapata Hwy, Suite 11A | | | Laredo, TX 78043 | | | (210) 587-4758 | Inclusion of a synthetic slurry on the above list may be obtained by meeting the Department's requirements for synthetic slurries. The requirements can be obtained from the Office of Structure Design, P.O. Box 942874, Sacramento, CA 94274-0001. Synthetic slurries listed may not be appropriate for a given site. Synthetic slurries shall not be used in holes drilled in primarily soft or very soft cohesive soils as determined by the Engineer. A manufacturer's representative, as approved by the Engineer, shall provide technical assistance for the use of their product, shall be at the site prior to introduction of the synthetic slurry into a drilled hole, and shall remain at the site until released by the Engineer. Synthetic slurries shall be sampled and tested at both mid-height and near the bottom of the drilled hole. Samples shall be taken and tested during drilling as necessary to verify the control of the properties of the slurry. Samples shall be taken and tested when drilling is complete, but prior to final cleaning of the bottom of the hole. When samples are in conformance with the requirements shown in the following tables for each slurry product, the bottom of the hole shall be cleaned and any loose or settled material removed. Samples shall be obtained and tested after final cleaning and immediately prior to placing concrete. SlurryPro CDP synthetic slurries shall be tested for conformance to the requirements shown in the following table: | SLURRYPRO CDP | | | |---------------------------|--|--| | KB Technologies Ltd. | | | | PROPERTY REQUIREMENT TEST | | | | Density (kg/m ³) - during drilling | less than or equal to 1075* | Mud Weight
(Density)
API 13B-1
Section 1 | |--|------------------------------------|---| | prior to final cleaningjust prior to placing concrete | less than or equal to 1025* | | | Viscosity (seconds/liter) - during drilling -prior to final cleaning - just prior to placing concrete | 53 to 127 less than or equal to 74 | Marsh Funnel and
Cup
API 13B-1
Section 2.2 | | рН | 6 to 11.5 | Glass Electrode pH
Meter or pH Paper | | Sand Content (percent) - prior to final cleaning - just prior to placing concrete | less than or equal to 0.5 | Sand API 13B-1 Section 5 | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 . Super Mud synthetic slurries shall be tested for conformance to the requirements shown in the following table: | SUPER MUD | | | |---------------------------|--|--| | PDS Company | | | | PROPERTY REQUIREMENT TEST | | | | Density (kg/m³) - prior to final cleaning - just prior to placing concrete | less than or equal to 1025* | Mud Weight
(Density)
API 13B-1
Section 1 | |--|-----------------------------|---| | Viscosity (seconds/liter) | | Marsh Funnel and | | - during drilling | 34 to 64 | Cup
API 13B-1
Section 2.2 | | - prior to final | less than or equal to | | | cleaning | 64 | | | - just prior to | | | | placing concrete | | | | | | Glass Electrode pH | | pН | 8 to 10.0 | Meter or pH Paper | | Sand Content | | | | (percent) | | Sand | | | | API 13B-1 | | - prior to final | less than or equal to | Section 5 | | cleaning | 0.5 | | | -just prior to placing | | | | concrete | | | | *When approved by | the Engineer, slurry | may be used in salt | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m³. Shore Pac GCV synthetic slurries shall be tested for conformance to the requirements shown in the following table: | Shore Pac GCV | | | |-------------------------------|--|--| | CETCO Drilling Products Group | | | | PROPERTY REQUIREMENT TEST | | | | Density (kg/m³) - prior to final cleaning - just prior to placing concrete | less than or equal to 1025* | Mud Weight
(Density)
API 13B-1
Section 1 | |--|-----------------------------|---| | Viscosity (seconds/liter) | | | | - during drilling | 35 to 78 | Marsh Funnel and
Cup
API 13B-1
Section 2.2 | | - prior to final | less than or equal to | | | cleaning | 60 | | | - just prior to | | | | placing concrete | | | | | | Glass Electrode pH | | рН | 8.0 to 11.0 | Meter or pH Paper | | Sand Content | | | | (percent) | | Sand | | | | API 13B-1 | | - prior to final | less than or equal to | Section 5 | | cleaning | 0.5 | | | -just prior to placing | | | | concrete | | | | *When approved by | the Engineer, slurry | may be used in salt | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 . Novagel Polymer synthetic slurries shall be tested for conformance to the requirements shown in the following table: | NOVAGEL POLYMER | | | |---------------------------|--|--| | Geo-Tech Drilling Fluids | | | | PROPERTY REQUIREMENT TEST | | | | Density (kg/m ³) - prior to final cleaning | less than or equal to 1075* | Mud Weight
(Density)
API 13B-1
Section 1 | |---|-------------------------------------|---| | - prior to final cleaning - just prior to placing concrete | less than or equal to 1025* | | | Viscosity | | | | (seconds/liter) during drilling prior to final cleaning just prior to placing concrete | 48 to 110 less than or equal to 110 | Marsh Funnel and
Cup
API 13B-1
Section 2.2 | | | | Glass Electrode pH | | pН | 6.0 to 11.5 | Meter or pH Paper | | Sand Content (percent) - prior to final cleaning -just prior to placing concrete | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 . ## **Water Slurry** At the option of the Contractor water may be used as slurry when casing is used for the entire length of the drilled hole. Water slurry shall be tested for conformance to the requirements shown in the following table: | WATER SLURRY | | | |---|---------------------------|---| | PROPERTY | REQUIREMENT | TEST | | Density (kg/m³) - prior to final cleaning - just prior to placing concrete | 1017 * | Mud Weight
(Density)
API 13B-1
Section 1 | | Sand Content (percent) - prior to final cleaning -just prior to placing concrete | less than or equal to 0.5 | Sand
API
13B-1
Section 5 | ^{*}When approved by the Engineer, salt water slurry may be used, and the allowable densities may be increased up to 32 kg/m³. Slurry temperature shall be at least 4 degrees Celsius when tested. #### Construction The Contractor shall submit a placing plan to the Engineer for approval prior to producing the test batch for cast-indrilled-hole concrete piling and at least 10 working days prior to constructing piling. The plan shall include complete descriptions, details, and supporting calculations as listed below: # A. Requirements for all cast-in-drilled hole concrete piling: - 1. Concrete mix design, certified test data, and trial batch reports. - 2. Drilling or coring methods and equipment. - 3. Proposed method for casing installation and removal when necessary. - 4. Plan view drawing of pile showing reinforcement and inspection pipes, if required. - 5. Methods for placing, positioning, and supporting bar reinforcement. - 6. Methods and equipment for accurately determining the depth of concrete and actual and theoretical volume placed, including effects on volume of concrete when any casings are withdrawn. - 7. Methods and equipment for verifying that the bottom of the drilled hole is clean prior to placing concrete. - 8. Methods and equipment for preventing upward movement of reinforcement, including the Contractor's means of detecting and measuring upward movement during concrete placement operations. ## B. Additional requirements when concrete is placed under slurry: - 1. Concrete batching, delivery, and placing systems, including time schedules and capacities therefor. Time schedules shall include the time required for each concrete placing operation at each pile. - 2. Concrete placing rate calculations. When requested by the Engineer, calculations shall be based on the initial pump pressures or static head on the concrete and losses throughout the placing system, including anticipated head of slurry and concrete to be displaced. - 3. Suppliers' test reports on the physical and chemical properties of the slurry and any proposed slurry chemical additives, including Material Safety Data Sheet. - 4. Slurry testing equipment and procedures. - 5. Methods of removal and disposal of excavation, slurry, and contaminated concrete, including removal rates. - 6. Methods and equipment for slurry agitating, recirculating, and cleaning. In addition to compressive strength requirements, the consistency of the concrete to be deposited under slurry shall be verified before use by producing a test batch. The test batch shall be produced and delivered to the project under conditions and in time periods similar to those expected during the placement of concrete in the piles. Concrete for the test batch shall be placed in an excavated hole or suitable container of adequate size to allow for testing as specified herein. Depositing of test batch concrete under slurry will not be required. In addition to meeting the specified nominal penetration, the test batch shall meet the following requirements: - A. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be 2 hours or less, the test batch shall demonstrate that the proposed concrete mix design achieves either a penetration of at least 50 mm or a slump of at least 125 mm after twice that time has elapsed. - B. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be more than 2 hours, the test batch shall demonstrate that the proposed concrete mix design achieves either a penetration of at least 50 mm or a slump of at least 125 mm after that time plus 2 hours has elapsed. The time period shall begin at the start of placement. The concrete shall not be vibrated or agitated during the test period. Penetration tests shall be performed in conformance with the requirements in California Test 533. Slump tests shall be performed in conformance with the requirements in ASTM Designation: C 143. Upon completion of testing, the concrete shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. The concrete deposited under slurry shall be carefully placed in a compact, monolithic mass and by a method that will prevent washing of the concrete. Concrete deposited under slurry need not be vibrated. Placing concrete shall be a continuous operation lasting not more than the time required for each concrete placing operation at each pile, as submitted in the placing plan, unless otherwise approved in writing by the Engineer. The concrete shall be placed with concrete pumps and delivery tube system of adequate number and size to complete the placing of concrete in the time specified. The delivery tube system shall consist of one of the following: - A. A tremie tube or tubes, each of which are at least 250 mm in diameter, fed by one or more concrete pumps. - B. One or more concrete pump tubes, each fed by a single concrete pump. The delivery tube system shall consist of watertight tubes with sufficient rigidity to keep the ends always in the mass of concrete placed. If only one delivery tube is utilized to place the concrete, the tube shall be placed near the center of the drilled hole. Multiple tubes shall be uniformly spaced in the hole. Internal bracing for the steel reinforcing cage shall accommodate the delivery tube system. Tremies shall not be used for piles without space for a 250-mm tube. Spillage of concrete into the slurry during concrete placing operations shall not be allowed. Delivery tubes shall be capped with a watertight cap, or plugged above the slurry level with a good quality, tight fitting, moving plug that will expel the slurry from the tube as the tube is charged with concrete. The cap or plug shall be designed to be released as the tube is charged. The pump discharge or tremie tube shall extend to the bottom of the hole before charging the tube with concrete. After charging the delivery tube system with concrete, the flow of concrete through a tube shall be induced by slightly raising the discharge end. During concrete placement, the tip of the delivery tube shall be maintained as follows to prevent reentry of the slurry into the tube. Until at least 3 m of concrete has been placed, the tip of the delivery tube shall be within 150 mm of the bottom of the drilled hole, and then the embedment of the tip shall be maintained at least 3 m below the top surface of the concrete. Rapid raising or lowering of the delivery tube shall not be permitted. If the seal is lost or the delivery tube becomes plugged and must be removed, the tube shall be withdrawn, the tube cleaned, the tip of the tube capped to prevent entrance of the slurry, and the operation restarted by pushing the capped tube 3 m into the concrete and then reinitiating the flow of concrete. When slurry is used, a fully operational standby concrete pump, adequate to complete the work in the time specified, shall be provided at the site during concrete placement. The slurry level shall be maintained within 300 mm of the top of the drilled hole. A log of concrete placement for each drilled hole shall be maintained by the Contractor when concrete is deposited under slurry. The log shall show the pile location, tip elevation, dates of excavation and concrete placement, total quantity of concrete deposited, length and tip elevation of any casing, and details of any hole stabilization method and materials used. The log shall include a 215 mm x 280 mm sized graph of the concrete placed versus depth of hole filled. The graph shall be plotted continuously throughout placing of concrete. The depth of drilled hole filled shall be plotted vertically with the pile tip oriented at the bottom and the quantity of concrete shall be plotted horizontally. Readings shall be made at least at each 1.5 m of pile depth, and the time of the reading shall be indicated. The graph shall be labeled with the pile location, tip elevation, cutoff elevation, and the dates of excavation and concrete placement. The log shall be delivered to the Engineer within one working day of completion of placing concrete in the pile. After placing reinforcement and prior to placing concrete in the drilled hole, if drill cuttings settle out of the slurry, the bottom of the drilled hole shall be cleaned. The Contractor shall verify that the bottom of the drilled hole is clean. If temporary casing is used, concrete placed under slurry shall be maintained at a level at least 1.5 m above the bottom of the casing. The withdrawal of casings shall not cause contamination of the concrete with slurry. Material resulting from using slurry shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. ## **Acceptance Testing and Mitigation** Vertical inspection pipes for acceptance testing shall be provided in all cast-in-drilled-hole concrete piles that are 600 mm in diameter or larger, except when the holes are dry or when the holes are dewatered without the use of temporary casing to control ground water. Inspection pipes shall be Schedule 40 polyvinyl chloride pipes with a nominal inside diameter of 50 mm. Each inspection pipe shall be capped top and bottom and shall have watertight couplers to provide a clean, dry and unobstructed 50-mm diameter clear opening from 1.0 m above the pile cutoff down to the bottom of the reinforcing cage. If the Contractor drills the hole below the specified tip elevation, the reinforcement and the inspection pipes shall be extended to 75 mm clear of the bottom of the drilled hole. Inspection pipes shall be placed around the pile, inside the outermost spiral or hoop reinforcement, and 75 mm clear of the vertical reinforcement, at a uniform spacing not exceeding 840 mm measured along the circle passing through
the centers of inspection pipes. A minimum of 2 inspection pipes per pile shall be used. When the vertical reinforcement is not bundled and each bar is not more than 26 mm in diameter, inspection pipes may be placed 50 mm clear of the vertical reinforcement. The inspection pipes shall be placed to provide the maximum diameter circle that passes through the centers of the inspection pipes while maintaining the clear spacing required herein. The pipes shall be installed in straight alignment, parallel to the main reinforcement, and securely fastened in place to prevent misalignment during installation of the reinforcement and placing of concrete in the hole. The Contractor shall log the location of the inspection pipe couplers with respect to the plane of pile cut off, and these logs shall be delivered to the Engineer upon completion of the placement of concrete in the drilled hole. After placing concrete and before requesting acceptance tests, each inspection pipe shall be tested by the Contractor in the presence of the Engineer by passing a 48.3-mm diameter rigid cylinder 610 mm long through the complete length of pipe. If the 48.3-mm diameter rigid cylinder fails to pass any of the inspection pipes, the Contractor shall attempt to pass a 32.0-mm diameter rigid cylinder 1.375 m long through the complete length of those pipes in the presence of the Engineer. If an inspection pipe fails to pass the 32.0-mm diameter cylinder, the Contractor shall immediately fill all inspection pipes in the pile with water. The Contractor shall replace each inspection pipe that does not pass the 32.0-mm diameter cylinder with a 50.8-mm diameter hole cored through the concrete for the entire length of the pile. Cored holes shall be located as close as possible to the inspection pipes they are replacing and shall be no more than 150 mm inside the reinforcement. Coring shall not damage the pile reinforcement. Cored holes shall be made with a double wall core barrel system utilizing a split tube type inner barrel. Coring with a solid type inner barrel will not be allowed. Coring methods and equipment shall provide intact cores for the entire length of the pile concrete. The coring operation shall be logged by an Engineering Geologist or Civil Engineer licensed in the State of California and experienced in core logging. Coring logs shall include complete descriptions of inclusions and voids encountered during coring, and shall be delivered to the Engineer upon completion. Concrete cores shall be preserved, identified with the exact location the core was recovered from within the pile, and made available for inspection by the Engineer. Acceptance tests of the concrete will be made by the Engineer, without cost to the Contractor. Acceptance tests will evaluate the homogeneity of the placed concrete. Tests will include gamma-gamma logging. Tests may also include crosshole sonic logging and other means of inspection selected by the Engineer. The Contractor shall not conduct operations within 8.0 m of the gamma-gamma logging operations. The Contractor shall separate reinforcing steel as necessary to allow the Engineer access to the inspection pipes to perform gamma-gamma logging or other acceptance testing. After requesting acceptance tests and providing access to the piling, the Contractor shall allow 3 weeks for the Engineer to conduct these tests and make determination of acceptance if the 48.3-mm diameter cylinder passed all inspection pipes, and 4 weeks if only the 32.0-mm diameter cylinder passed all inspection pipes. Should the Engineer fail to complete these tests within the time allowance, and if in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in inspection, the delay will be considered a right of way delay as specified in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. All inspection pipes and cored holes in a pile shall be dewatered and filled with grout after notification by the Engineer that the pile is acceptable. Placement and removal of water in the inspection pipes shall be at the Contractor's expense. Grout shall conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications. The inspection pipes and holes shall be filled using grout tubes that extend to the bottom of the pipe or hole or into the grout already placed. If acceptance testing performed by the Engineer determines that a pile does not meet the requirements of the specifications, then that pile will be rejected and all depositing of concrete under slurry or concrete placed using temporary casing for the purpose of controlling groundwater shall be suspended until written changes to the methods of pile construction are approved in writing by the Engineer. The Contractor shall submit to the Engineer for approval a mitigation plan for repair, supplementation, or replacement for each rejected cast-in-drilled-hole concrete pile, and this plan shall conform to the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. Prior to submitting this mitigation plan, the Engineer will hold a repair feasibility meeting with the Contractor to discuss the feasibility of repairing rejected piling. The Engineer will consider the size of the defect, the location of the defect, and the design information and corrosion protection considerations for the pile. This information will be made available to the Contractor, if appropriate, for the development of the mitigation plan. If the Engineer determines that it is not feasible to repair the rejected pile, the Contractor shall not include repair as a means of mitigation and shall proceed with the submittal of a mitigation plan for replacement or supplementation of the rejected pile. If the Engineer determines that a rejected pile does not require mitigation due to structural, geotechnical, or corrosion concerns, the Contractor may elect to 1) repair the pile per the approved mitigation plan, or 2) not repair anomalies found during acceptance testing of that pile. For such unrepaired piles, the Contractor shall pay to the State, \$400 per cubic meter for the portion of the pile affected by the anomalies. The volume, in cubic meters, of the portion of the pile affected by the anomalies, shall be calculated as the area of the cross-section of the pile affected by each anomaly, in square meters, as determined by the Engineer, multiplied by the distance, in meters, from the top of each anomaly to the specified tip of the pile. If the volume calculated for one anomaly overlaps the volume calculated for additional anomalies within the pile, the calculated volume for the overlap shall only be counted once. In no case shall the amount of the payment to the State for any such pile be less than \$400. The Department may deduct the amount from any moneys due, or that may become due the Contractor under the contract. Pile mitigation plans shall include the following: - A. The designation and location of the pile addressed by the mitigation plan. - B. A review of the structural, geotechnical, and corrosion design requirements of the rejected pile. - C. A step by step description of the mitigation work to be performed, including drawings if necessary. - D. An assessment of how the proposed mitigation work will address the structural, geotechnical, and corrosion design requirements of the rejected pile. - E. Methods for preservation or restoration of existing earthen materials. - F. A list of affected facilities, if any, with methods and equipment for protection of these facilities during mitigation. - G. The State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Kilometer Post, and the Contractor's (and Subcontractor's if applicable) name on each sheet. - H. A list of materials, with quantity estimates, and personnel, with qualifications, to be used to perform the mitigation work - I. The seal and signature of an engineer who is licensed as a Civil Engineer by the State of California. For rejected piles to be repaired, the Contractor shall submit a pile mitigation plan that contains the following additional information: - A. An assessment of the nature and size of the anomalies in the rejected pile. - B. Provisions for access for additional pile testing if required by the Engineer. For rejected piles to be replaced or supplemented, the Contractor shall submit a pile mitigation plan that contains the following additional information: - A. The proposed location and size of additional piling. - B. Structural details and calculations for any modification to the structure to accommodate the replacement or supplemental piling. All provisions for cast-in-drilled-hole concrete piling shall apply to replacement piling. The Contractor shall allow the Engineer 3 weeks to review the mitigation plan after a complete submittal has been received. Should the Engineer fail to review the complete pile mitigation submittal within the time specified, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the pile mitigation plan, an extension of time commensurate with the delay in completion of the work thus caused will be granted in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. When repairs are performed, the Contractor shall submit a mitigation report to the Engineer within 10 days of completion of the repair. This report shall state exactly what repair work was performed and quantify the success of the repairs relative to the submitted mitigation plan. The mitigation report shall be stamped and signed by an engineer that is licensed as a Civil Engineer by the State of California. The mitigation report shall show the State assigned contract number, bridge number, full name of
the structure as shown on the contract plans, District-County-Route-Kilometer Post, and the Contractor (and Subcontractor if applicable) name on each sheet. The Engineer will be the sole judge as to whether a mitigation proposal is acceptable, the mitigation efforts are successful, and to whether additional repairs, removal and replacement, or construction of a supplemental foundation is required. #### Pile Load Test The Contractor shall perform pile load tests at Olympic Boulevard UC (Bridge No. 53-0706) and Route 405/2 Separation (Bridge No. 53-0708) by either the Statnamic, Osterberg Load Cell, or static load test before the remaining piles at each location are drilled and cast, as shown on the plans and as specified in these special provisions. Before beginning work on the load test piles, the Contractor shall submit working drawings the Engineers in accordance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. Working drawings shall include details of the Contractor's proposed methods for construction of the load test piles, including methods for installation of the casing, methods for drilling and cleanout of cast-in-drilled-hole load test pile; details and locations of the instrumentation devices; calculations showing load transfer to bearing plates or equivalent arrangement for applying loads; descriptions of the apparatus for applying and measuring loads; descriptions of procedures for loading and measuring pile movements; documentation on the calibration of the testing equipment; procedures for restoring the pile to its design capacity; and safety requirements. An engineer who is registered as a Civil Engineer in the State of California shall sign the working drawings. The Contractor shall allow 2 weeks after complete drawings and support data are submitted to the Engineer for the review of the working drawings. If the Engineer fails to complete the review within the time allowed and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays" of the Standard Specifications. The load test piles shall be constructed with the use of synthetic slurry in accordance with these special provisions. Testing for defects in the piles shall be completed and anomalies mitigated, before beginning the pile load testing. Load testing shall not begin before the concrete of the test pile has attained a compressive strength of 25 MPa. The Contractor shall make 12 concrete test cylinders for each test pile from the concrete used in the load test pile. The Contractor shall designate an independent laboratory to perform test on the concrete cylinders. The Contractor's independent laboratory shall test at least 2 concrete cylinders for compressive strength before pile load testing and at least 2 cylinders the day of the load test. A manufacturer representative of the load testing equipment shall be present at the time of installation of the instrumentation, during testing, and removal of the instrumentation. ## **Statnamic Compression Load Test** Statnamic load testing devices and technical assistance are available from the following suppliers: Applied Foundation Testing, Inc. 4015 J. Louis Street Green Cove Springs, Florida 32043 Phone: (904) 284-1337 Fax: (904) 284-1339 Attention: Mike Muchard or Don Robertson Berminghammer Foundation Equipment, Inc. Wellington Street Marine Terminal Hamilton, Ontario, Canada L8L449Z Phone: (905) 528-0425 Fax: (905) 528-6187 Attention: Michael Justason ## **Osterberg Cell Compression Load Test** LOADTEST, Inc., the manufacturer Osterberg cells, is the supplier of load cells and shall provide technical assistance for this testing procedure. Osterberg cells are available from: LOADTEST, Inc. 2631-D NW 41st Street Gainsville, FL 32606 (800) 368-1138 LOADTEST, Inc. 5420 S. Klee Mill Road, Suite 4 Sykesville, MD 21784 (800) 436-2355 ## **Static Load Test** Static load tests shall conform to ASTM D1143, sections 3.3 and 5.6. ## **Testing and Reporting** Pile load tests shall be performed under the supervision of the engineer of the record of the working drawings and a qualified representative from the manufacturer. Initially the loads shall be applied in increments equaling 10 percent of the design load. The magnitude of the load increments may be increased or decreased depending on actual load test pile capacity, load test type performed, and as approved by the Engineer. Loads shall be applied, as determined by the Engineer, until the ultimate capacity of the load test pile is reached. The Contractor shall submit a report to the Engineer within 5 days after the completion of each load test for approval. The report shall include a list of key personnel, project information, description and location of the load test pile including tip elevation, description of instrumentation used to measure pile movements including location of gages or other reference points, description of testing procedures, tabulation of times, loads, and movement readings, load-movement curves, and test data. Test data shall list quantity of grout and grout pressure used or amount of concrete placed; amount of groundwater encountered; and the time and dates of grouting or concrete placement, and pile testing. The Contractor shall allow 2 weeks after a complete test report is submitted to the Engineer for the review. If the Engineer fails to complete the review within the time allowed and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays" of the Standard Specifications. ### MICROPILING Micropiling consisting of small diameter steel casing that is grouted in place shall conform to the design requirements and layout shown on the plans and these special provisions. #### Materials Steel casing for micropiles shall be at least the diameter and wall thickness of the piles shown on the plans. Grout shall conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications. California Test 541 will not be required, nor will the grout be required to pass through a screen with a 1.8-mm maximum clear opening prior to being introduced into the grout pump. Grout shall contain at least 460 kg of cement per cubic meter. Grout shall be non-shrink type. Grout in micropiles shall be installed under at least one MPa of pressure. ## **Working Drawings** The Contractor shall submit complete project specific working drawings for the micropile system to the Division of Structure Design (DSD) in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. Working drawings for micropiling shall be 559 mm x 864 mm in size. For initial review, 10 sets of drawings shall be submitted. After review, between 6 and 12 sets, as requested by the Engineer, shall be submitted to DSD for final approval and use during construction. Within 3 weeks after final approval of the working drawings, one set of the corrected prints on 75-g/m sq. (minimum) good quality bond paper, 559 mm x 864 mm in size, prepared by the Contractor, shall be furnished to DSD. Working drawings for micropiling shall show the State assigned designations for the contract number, bridge number, full name of the structure as shown on the contract plans, and District-County-Route-Kilometer Post on each drawing and calculation sheet. The pile vendor company name, address, and phone number shall be shown on the working drawings. Each sheet shall be numbered in the lower right corner and shall contain a blank space in the upper right corner for future contract sheet numbers. Working drawings for micropiles shall contain all information required for the construction and quality control of the piling, including the following: - A. Information on headroom and space requirements for installation equipment that verify that the proposed equipment can perform at the site. - B. Step-by-step procedure describing all aspects of pile installation including personnel, testing, and equipment to assure quality control. This step-by-step procedure shall be shown on the working drawings in sufficient detail so that the Engineer can monitor the construction and quality of these micropiles. - C. Details for drilling a plumb hole. - D. Details of centralizers. - E. Grout mix designs. - F. Details and procedures involved in testing components, including grout. - G. Pipe splice locations. - H. Details of equipment and operation for grouting. Details shall be included for monitoring grout quality, volume installed, and pressure during installation. - I. Information on the minimum cure time and strength requirements of the pile system for test piles. A supplement to the working drawings shall include the following: A. Construction details, structural details, and load test results from at least 3 previous successful installations by the proposed micropile vendor. The installations shall be from 3 separate test sites. The installations shall be similar to those proposed for this contract. The working drawings and supplement shall be stamped and signed by an engineer who is licensed as a Civil Engineer in the State of California. The Engineer will notify the Contractor in writing when the submitted working drawings and supplement have been determined to be complete. The Contractor shall allow the Engineer 30 working days to review the working drawing submittal after a complete set has been received. No micropile shall be installed until the Engineer has
approved, in writing, the working drawing submittal for micropiling. Should the Engineer fail to review the complete working drawing submittal within the time specified, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the working drawing submittal, an extension of time commensurate with the delay in completion of the work thus caused will be granted in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. #### Construction Drill cuttings resulting from installing micropiling shall be disposed of in conformance with the provisions in Section 19-2.06, "Surplus Material," of the Standard Specifications. Material resulting from grouting micropiles shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications, unless otherwise permitted in writing by the Engineer. Drilling mud or chemical stabilizers shall not be used. Foreign material dislodged or drawn into the hole during construction of the micropiles shall be removed. Loose material existing at the bottom of the hole after drilling operations are complete shall be removed prior to placing grout. Steel casing shall be installed using centralizers as shown on the plans. The pipe shall be placed vertically and grouted in place. Grout shall be injected at the bottom of the pile and may be placed before or after placing the steel pipe. A positive means of support shall be provided for maintaining the position of the casing until the grout has set. ## **Performance and Proof Testing** Performance and proof load testing of micropiles shall conform to the requirements of "Load Test Piles" of these special provisions except for the following: - A. The Engineer will conduct performance and proof micropile tests consisting of compression load testing. Performance tests will be used to evaluate the micropile design including specified lengths. Proof tests will be used to ensure that the Contractor installs production micropiling with at least the same quality and methods that were used to install the performance test micropiles. - B. The Contractor shall install a non-production test pile group for performance testing, consisting of a test pile and anchor piles, outside of the footing in conformance with the micropile load test pile details shown on the plans. The Contractor shall notify the Engineer 5 working days prior to installing the test micropile group that is to be performance tested. - C. The Contractor shall allow the Engineer 3 weeks to complete performance micropile load tests. The Engineer may revise specified tip elevations based on performance test results. Performance test results shall be approved by the Engineer prior to installing production piling or performing proof testing. - D. Three production piles will be proof tested, at the locations shown on the plans. - E. The acceptance criterion for proof compression load testing of micropiles is as follows: - 1. The pile shall sustain the first test load applied which is equal to the nominal resistance, with no more than 13 mm total vertical movement at the top of the pile measured relative to the top of the pile prior to the start of load testing. - F. If a production micropile that is proof tested fails to meet the above acceptance criterion for testing, then that pile will be rejected, and all the other micropiles adjacent to it will be tested. Rejected micropiling shall be replaced at a location approved by the Engineer. The Contractor shall submit to the Engineer for approval a plan for replacing piling or for installing additional micropiling that includes details for micropiling and footing modifications as required to provide the total micropiling support as shown on the plans. No extension of time or compensation will be made for the review of a plan for replacing or installing additional micropiling. ## ALTERNATIVE MICROPILING At the Contractor's option, the Contractor may propose to substitute alternative micropiling for the State designed micropiling shown on the plans and as specified in these special provisions. Use of alternative micropiling is contingent on approval of working drawing submittal and successful performance of the alternative micropiling under load testing. Development and approval of working drawings and testing will be at the Contractor's expense. There will be no compensation and no extension of contract time allowed for the approval process to permit use of any proposed alternative pile. It is anticipated that only those vendors with approved generalized working drawings will be able to perform within the working days given for this contract. Some of the alternative micropiles listed may not be suitable for this contract, and some may be proprietary or have proprietary components. #### Materials. Alternative micropiling shall conform to the provisions of Sections 19, "Earthwork," 49, "Piling," 50, "Prestressing Concrete," 51, "Concrete Structures," 52, "Reinforcement," and 75, "Miscellaneous Metal," of the Standard Specifications, these special provisions, and the pile layout shown on the plans. Alternative micropiling shall incorporate steel pipe piling with at least the nominal diameter, wall thickness, and length as shown on the plans and shall conform to the material properties for the steel pipe piling specified in these special provisions. Alternative micropiling shall incorporate a pile system with a diameter, including grout encasement, that is no more than the maximum dimensions shown on the plans. Alternative micropiling shall incorporate at least a 6 mm thickness of sacrificial steel for corrosion protection. ## **Approved Generalized Working Drawings** The vendors listed below have on file generalized working drawings for the given alternative micropiling that has been successfully system tested and approved by the Engineer. Required project specific working drawings as specified below in "Working Drawings" shall reference the approved generalized working drawings, and duplicate information shall not be included. | ALTERNATIVE PILE | ADDRESS AND PHONE NUMBER | | |----------------------------|----------------------------------|--| | DBM Micropile System | DBM Contractors Inc. | | | | P.O. Box 6139 | | | | Federal Way, WA 98063-6139 | | | | (800) 851-9629 | | | Malcolm Micropile | Malcolm Drilling Co., Inc. | | | | 4926 North Azusa Canyon Rd. | | | | Irwindale, CA 91706 | | | | (626) 338-0035 | | | Nicholson Pin Pile | Nicholson Construction Company | | | | PO Box 98 | | | | Bridgeville, PA 15017 | | | | (800) 388-2340 | | | Tubex Grout Injection Pile | Fundex Companies | | | | c/o American Piledriving | | | | 1047 Serpentine Lane, Suite 600A | | | | Pleasanton, CA 94566 | | | | (510) 426-8269 | | # **Working Drawings** If the Contractor elects to use alternative micropiling, including any of those listed above, the Contractor shall submit complete project specific working drawings for the alternative micropile system to the Division of Structure Design (DSD) in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. Working drawings for alternative micropiling shall be 559 mm x 864 mm in size. For initial review, 10 sets of drawings shall be submitted. After review, between 6 and 12 sets, as requested by the Engineer, shall be submitted for final approval and use during construction. Within 3 weeks after final approval of the working drawings, one set of the corrected prints on 75-g/m² (minimum) good quality bond paper, 559 mm x 864 mm in size, prepared by the Contractor, shall be furnished to DSD. Working drawings for alternative micropiling shall show the State assigned designations for the contract number, bridge number, full name of the structure as shown on the contract plans, and District-County-Route-Kilometer Post on each drawing and calculation sheet. The micropile vendor company name, address, and phone number shall be shown on the working drawings. Each sheet shall be numbered in the lower right hand corner and shall contain a blank space in the upper right hand corner for future contract sheet numbers. Working drawings for alternative micropiling shall contain all information required for the construction and quality control of the micropiling, including the following: A. Information on headroom and space requirements for installation equipment. - B. Step-by-step procedure describing all aspects of micropile installation including materials, personnel, testing, and equipment to assure quality control. This step-by-step procedure shall be shown on the working drawings in sufficient detail so that the Engineer can monitor the construction and quality of these alternative micropiles. Installation procedure and materials specified for use in the micropile system shall conform to the provisions in the Standard Specifications and these special provisions. When the Standard Specifications are not fully applicable, the section(s) shall be cited and the exceptions noted on the working drawings. If no applicable Standard Specification is available, ASTM or other industry standard specifications shall be referenced. - C. Details of the anchorage of the micropile to the pile cap. - D. Details of micropile splices. - E. Details of bar reinforcement, centralizers, and bar reinforcement splices. - F. Grout mix designs. - G. Details of the micropile load test frame, connections, and anchor piling. - H. Details of the testing procedures involved in testing the micropiles. - I. Details and procedures involved in testing components, including grout. - J. Information on the minimum cure time and strength requirements of the micropile system for performance test piles and proof test piles. - K. Minimum micropile tip elevations. A supplement to the working drawings
shall include the following: - A. Independently checked calculations for micropile design including: - 1. Analysis of micropile structural capacity based on the nominal strength as defined in Caltrans Bridge Design Specifications (Article 8.1.3) or the nominal resistance as defined in the LRFD Bridge Design Specifications (Article 1.3.2.1). - 2. Complete structural details and calculations related to the micropile system such as member element size, material specifications, connections to the pile cap, and connections for load testing that satisfy the nominal strength requirement. - 3. Geotechnical assessment of information provided by the State for this site. At the Contractor's option, the Contractor may conduct additional geotechnical investigation for the purpose of designing alternative micropiles. - 4. Analysis of the ductility of the alternative micropile system for lateral footing deflections of up to 150 mm for compatibility with the State designed micropile footing shown on the plans. - 5. Analysis of geotechnical capacity of micropile system based on the given loads and the minimum micropile tip elevations shown on the working drawings. - B. Calculations for design capacity of the load frame. - C. Information on provisions for proximity to underground facilities and for isolating micropiles from settling embankments. - D. Construction details, structural details, and load test results from at least 3 previous successful installations by the proposed alternative micropile vendor. The installations shall be from 3 separate test sites. The installations shall be similar to those proposed for this contract. The working drawings and supplement shall be stamped and signed by an engineer who is licensed as a Civil Engineer in the State of California. The Engineer will notify the Contractor in writing when the submitted working drawings and supplement have been determined to be complete. For alternative micropiles listed above with approved generalized working drawings on file, the Contractor shall allow the Engineer 30 working days to review the working drawing submittal after a complete set has been received. For alternative micropiles listed below with only approved pile system load testing on file, the Contractor shall allow the Engineer 60 working days to review the working drawing submittal after a complete set has been received. For alternative micropiles not listed, the Contractor shall allow the Engineer 180 working days to review the working drawing submittal after a complete set has been received. No alternative micropile shall be installed until the Engineer has determined that no aspect of the design will be compromised by the use of that alternative micropiling and has approved in writing the working drawing submittal for alternative micropiling. Should the Engineer fail to review the complete working drawing submittal within the time specified and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the working drawing submittal, an extension of time commensurate with the delay in completion of the work thus caused will be granted in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. #### Construction Drill cuttings resulting from installing alternative micropiling shall be disposed of in conformance with the provisions in Section 19-2.06, "Surplus Materials," of the Standard Specifications. Material resulting from grouting or placing concrete in alternative micropiles, including slurry, shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," unless otherwise permitted in writing by the Engineer. ## **System Testing** Alternative micropiles shall be system tested, by the Contractor. System testing includes demonstration and documentation of installation and load testing to geotechnical failure, both in tension and compression. System micropile load testing shall be in conformance with "Performance Testing" as specified below except that the maximum load required to achieve geotechnical failure may exceed the maximum load specified for performance load testing. Geotechnical failure occurs when the total vertical movement at the top of the micropile measured relative to the top of the pile prior to the start of load testing, exceeds a value of at least 10 percent of the micropile system diameter, or 50 mm, whichever is greater. Higher capacity load frames than those used for performance testing may be required. The same pile shall not be used for both tension and compression system load tests. ## **Approved Micropile System Load Testing** The alternative micropile vendors listed below have on file micropile system load test results that have been approved by the Engineer, and additional system testing is not required. Generalized working drawings have not been approved for the venders listed below. | ALTERNATIVE PILE | ADDRESS AND PHONE NUMBER | |--------------------------|---| | GeoJet Foundation System | Kulchin Condon & Associates, Inc. 1840 Embarcadero | | | P.O. Box 12368
Oakland, CA 94604
(510) 534-3400 | # **Performance and Proof Testing** The Contractor shall conduct performance and proof pile tests consisting of both compression and tension load testing. Submitted performance test results shall be approved by the Engineer prior to installing production piling at locations shown on the plans. The Contractor shall install at least one non-production alternative test pile group, each group consisting of a test micropile and anchor micropiles, that is constructed outside of a proposed or existing footing at a location approved by the Engineer. The Contractor shall notify the Engineer 5 working days prior to installing an alternative test micropile group that is to be performance tested. The Contractor shall proof test at least 2 alternative micropiles per footing after all the micropiles have been installed at a given footing. The micropiles to be tested will be selected by the Engineer. Alternative micropiles shall be tested under compression loads prior to testing under tension loads. The apparatus for applying test loads shall have a capacity of at least 120 percent of the compression and tension resistance of the test micropile structural section, but need not exceed 150 percent of the maximum nominal resistance shown on the plans. If an alternative micropile that is performance tested fails to meet any of the acceptance criteria for testing as determined by the Engineer, that micropile will be rejected and the Contractor shall modify the design or construction procedures and submit revised working drawings including these modifications. The Contractor shall install and performance test another alternative micropile, or abandon the alternative micropile option and install the State designed micropiling shown on the plans. Micropile installation operations shall not continue until the Engineer has approved the revised working drawings in writing. No extension of time or compensation will be made for modifying working drawings nor for installing and testing additional alternative micropiling. If an alternative micropile that is proof tested fails to meet any of the acceptance criteria for testing as determined by the Engineer, that micropile will be rejected, and all the remaining alternative micropiles in that same footing shall be proof tested. The Contractor shall submit to the Engineer for approval a plan for replacing micropiling or for installing additional alternative micropiling that includes details for micropiling and footing modifications as required to provide the total micropiling support as shown on the plans. No extension of time or compensation will be made for the review of the plan nor for replacing or installing additional alternative micropiling. # **Compression Load Testing** Compression testing shall conform to ASTM Designation: D 1143 and these special provisions. For performance compression load tests, the loads applied and the corresponding durations shall be as shown in the following table: | PERFORMANCE COMPRESSION LOAD TEST SCHEDULE | | | |--|-----------|--| | LOAD | DURATION | | | 0 | 1 minutes | | | 0.1C | 5 minutes | | | 0.2C | 5 minutes | | | 0.3C | 5 minutes | | | 0.4C | 5 minutes | | | 0.5C | 5 minutes | | | 0.6C | 5 minutes | | | 0.7C | 5 minutes | | | 0.8C | 5 minutes | | | 0.9C | 5 minutes | | | 1.0C | 5 minutes | | | 0.75C | 1 minute | | | 0.5C | 1 minute | | | 0.25C | 1 minute | | | 0 | 1 minute | | | 0.1C | 1 minute | | | 0.2C | 1 minute | | | 0.3C | 1 minute | | | 0.4C | 1 minute | | | 0.5C | 1 minute | | | 0.6C | 1 minute | | | 0.7C | 1 minute | | | 0.8C | 1 minute | | | 0.9C | 1 minute | | | 1.0C | 1 minute | | | 1.1C | 5 minutes | | | 1.2C* | 5 minutes | | C = Nominal compression resistance of an alternative pile. ^{*} After a 5 minute interval, remove the full load from the pile in four approximately equal decrements with 5 minute intervals between each decrement. For proof compression load tests, the loads applied and the corresponding durations shall be as shown in the following table: | PROOF COMPRESSION LOAD TEST
SCHEDULE | | |---|------------------------| | LOAD | DURATION | | 0 | 1 minutes | | 0.25C | 5 minutes | | 0.5C | 5 minutes | | 0.75C | 5 minutes | | 1.0C* | 5 minutes | | 0.5C
0.75C | 5 minutes
5 minutes | C = Nominal compression resistance of an alternative pile. *After a 5 minute interval, remove the full load from the pile in four approximately equal decrements with 5 minute intervals between each decrement. The acceptance criterion for compression load testing of alternative micropiles is as follows: A. The micropile shall achieve and sustain for 5 minutes the first
compression test load applied which is equal to the nominal compression resistance with no more than 13 mm total vertical movement at the top of the micropile measured relative to the top of the micropile prior to the start of compression load testing. ## **Test Submittals** At the completion of a performance or proof test, the Contractor shall submit to the Engineer four copies of the complete test results for the alternative micropile tested. Data for each test shall list key personnel, test loading equipment, alternative micropile location, micropile tip elevation, and length of reinforcement. Test data shall also list quantity of grout and grout pressure used or amount of concrete placed; location grout or concrete is placed; amount of ground water encountered; and the time and dates of reinforcement installation, grouting or concrete placement, and micropile testing. The alternative pile movements at each load and corresponding duration, as shown in the load test schedule, shall be included in the test data. #### MEASUREMENT AND PAYMENT (PILING) Measurement and payment for the various types and classes of piles shall conform to the provisions in Sections 49-6.01, "Measurement," and 49-6.02, "Payment," of the Standard Specifications and these special provisions. Payment for cast-in-place concrete piling shall conform to the provisions in Section 49-6.02, "Payment," of the Standard Specifications and these special provisions except that, when the diameter of cast-in-place concrete piling is shown on the plans as 600 mm or larger, reinforcement in the piling will be paid for by the kilogram as bar reinforcing steel (bridge). Full compensation for slurry, depositing concrete under slurry, test batches, inspection pipes, filling inspection holes and pipes with grout, drilling oversized cast-in-drilled-hole concrete piling, filling cave-ins and oversized piles with concrete, and redrilling through concrete, shall be considered as included in the contract prices paid per meter for cast-in-drilled-hole concrete piling of the types and sizes listed in the Engineer's Estimate, and no additional compensation will be allowed therefor. The contract unit price paid for pile load test shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in conducting pile load testing, including preparing and submitting test report, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Full compensation for the PVC casing at the 405/2 Separation abutment 2 piles shall be considered as included in the contract unit price paid for CIDH pile, and no additional compensation will be allowed therefor. Micropiles will be measured and paid for by the unit. Performance test micropiling, including anchor piles, will be paid for as micropiles. The contract unit price paid for micropile shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing micropiles, including casings, grout, reinforcement, cutting tips, drill bits, pile anchorage, and disposing of materials resulting from pile installation, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The Contractor shall furnish labor, materials, tools, equipment, and incidentals as required to assist the Engineer in the installation, operation, and removal of State-furnished jacks, bearing plates, drills, and other test equipment. Full compensation for said work and materials shall be considered as included in the contract price paid for the micropiling shown on the plans and in the Engineer's Estimate, and no additional compensation will be allowed therefor. Full compensation for excavation of pile load test sites, for maintaining a level and dewatered test site, and for backfilling and completely restoring the test sites shall be considered as included in the contract unit price paid for micropiles, and no additional compensation will be allowed therefor. No payment will be made for micropiles which are damaged either during installation or after the micropiles are complete in place. No payment will be made for additional excavation, backfill, concrete, reinforcement, nor other costs incurred from footing enlargement resulting from replacing rejected micropiles. The quantities for alternative micropiles will be computed on the basis of the dimensions and details for the type of State designed piling shown on the plans, and payment will be made based on the quantities shown in the Engineer's Estimate for said micropiling. No change in the quantities to be paid for will be made because of the use by the Contractor of alternative micropiling. Full compensation for furnishing and installing casings, shells, prestressing system, grout, concrete, reinforcement, cutting tips, drill bits, and any other material used in furnishing and installing the alternative micropiles shall be considered as included in the contract price paid for the State designed micropiling of the type shown on the plans and in the Engineer's Estimate, and no additional compensation will be allowed therefor. Full compensation for driving, jetting, drilling, vibrating, prestressing, removal of casings, and for disposal of material resulting from alternative micropile installation, including performance and proof testing alternative micropiling shall be considered as included in the contract price paid for the State designed piling of the type shown on the plans and in the Engineer's Estimate, and no additional compensation will be allowed therefor. Full compensation for revisions to other facilities made necessary by the use of an alternative micropile shall be considered as included in the contract price paid for the State designed micropiling of the type shown on the plans and in the Engineer's Estimate, and no separate payment will be made therefor. Full compensation for system, performance, and proof testing alternative micropiling, including placing additional reinforcement, load test anchorage, and for cutting off micropiles as specified, shall be considered as included in the contract price paid for the State designed piling of the type shown on the plans and in the Engineer's Estimate, and no additional compensation will be allowed therefor. No payment will be made for alternative micropiles which fail to meet any of the acceptance criteria. No compensation will be made for additional excavation, backfill, concrete, reinforcement, nor any other costs incurred from footing enlargement resulting from replacing rejected alternative micropiles or for placing additional alternative micropiling in footings with piles that failed to meet the specified testing requirements. The quantities of earthwork, concrete, and reinforcement will be computed on the basis of the dimensions and details for the State designed micropile footing shown on the plans, and payment will be made based on the quantities shown in the Engineer's Estimate. No change in the quantities of earthwork, concrete, and reinforcement to be paid for will be made because of the use by the Contractor of alternative micropile footings. Sections 4-1.03B, "Increased or Decreased Quantities," 4-1.03B(1), "Increases of more than 25 Percent, "4-1.03B(2), "Decreases of more than 25 Percent, " and 4-1.03C, "Changes in Character of Work," of the Standard Specifications shall not apply to micropiles listed under "Alternative Micropiling" of these special provisions. #### 10-1.44 PRESTRESSING CONCRETE Prestressing concrete shall conform to the provisions in Section 50, "Prestressing Concrete," of the Standard Specifications. ## 10-1.45 TIEBACK ANCHORS Anchors at the retaining walls for Olympic Blvd UC, and the Route 405/2 Separation, consisting of holes drilled in foundation material, grouted steel bars or strands, and anchorage assemblies, and testing of installed anchors, shall conform to the details shown on the plans, the provisions in Section 50, "Prestressing Concrete," of the Standard Specifications and these special provisions. Foundation recommendations are included in the "Information Handout" available to the Contractor in conformance with the provisions in Section 2-1.03, "Examination of Plans, Specifications, Contract, and Site of Work," of the Standard Specifications. Difficult tieback installation is anticipated due to the presence of caving soils, hazardous and contaminated materials, high ground water, subsurface concrete debris, low overhead clearance, underground utilities, overhead utilities, the close proximity of the existing structure, sound control, and traffic control. The Contractor shall determine the bond length necessary to meet acceptance criteria specified herein. The submittal of reduced prints of corrected original tracings will not be required for tieback anchor installations. In fabricating, handling, shipping, and placing tieback anchors, adequate care shall be taken to avoid damage to the sheathing. All damage to the sheathing caused by handling and fabrication prior to tieback anchor installation shall be repaired or replaced as determined by the Engineer. Repair procedure for the sheathing shall be included in the working drawings. The Contractor may submit, for approval by the Engineer and in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, calculations and details for furnishing an alternative number of tiebacks that provides the same horizontal component and distribution of the design force as provided by the planned tiebacks. Alternative wall details shall be furnished, for approval by the Engineer, if the number of tiebacks is reduced. Alternative design calculations and details shall be signed by an engineer who is licensed
as a Civil Engineer in the State of California. #### **MATERIALS** Whenever "member" is referred to in Section 50, "Prestressing Concrete," of the Standard Specifications, it shall be considered to mean tieback anchor. Structural steel for the tieback retaining wall shall conform to the provisions in Section 55, "Steel Structures," of the Standard Specifications and these special provisions. Structural steel shall consist of the anchorage assembly and the anchorage enclosure. The anchorage assembly and the anchorage enclosure shall be galvanized as indicated on the plans. The provisions of "Welding Quality Control" of these special provisions shall not apply to the anchorage enclosure or to the weld between the steel tube and the bearing plate of the anchorage assembly for tiebacks. Those provisions shall apply to all other welds of structural steel for tieback retaining walls. The permanent bearing plate of the tieback anchor shall effectively distribute the design force (T), to the concrete, such that the concrete bearing stress does not exceed 11 MPa and the bending stress does not exceed 0.55 f_y for steel nor 0.36 f_y for cast steel or cast iron. Grout shall conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications. Fine aggregate may be added to the grout mixture of portland cement and water used outside of the grouted sheathing in drilled holes which are 200 mm or greater in diameter, but only to the extent that the cement content of the grout is not less than 500 kg per cubic meter of grout. Fine aggregate, if used, shall conform to the provisions in Section 90-2, "Materials," and Section 90-3, "Aggregate Gradings," of the Standard Specifications. The plastic sheathing for tieback anchors shall conform to the following: polyvinyl chloride (PVC) sheathing, high density polyethylene (HDPE) sheathing, and polypropylene sheathing. Corrugated plastic sheathing shall be PVC or HDPE. The width of corrugations, the distance between corrugations, and the height of corrugations of corrugated plastic sheathing shall be approximately the same. PVC sheathing may be used for smooth sheathing for bar tendons and corrugated sheathing. PVC sheathing shall conform to ASTM Designation: D 1784, Class 13464-B. Corrugated PVC sheathing shall have a nominal wall thickness of 1.0 mm. HDPE sheathing may be used for smooth sheathing for bar tendons and corrugated sheathing. HDPE sheathing shall have a density between 940 kg/m³ and 960 kg/m³ as measured in accordance with ASTM Designation: D 792, A-2. Corrugated HDPE sheathing shall have a nominal wall thickness of 1.5 mm for sheathing with an outside diameter of 75 mm or greater, and a nominal thickness of 1.0 mm for sheathing with an outside diameter less than 75 mm, with a tolerance of minus 0.25-mm. HDPE sheathing may be used for the smooth sheathing encapsulating individual strands of strand type tendons. Smooth HDPE sheathing for encapsulating strands shall have a minimum wall thickness of 1.0 mm. Polypropylene sheathing may be used for the smooth plastic sheathing encapsulating individual strands of strand type tendons. Polypropylene sheathing shall have a density between 900 kg/m³ and 910 kg/m³. Smooth polypropylene sheathing shall have a minimum wall thickness of 1.0 mm. The smooth sheathing for the unbonded length of the individual strands shall have sufficient strength to prevent damage during construction operations, shall be watertight, chemically stable without embrittlement or softening, and nonreactive with concrete, steel or corrosion inhibiting grease. Smooth plastic sheathing, including joints, shall be watertight. The corrugated sheathing, including joints, shall have sufficient strength to prevent damage during construction operations, shall be grout-tight and watertight, chemically stable without embrittlement or softening, and nonreactive with concrete, steel or corrosion inhibiting grease. The transition between the corrugated plastic sheathing and the anchorage assembly shall be an approved detail that allows stressing to the design force without evidence of distress in the corrugated plastic sheathing. Additional requirements for tiebacks with strand type tendons are as follows: - A. The individual strands of a tendon, except for the bonded length, shall be fully coated with corrosion inhibiting grease and then encapsulated by a smooth HDPE or polypropylene sheath. The corrosion inhibiting grease shall fill all space between strand wires and shall encapsulate the strand giving an encasement diameter at least 0.12-mm greater than the diameter of the bare strand. The sheath shall be hot melt extruded onto the strand or shall be shop applied by an approved method that assures that all spaces between the sheath and the strand and between the strand wires are filled with corrosion inhibiting grease. - B. The corrosion inhibiting grease shall provide a continuous nonbrittle film of corrosion protection to the prestressing steel and lubrication between the strand and the sheathing, shall resist flow from the sheathing, shall be chemically stable and nonreactive with the prestressing steel, sheathing material and concrete, and shall be organic with appropriate polar, moisture displacing, and corrosion inhibiting additives. - C. The corrosion inhibiting grease shall have the physical properties listed in Table 3.2.1 of the Post Tensioning Manual, Fourth Edition, by the Post Tensioning Institute and as modified below. At least 40 days before use, a sample from the lot to be used and test results shall be provided for the corrosion inhibiting grease. | Test | Requirements | ASTM | |-----------------------------|-------------------|----------------| | | | Designation: | | Water Soluble Ions: | | | | Nitrates | | | | | 10 g/kg max. | D 3867 | | Corrosion Test: | | | | 5% Salt Fog @ 38° C. | Grade 7 or better | B 117, D 610 | | 125 μm coating on | | | | 76 mm x 152 mm Q panel | | | | Type S, 1000 hrs min. | | | | Compatibility with | | | | sheathing: | | | | Hardness change & | 15% max. | D 4289, Except | | volume change of polymer | 10% max. | use D 792 for | | after exposure to grease 40 | | density | | days at 66° C. | | | ## **CONSTRUCTION** Tieback anchors shall be installed in accordance with the manufacturer's recommendations. In case of a conflict between the manufacturer's recommendations and these special provisions, these special provisions shall prevail. Water and grout from tieback anchor construction operations shall not be permitted to fall on public traffic, to flow across shoulders or lanes occupied by public traffic, or to flow into landscaping, gutters or other drainage facilities. Excessive amounts of water shall not be used in any of the drilling and the tieback anchor installation procedures. Tieback anchor steel shall be protected prior to completion of all grouting against rust, corrosion and physical damage in conformance with the provisions in Section 50, "Prestressing Concrete," of the Standard Specifications. In addition, there shall be no evidence of distress in the plastic sheathing or crushing of the cement grout within the pregrouted sheathing. The tieback anchorage assembly shall be protected against rust, corrosion and physical damage, prior to completion of all grouting of enclosure or encasement in concrete. The tieback anchor installation method selected by the Contractor shall be sufficient to achieve the loadings specified herein. Holes for tieback anchors shall be drilled in the foundation to a depth sufficient to provide the necessary bond length beyond the minimum unbonded length shown on the plans. Tieback anchorage holes shall be drilled by either the rotary or rotary percussion drilling method. The diameter of the drilled hole shall be large enough to provide a minimum of 25 mm grout cover within the bonded length of the tendon. Centralizers shall be used within the bonded length of the tendon. Pregrouting shall occur at least 48 hours before placing the tendon in the drilled hole. Prior to installing each anchor assembly into the drilled hole, the anchor assembly shall be clean and free of oil, grease or other extraneous substances, and any damage to the sheathing shall be repaired or replaced. Grout for all stages of tieback construction shall be injected at the low end of the void being filled and shall be expelled at the high end until there is no evidence of entrapped air, water or diluted grout. The grout shall be placed using grout tubes, unless another method is approved by the Engineer. The quantity of the grout and the grout pressures shall be recorded. After placing initial grout, the anchor shall remain undisturbed until the grout has reached a strength sufficient to provide anchorage during testing operations. Additional requirements for tiebacks with bar type tendons are as follows: - A. The bar tendons in the unbonded area shall be sheathed with smooth sheathing that extends into the steel tube of the permanent tieback anchorage assembly, as shown on the plans. For this portion of smooth sheathing there is no minimum wall thickness and the sheathing shall be either PVC or HDPE. - B. In addition, bar tendons shall be sheathed full-length with corrugated sheathing. The annular space between the bar and the corrugated sheathing shall be pregrouted prior to placing the tendons in the drilled hole. The bar shall be centered in the sheathing. - C. There shall be a seal between the smooth sheathing and the corrugated sheathing at the top and bottom of the length of smooth sheathing. - D. For bar tendons, the initial grout in the drilled hole may be placed before or after insertion of the bar tendon. - E. For drilled holes 150 mm in diameter or less, the initial grout outside of the corrugated sheathing shall extend to within 150 mm of the end of the steel tube of the anchorage assembly. Grout in the unbonded length shall not be placed under pressure. For drilled
holes greater than 150 mm in diameter, the initial grout outside of the corrugated sheathing shall be within the limits of the bonded length. After placing the initial grout, the anchor shall remain undisturbed until the grout has reached a strength sufficient to provide anchorage during testing operations. Additional requirements for tiebacks with strand type tendons are as follows: - A. The Contractor shall have the option of using Alternative A or Alternative B as shown on the plans for tieback tendons. - B. For Alternative A and Alternative B, strand tendons shall be sheathed with corrugated sheathing. The individual strands within the bonded length shall be separated by spaces so that the entire surface of each strand is bonded in the grout. The maximum spacing of strand spacers shall be 1.50 m. The strand spacers shall be plastic and of a construction and strength that will provide support for the individual strands during construction operations. - C. For Alternative A, the bonded length of the tendon is sheathed with corrugated sheathing and pregrouted full length of the corrugated sheathing before placing the tendon in the hole. The corrugated sheathing shall lap the smooth sheathing on the strands 600 mm. For this alternative, the initial grout in the drilled hole may be placed before or after insertion of the strand tendon. - D. For Alternative B, the tendon is sheathed full length with corrugated sheathing and pregrouted a minimum length of 600 mm before placing the tendon in the hole. After placing the tendon into the drilled hole and before placing initial grout in the drilled hole, the grout shall be injected at the low end of the corrugated sheathing and the grout shall be expelled at the high end until there is no evidence of entrapped air, water or diluted grout. - E. For Alternative A and Alternative B, anchors in holes of 150 mm diameter and smaller shall be initially grouted to within 150 mm of the end of the steel tube. Grout in the unbonded length shall not be placed under pressure. After placing the initial grout, the anchor shall remain undisturbed until the grout has reached a strength sufficient to provide anchorage during testing operations. - F. For Alternative A and Alternative B, anchors in holes of greater than 150 mm diameter shall be initially grouted within the bond length. After placing the initial grout, the anchor shall remain undisturbed until the grout has reached a strength sufficient to provide anchorage during testing operations. #### **Testing** All tiebacks shall be load tested by either a performance test or a proof test. The magnitude of applied test loads shall be determined with a calibrated pressure gauge or a load cell. Movements of the end of the tieback, relative to an independent fixed reference point, shall be measured and recorded to the nearest 0.025 mm at each load increment during the load tests. The Contractor shall perform the measuring and recording and shall furnish the Engineer copies of the recorded movements. For each group of 3 tiebacks, 1 shall be performance tested and the other 2 shall be proof tested. The Engineer shall determine the location of the tieback to be performance tested. The performance test or proof test shall be conducted by measuring the test load applied to the tieback and the tieback end movement during incremental loading and unloading of the anchor in accordance with the loading schedule. The test load shall be held constant for 10 minutes. During the test load hold, the movement of the end of the tendon shall be measured at 1, 2, 3, 4, 5, 6, and 10 minutes. If the total movement between one minute and 10 minutes exceeds one mm, the test load shall be held for an additional 50 minutes. Total movement shall be measured at 15, 20, 25, 30, 45, and 60 minutes. If the test load is held for 60 minutes, a creep curve showing the creep movement between one minute and 60 minutes shall be plotted as a function of the logarithm of time. | LOADING SCHEDULES | | | |--|-------------------|-------------------| | PERFORM | ANCE TEST | PROOF TEST | | | (CONT'D) | | | AL | AL | AL | | 0.25T | 0.25T | 0.25T | | AL | 0.50T | 0.50T | | 0.25T | 0.75T | 0.75T | | 0.50T | 1.00T | 1.00T | | AL | 1.25T | 1.25T | | 0.25T | AL | 1.50T (TEST LOAD) | | 0.50T | 0.25T | AL | | 0.75T | 0.50T | | | AL | 0.75T | | | 0.25T | 1.00T | | | 0.50T | 1.25T | | | 0.75T | 1.50T (TEST LOAD) | | | 1.00T | AL | | | (CONT'D) | | | | T = Design force for the anchor shown on the plans | | | | AL = Alignment load | | | For performance and proof tests, each increment of load shall be applied in less than one minute and held for at least one minute but not more than 2 minutes or as specified above. The observation period for the load hold shall start when the pump begins to apply the last increment of load. The jacking equipment, including the tendon movement measuring system, shall be stable during all phases of the tieback loading operations. All tiebacks not performance tested shall be proof tested. If 1.5 times the design force cannot be obtained, the tieback shall be redesigned and replaced. Tieback anchors shall not be retested, unless the tieback bond length is post-grouted after the unacceptable test. A performance tested tieback is acceptable if: - A. The measured elastic movement exceeds 0.80 of the theoretical elongation of the unbonded length plus the jacking length at the maximum test load; and - B. The creep movement between one and 10 minutes is less than 1.0 mm. A proof tested tieback is acceptable if: - A. The pattern of movements is similar to that of adjacent performance tested tiebacks; and - B. The creep movement between one and 10 minutes is less than 1.0 mm. Performance tested or proof tested tiebacks which fail to meet acceptance criterion B will be acceptable if the maximum load is held for 60 minutes and the creep curve plotted from the movement data indicates a creep rate of less than 2.0 mm for the last log cycle of time. ## Lock-off After successful testing of the tiebacks, the tiebacks shall be tensioned against the structure and locked off at a load equal to 0.75T. The lock-off force is the load on the jacks which is maintained while the anchor head or anchor nuts on the tieback are permanently set. Immediately after lock-off, a lift-off test shall be performed to demonstrate that the specified lock-off force was obtained. Adjustments in the shim thickness shall be made if required to maintain the specified lock-off force. For strand tendons, the permanent wedges shall be fully set in the anchor head while the tendon is stressed to the test load of 1.50 T, and then locked off at the lock-off force by removal of the shims or other appropriate means. Grouting to the level of secondary grouting to the dimensions shown on the plans shall be completed only after successful testing and lock-off has been completed. At least 24 hours after the secondary grout has set, the remaining void in the steel tube and bearing plate shall be filled with grout. Grout shall be injected at the low end and expelled at the high end until there is no evidence of entrapped air or water. A minimum grout head of 600 mm shall be maintained until the grout has set. The tieback anchor head or anchor nuts shall be enclosed with a grouted anchorage enclosure device. After grouting the steel tube, the bearing plate surface shall be cleaned, silicon sealant placed, and the anchorage enclosure bolted in place. After bolting the anchorage enclosure in place the void in the anchorage enclosure shall be filled with grout by injecting grout at the low end of the void and venting at the high end. Any holes in the top of the anchorage enclosure used for grout placement shall be cleaned and sealed with silicon sealant. #### MEASUREMENT AND PAYMENT No payment will be made for tiebacks which do not pass the specified testing requirements. Tieback anchors will be measured and paid for by the unit, and the number for payment will be determined by the requirements of the details shown on the plans. No change in the number of tieback anchors to be paid for will be made because of the use by the Contractor of an alternative number of tiebacks. The contract unit price paid for tieback anchor shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the tieback anchors, including special measures taken to contain grout in the drilled hole, testing, and furnishing and installing anchorage assemblies, complete in place, including repair or replacement of sheathing as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. #### 10-1.46 CONCRETE STRUCTURES Portland cement concrete structures shall conform to the provisions in Section 51, "Concrete Structures," of the Standard Specifications and these special provisions. Drainage inlets, cleanout, and minor concrete (pipe encasement) shall be considered as minor structures and shall be constructed of minor concrete (minor structure) as specified in the Standard Specifications. Attention is directed to "Precast Concrete Quality Control" of these special provisions. Shotcrete shall not be used as an alternative construction method for reinforced concrete members unless otherwise specified. When a roughened concrete surface is shown on the plans, the existing concrete surface shall be roughened to a full amplitude of approximately 10 mm by abrasive blasting, water blasting, or mechanical equipment. Treated timber at existing Retaining Wall No. 115 shall conform to the provisions in Sections 57, "Timber Structures," and 58, "Preservative Treatment of Lumber, Timber and Piling," of the Standard Specifications. ## **FALSEWORK** Falsework shall conform to the provisions in Section 51, "Concrete Structures," of the Standard Specifications
and these special provisions. Temporary crash cushion modules, as shown on the plans and conforming to the provisions in "Temporary Crash Cushion Module" of these special provisions, shall be installed at the approach end of temporary railings which are located less than 4.6 m from the edge of a traffic lane. For 2-way traffic openings, temporary crash cushion modules shall be installed at the departing end of temporary railings which are located less than 1.8 m from the edge of a traffic lane. The Contractor's engineer who signs the falsework drawings shall also certify in writing that the falsework is constructed in conformance with the approved drawings and the contract specifications prior to placing concrete. This certification shall include performing any testing necessary to verify the ability of the falsework members to sustain the stresses required by the falsework design. The engineer who signs the drawings may designate a representative to perform this certification. Where falsework contains openings for railroads, vehicular traffic, or pedestrians, the designated representative shall be qualified to perform this work, shall have at least three years of combined experience in falsework design or supervising falsework construction, and shall be registered as a Civil Engineer in the State of California. For other falsework, the designated representative shall be qualified to perform this work and shall have at least three years of combined experience in falsework design or supervising falsework construction. The Contractor shall certify the experience of the designated representative in writing and provide supporting documentation demonstrating the required experience if requested by the Engineer. # Welding and Nondestructive Testing Welding of steel members, except for previously welded splices and except for when fillet welds are used where load demands are less than or equal to 175 N/mm for each 3 mm of fillet weld, shall conform to AWS D1.1 or other recognized welding standard. The welding standard to be utilized shall be specified by the Contractor on the working drawings. Previously welded splices for falsework members are defined as splices made prior to the member being shipped to the project site. Splices made by field welding of steel beams at the project site shall undergo nondestructive testing (NDT). At the option of the Contractor, either ultrasonic testing (UT) or radiographic testing (RT) shall be used as the method of NDT for each field weld and any repair made to a previously welded splice in a steel beam. Testing shall be performed at locations selected by the Contractor. The length of a splice weld where NDT is to be performed, shall be a cumulative weld length equal to 25 percent of the original splice weld length. The cover pass shall be ground smooth at the locations to be tested. The acceptance criteria shall conform to the requirements of AWS D1.1, Section 6, for cyclically loaded nontubular connections subject to tensile stress. If repairs are required in a portion of the weld, additional NDT shall be performed on the repaired sections. The NDT method chosen shall be used for an entire splice evaluation including any required repairs. For all field welded splices, the Contractor shall furnish to the Engineer a letter of certification which certifies that all welding and NDT, including visual inspection, are in conformance with the specifications and the welding standard shown on the approved working drawings. This letter of certification shall be signed by an engineer who is registered as a Civil Engineer in the State of California and shall be provided prior to placing any concrete for which the falsework is being erected to support. For previously welded splices, the Contractor shall determine and perform all necessary testing and inspection required to certify the ability of the falsework members to sustain the stresses required by the falsework design. This welding certification shall be in writing, shall be signed by an engineer who is registered as a Civil Engineer in the State of California, and shall be provided prior to placing any concrete for which the falsework is being erected to support. ## **DECK CLOSURE POURS** Where a deck closure pour is shown on the plans, reinforcement protruding into the closure space and forms for the closure pour shall conform to the following: - A. During the time of placement of concrete in the deck, other than for the closure pour itself, reinforcing steel which protrudes into the closure space shall be completely free from any connection to the reinforcing steel, concrete, or other attachments of the adjacent structure, including forms. The reinforcing steel shall remain free of any connection for a period of not less than 24 hours following completion of the pour. - B. Forms for the closure pour shall be supported from the superstructure on both sides of the closure space. #### SLIDING BEARINGS Sliding bearings consisting of elastomeric bearing pads lubricated with grease and covered with sheet metal shall conform to the following requirements: - A. Grease shall conform to the requirements of Military Specification: MIL-S-8660. A uniform film of grease shall be applied to the upper surface of the pads prior to placing the sheet metal. - B. Sheet metal shall be commercial quality galvanized sheet steel. The sheet metal shall be smooth and free of kinks, bends, or burrs. - C. Construction methods and procedures shall prevent grout or concrete seepage into the sliding bearing assembly. ## ELASTOMERIC BEARING PADS Elastomeric bearing pads shall conform to the provisions in Section 51-1.12H, "Elastomeric Bearing Pads," of the Standard Specifications. #### **CURING** The formed surfaces which will be exposed in the completed work, of the columns, caps, piers, bents, or abutments listed in the following table shall be cured by the forms-in-place method. Other surfaces of said units shall be cured in conformance with the provisions in Section 90-7.03, "Curing Structures," of the Standard Specifications. | Bridge Name & Number | Abutment Number | Pier or Bent Number | |------------------------|-----------------|---------------------| | Olympic Boulevard | | | | Undercrossing | 1 and 2 | | | (Bridge No. 53-0706) | | | | Route 405/2 Separation | 1 and 2 | | | (Bridge No. 53-0708 | 1 and 2 | | | Ohio Avenue | | | | Undercrossing | 1 and 2 | | | (Bridge No. 53-1097) | | | | Wilshire Boulevard | | | | Undercrossing | 1 and 3 | 2 | | (Bridge No. 53-0710) | | | | Constitution Avenue | | | | Undercrossing | 1 and 2 | | | (Bridge No. 53-0711) | | | #### DECK CRACK TREATMENT The Contractor shall use all means necessary to minimize the development of shrinkage cracks. The Contractor shall remove all equipment and materials from the deck and clean the surface as necessary for the Engineer to measure the surface crack intensity. Surface crack intensity will be determined by the Engineer after completion of concrete cure, prior to prestressing, and prior to the release of falsework. In any 50-m² portion of deck within the limits of the new concrete deck, should the intensity of cracking be such that there are more than 5 m of cracks whose width at any location exceeds 0.5-mm, the deck shall be treated with methacrylate resin. The area of deck to be treated shall have a width that extends for the entire width of new deck inside the concrete barriers and a length that extends at least 1.5 m beyond the furthest single continuous crack outside the 50-m² portion, measured from where that crack exceeds 0.5-mm in width, as determined by the Engineer. Deck crack treatment shall consist of test sealing, and furnishing and applying methacrylate resin in conformance with the requirements of these special provisions. If grinding operation is required, deck treatment shall take place after grinding. Prior to the start of deck treatment work, the Contractor shall submit for approval by the Engineer, a program for public safety associated with the use of methacrylate resin. The program shall identify materials, equipment, and methods to be used. The Contractor shall not perform deck treatment work, other than that specifically authorized in writing by the Engineer, until the program has been approved. If the measures being taken by the Contractor are inadequate to provide for public safety associated with use of methacrylate resin, the Engineer will direct the Contractor to revise the operations and the public safety program. Directions for revisions will be in writing and will specify the items in which the Contractor's program is inadequate. No further deck treatment shall be performed until public safety measures are adequate, and a revised program for public safety has been approved. The Engineer will notify the Contractor of the approval or rejection of any submitted or revised program for public safety associated with the use of methacrylate resin within 10 working days of receipt of the final submitted program. The State will not be liable to the Contractor for failure to approve all or any portion of an originally submitted or revised program for public safety associated with the use of methacrylate resin, nor for any delays to the work due to the Contractor's failure to submit an acceptable program for public safety associated with the use of methacrylate resin. If the Engineer does not review or approve the program submitted by the Contractor within the time specified and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the program for public safety, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. #### **Materials** The material used for treating the deck shall be a low odor, high molecular weight methacrylate resin. Prior to adding initiator, the resin
shall have a maximum volatile content of 30 percent when tested in conformance with the requirements in ASTM Designation: D 2369, and shall conform to the following: | PROPERTY | TEST METHOD | REQUIREMENT | |--|---------------------|-------------| | Viscosity | ASTM D 2196 | 0.025 | | mPa·s, maximum, | | | | (Brookfield RVT | | | | with UL adaptor, 50 | | | | RPM at 25°C) | | | | Specific Gravity | ASTM D 1475 | 0.90 | | minimum, at 25°C | | | | Flash Point | ASTM D 3278 | 82 | | °C, minimum | | | | Vapor Pressure | ASTM D 323 | 1.0 | | mm Hg, maximum, | | | | at 25°C | | | | Tack-free time | California Test 551 | 400 | | minutes, maximum | | | | at 25°C | | | | PCC Saturated | California Test 551 | 3.5 | | Surface-Dry Bond | | | | Strength | | | | MPa, minimum at | | | | 24 hours and | | | | 21±1°C | | | | * Test shall be performed prior to adding initiator. | | | A Material Safety Data Sheet shall be furnished prior to use for each shipment of high molecular weight methacrylate resin. The promoter and initiator, if supplied separately from the resin, shall not be mixed directly with each other. Containers of promoters and initiators shall not be stored together in a manner that will allow leakage or spillage from one to contact the containers or material of the other. ## Testing The Contractor shall allow 14 days for sampling and testing by the Engineer of the high molecular weight methacrylate resin prior to proposed use. The Contractor shall treat a test area within the project limits of approximately 50 m² at a location approved by the Engineer. Conditions during the test treatment shall be similar to those expected on the deck. Equipment used in the test shall be similar to those used for the deck treating operations. If the test area is on the traveled way, traffic shall not be allowed on the treated test area until (1) the treated surface is tack free (non-oily), (2) the sand cover adheres sufficiently to resist brushing by hand, and (3) the coefficient of friction of the deck is at least 0.35 when tested in conformance with the requirements in California Test 342. Should the above requirements for traffic use not be met, the Contractor shall suspend treating of bridge decks until another test area is treated and complies with the requirements. #### Construction Prior to deck treatment with methacrylate resin, the bridge deck surface shall be cleaned by abrasive blasting and all loose material shall be blown from visible cracks using high-pressure air. Concrete curing seals shall be cleaned from the deck surface to be treated, and the deck shall be dry when blast cleaning is performed. If the deck surface becomes contaminated at any time prior to placing the penetrating sealer, the deck surface shall be cleaned by abrasive blasting. Equipment shall be fitted with suitable traps, filters, drip pans, or other devices as necessary to prevent oil or other deleterious material from being deposited on the deck. Where abrasive blasting is being performed within 3 m of a lane occupied by public traffic, the residue including dust shall be removed immediately after contact between the abrasive and the surface being treated. The removal shall be by a vacuum attachment operating concurrently with the abrasive blasting operation. The relative humidity shall be less than 90 percent at time of treatment. A compatible promoter/initiator system shall be capable of providing a resin gel time of not less than 40 minutes nor more than 1.5 hours at the temperature of application. Gel time shall be adjusted to compensate for the changes in temperature throughout treatment application. The quantity of resin mixed with promoter and initiator shall be limited to 20 L at a time for manual application. Machine application of the resin shall be performed by using a two-part resin system using a promoted resin for one part and an initiated resin for the other part. This two-part resin system shall be combined at equal volumes to the spray bars through separate positive displacement pumps. Combining of the 2 components shall be by either static in-line mixers or by external intersecting spray fans. The pump pressure at the spray bars shall not be great enough to cause appreciable atomization of the resin. Compressed air shall not be used to produce the spray. A shroud shall be used to enclose the spray bar apparatus. Hand held spray apparatus shall not be used. The Contractor shall allow methacrylate resin to be applied only to the specified area. Barrier rails, joints, and drainage facilities shall be adequately protected to prevent contamination by the treatment material. Contaminated items shall be repaired at the Contractor's expense. The prepared area shall be dry and the surface temperature shall be less than or equal to 38° C when the resin is applied. The rate of application of promoted/initiated resin shall be approximately 2.5 square meters per liter, \pm 0.1 square meter per liter The deck surfaces to be treated shall be flooded with resin, allowing penetration into the concrete and filling of all cracks. The treatment shall be applied within 5 minutes after complete mixing. A significant increase in viscosity shall be cause for rejection. Excess material shall be redistributed by squeegees or brooms within 10 minutes after application. After the resin has been applied, at least 20 minutes shall elapse before applying sand. The sand shall be commercial quality dry blast sand. Ninety-five percent of the sand shall pass the 2.36-mm sieve, and 95 percent shall be retained on the 850- μ m sieve. The sand shall be applied at a rate of one kilogram per square meter, ± 0.1 kilogram per square meter. Excess sand shall be removed from the deck surface by vacuuming or sweeping prior to opening to traffic. Traffic shall not be allowed on the treated area until (1) the treated surface is tack free (non-oily), (2) the sand cover adheres sufficiently to resist brushing by hand, and (3) the coefficient of friction of the deck is at least 0.35 when tested in conformance with the requirements in California Test 342. ## PRECAST CONCRETE GIRDERS Precast reinforced concrete girders shall conform to the provisions in Section 51, "Concrete Structures," of the Standard Specifications. #### PRECAST PRESTRESSED CONCRETE BRIDGE MEMBERS The top surface of the member shall be given a wood float finish. The anticipated deflection and method of accommodation of deflection of precast prestressed concrete girders, prior to the time the deck concrete is placed, shall be shown on the working drawings in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The deflection shall include the following: - A. Anticipated upward deflection caused by the prestressing forces. - B. Downward deflection caused by the dead load of the girder. - C. Deflection caused by the creep and shrinkage of the concrete for the time interval between the stressing of the girders and the planned placement of the deck. Such deflection shall be substantiated by calculations that consider the ages of the girder concrete at the time of stressing and the Contractor's planned placement of the deck. All deflection calculations shall be based on the concrete producer's estimate of the modulus of elasticity at the applicable concrete age. Adjustments to accommodate girder deflections, which occur prior to the time the deck concrete is placed, may include revisions in bearing seat elevations, but any such adjustments shall be limited by the following conditions: - A. The minimum permanent vertical clearance under the structure as shown on the plans shall not be reduced. - B. The profile grade and cross slope of the deck shall not be changed. - C. A minimum of 25 mm of deck slab concrete between the top of the precast girders and the deck slab reinforcement shall be maintained Girders with unanticipated girder deflection and which cannot comply with conditions A, B, and C will be rejected in conformance with the provisions in Section 6-1.04, "Defective Materials," of the Standard Specifications. Adjustments to accommodate girder deflections will not be considered a change in dimensions. Full compensation for increases in the cost of construction, including increases in the quantity of deck or bearing seat concrete, resulting from adjustments to accommodate girder deflections shall be considered as included in the contract price paid for the various items of work involved and no additional compensation will be allowed therefor. Temporary lateral bracing shall be provided for all girders located over the roadway, at Olympic Boulevard, Route 2 (Santa Monica Boulevard), Ohio Avenue, and Wilshire Boulevard. The bracing shall be installed at each end of each girder, except notched ends, prior to the release of the erection equipment from the girder and shall remain in place until 2 days after the concrete diaphragms have been placed. The bracing shall be adequate to prevent overturning of the girders prior to completion of the work and as a minimum shall be capable of resisting a lateral force of 720 Pa of girder side area applied laterally in either direction to the top of the girder. Girder erection shall not be started until the temporary lateral bracing proposed for use by the Contractor has been approved by the Engineer. Transverse connections for precast deck units shall conform to the following requirements: - A. After the deck units are in final position, the anchor bars shall be mortared in and the mortar between the ends and in the keyways between the members shall be placed. - B. No equipment or other loads shall be allowed on spans that have mortar between the deck units or in the anchor bar holes that has been in place less than 72 hours. - C. Deck shear connector rods, shown as tie rods on the plans, shall conform to the following: - 1. Bolts, rods,
nuts, and plate or beveled washers shall be structural steel; lock washers shall be ANSI heavy duty spring washers; and all metal shall be hot-dip galvanized after fabrication in conformance with the provisions in Section 75-1.05, "Galvanizing," of the Standard Specifications. - 2. Openings for transverse connections shall be accurately placed and shall conform to the details shown on the plans. - 3. Nuts shall be tightened to a snug fit after the deck units are positioned and prior to placing mortar in the keyways. - Nuts shall be tightened after the mortar in the keyways between the units has been in place at least 24 hours. Threads at the ends of bolts or rods shall be burred to prevent loosening of the nut. - 5. Where the ends of transverse rods will be exposed, the nuts and ends of rods shall be recessed so that all metal will be at least 25 mm inside the surface of the member. After the nuts have been tightened, the recess shall be filled with mortar. ## MEASUREMENT AND PAYMENT Measurement and payment for concrete in structures shall conform to the provisions in Section 51-1.22, "Measurement," and Section 51-1.23, "Payment," of the Standard Specifications and these special provisions. Full compensation for roughening existing concrete surfaces to a full amplitude of approximately 10 mm, where shown on the plans, shall be considered as included in the contract price paid per cubic meter for structural concrete, bridge and no separate payment will be made therefor. Full compensation for furnishing and installing treated timber shall be considered as included in the contract price paid per cubic meter for structural concrete, bridge and no additional compensation will be allowed therefor. Full compensation for deck crack treatment, including a program for public safety shall be considered as included in the contract price paid per cubic meter for structural concrete, bridge and no additional compensation will be allowed therefor. Full compensation for reconstruction of sidewalk sections, that are removed and replaced to facilitate abutment footing construction, shall be considered as included in the contract price paid per cubic meter for structural concrete bridge footing, and no separate payment will be made therefor. Full compensation for insert assemblies, including the attached bolt, shall be considered as included in the contract price paid for the various items of "Furnish Precast Girder" and no additional compensation will be allowed therefore. # 10-1.47 PRECAST PRESTRESSED CONCRETE SLABS Precast prestressed concrete slabs shall conform to the provisions in Section 51, "Concrete Structures," of the Standard Specifications and these special provisions. Forms for providing the circular voids in the slabs shall be watertight and shall be constructed of an approved material that will resist breakage or deformation during the placement of the concrete and will not materially increase the dead load of the span. The forms shall be properly supported and tied and shall remain in correct position at all times during the placement of the concrete. Except where otherwise shown on the plans, the top surface of the slab shall be given a coarse texture by brooming with a stiff bristled broom or by other suitable devices which will result in uniform transverse scoring, in advance of curing operations. The requirements of the seventh paragraph of Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications shall not apply. When slab spans with concrete deck are shown on the plans, the top surfaces shall be cleaned as specified for construction joints in Section 51-1.13, "Bonding," of the Standard Specifications. When slab spans with an asphalt concrete overlay are shown on the plans, the removal of laitance and curing compound from the top surfaces will not be required. After the concrete slabs are in final position, the anchor dowel holes shall be filled with mortar. Keyways shall be filled with Class 1 concrete produced from aggregate with a 25-mm, maximum grading. The penetration of the concrete shall be near the lower limit of the specified nominal penetration. Keyways shall be mortar-tight before placing concrete. The concrete shall be thoroughly consolidated. No equipment or other loads will be allowed on spans until at least 72 hours after the last mortar has been placed in the anchor dowel holes or the last concrete has been placed in the keyways. Deck shear connector rods, shown as tie rods on the plans, shall conform to the following: - A. Bolts, rods, nuts and plate or beveled washers shall be structural steel; lock washers shall be ANSI heavy duty spring washers; and all metal shall be hot-dip galvanized after fabrication in conformance with the provisions in Section 75-1.05, "Galvanizing," of the Standard Specifications. - B. Openings for transverse connections shall be accurately placed and shall conform to the details shown on the plans. - C. Nuts shall be tightened to a snug fit after the deck units are positioned and prior to placing mortar in keyways. - D. Nuts shall be tightened after the mortar in the keyways between the units has been in place at least 24 hours. Threads at the ends of bolts or rods shall be burred to prevent loosening of the nut. - E. Where the ends of transverse rods will be exposed, the nuts and ends of rods shall be recessed so that all metal will be at least 25 mm inside the surface of the member. After the nuts have been tightened, the recess shall be filled with mortar Precast prestressed concrete slabs will be measured by the square meter for furnish precast prestressed concrete slab of the various types shown on the plans and by the unit for erect precast prestressed concrete deck as shown on the plans. The pay quantities for furnishing the slabs will be computed on the basis of the width and length of individual slabs as shown on the plans. No measurement or payment will be made for any portion of the superstructure in excess of the width shown on the plans. The contract price paid per square meter for furnish precast prestressed concrete slab of the type shown on the plans shall include full compensation for furnishing all labor, materials (including reinforcing and prestressing steel), tools, equipment, and incidentals, and for doing all the work involved in constructing and furnishing precast prestressed concrete slabs at the site of the work, complete and ready for erection, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Full compensation for furnishing and placing mortar in holes and concrete in keyways shall be considered as included in the contract price paid per square meter for the type of precast prestressed concrete slab involved and no additional compensation will be allowed therefor. ## 10-1.48 STRUCTURE APPROACH SLABS (Type N) This work shall consist of constructing reinforced concrete approach slabs, structure approach drainage system, and treated permeable base at structure approaches in conformance with the details shown on the plans, the provisions in Section 51, "Concrete Structures," of the Standard Specifications, and these special provisions. ## **GENERAL** Attention is directed to "Engineering Fabrics" of these special provisions. ## STRUCTURE APPROACH DRAINAGE SYSTEM # **Geocomposite Drain** Geocomposite drain shall consist of a manufactured core not less than 6.35 mm thick nor more than 50 mm thick with one or both sides covered with a layer of filter fabric that will provide a drainage void. The drain shall produce a flow rate, through the drainage void, of at least 25 liters per minute per meter of width at a hydraulic gradient of 1.0 and a minimum externally applied pressure of 168 kPa.A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications shall be furnished for the geocomposite drain certifying that the drain produces the required flow rate and complies with these special provisions. The Certificate of Compliance shall be accompanied by a flow capability graph for the geocomposite drain showing flow rates and the externally applied pressures and hydraulic gradients. The flow capability graph shall be stamped with the verification of an independent testing laboratory. Filter fabric for the geocomposite drain shall conform to the provisions for fabric for underdrains in Section 88, "Engineering Fabrics," of the Standard Specifications. The manufactured core shall be either a preformed grid of embossed plastic, a mat of random shapes of plastic fibers, a drainage net consisting of a uniform pattern of polymeric strands forming 2 sets of continuous flow channels, or a system of plastic pillars and interconnections forming a semirigid mat. The core material and filter fabric shall be capable of maintaining the drainage void for the entire height of geocomposite drain. Filter fabric shall be integrally bonded to the side of the core material with the drainage void. Core material manufactured from impermeable plastic sheeting having nonconnecting corrugations shall be placed with the corrugations approximately perpendicular to the drainage collection system. The geocomposite drain shall be installed with the drainage void and the filter fabric facing the embankment. The fabric facing the embankment side shall overlap a minimum of 75 mm at all joints and wrap around the exterior edges a minimum of 75 mm beyond the exterior edge. If additional fabric is needed to provide overlap at joints and wrap-around at edges, the added fabric shall overlap the fabric on the geocomposite drain at least 150 mm and be attached thereto. Should the fabric on the geocomposite drain be torn or punctured, the damaged section shall be replaced completely or repaired by placing a piece of fabric that is large enough to cover the damaged area and provide a 150-mm overlap. ## Plastic Pipe Plastic
pipe shall conform to the provisions for pipe for edge drains and edge drain outlets in Section 68-3, "Edge Drains," of the Standard Specifications. ## **Drainage Pads** Concrete for use in drainage pads shall be minor concrete, except the concrete shall contain not less than 300 kilograms of cement per cubic meter. ## Treated Permeable Base At Bottom Of Geocomposite Drains Treated permeable base to be placed around the slotted plastic pipe at the bottom of geocomposite drains shall conform to the provisions in "Treated Permeable Base Under Approach Slabs." If asphalt treated permeable base is used, it shall be placed at a temperature of not less than 82°C nor more than 110°C. The filter fabric to be placed over the treated permeable base at the bottom of geocomposite drains shall conform to the provisions for filter fabric for edge drains in Section 88, "Engineering Fabrics," of the Standard Specifications. ## **ENGINEERING FABRICS** Filter fabric to be placed between the structure approach embankment material and the treated permeable base shall conform to the provisions for filter fabric for edge drains in Section 88, "Engineering Fabrics," of the Standard Specifications and these special provisions. The subgrade to receive the filter fabric, immediately prior to placing, shall conform to the compaction and elevation tolerance specified for the material involved. Filter fabric shall be aligned, handled, and placed in a wrinkle-free manner in conformance with the manufacturer's recommendations. Adjacent borders of the filter fabric shall be overlapped from 300 to 450 mm or stitched. The preceding roll shall overlap the following roll in the direction the material is being spread or shall be stitched. When the fabric is joined by stitching, it shall be stitched with yarn of a contrasting color. The size and composition of the yarn shall be as recommended by the fabric manufacturer. The number of stitches per 25 mm of seam shall be 5 to 7. Equipment or vehicles shall not be operated or driven directly on the filter fabric. #### TREATED PERMEABLE BASE UNDER APPROACH SLAB Treated permeable base under structure approach slabs shall consist of constructing either an asphalt treated permeable base or a cement treated permeable base in accordance with Section 29, "Treated Permeable Bases," of the Standard Specifications and these special provisions. The type of treatment, asphalt or cement, to be used shall be at the option of the Contractor. The Contractor shall notify the Engineer in writing, not less than 30 days prior to the start of placing the treated permeable base, which type of treated permeable base will be furnished. Once the Contractor has notified the Engineer of the selection, the type to be furnished shall not be changed without a prior written request to do so and approval thereof in writing by the Engineer. Asphalt treated permeable base shall be placed at a temperature of not less than 93°C nor more than 121°C. Material stored in excess of 2 hours shall not be used in the work. Asphalt treated permeable base material may be spread in one layer. The base material shall be compacted with a vibrating shoe type compactor or rolled with a roller weighing at least 1.3 tonnes but no more than 4.5 tonnes. Rolling shall begin as soon as the mixture has cooled sufficiently to support the weight of the rolling equipment without undue displacement. Cement treated permeable base material may be spread in one layer. The base material shall be compacted with either a vibrating shoe type compactor or with a steel-drum roller weighing at least 1.3 tonnes but no more than 4.5 tonnes. Compaction shall follow within one-half hour after the spreading operation and shall consist of 2 complete coverages of the treated material. #### APPROACH SLABS Concrete for use in approach slabs shall contain not less than 400 kilograms of cementitious material per cubic meter. Steel components of abutment ties including plates, nuts, washers, and rods shall conform to the provisions in Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications. The steel angle at the concrete barrier joint shall conform to the provision in Section 75-1.03, "Miscellaneous Metal," of the Standard Specifications. Structure approach slabs shall be cured for not less than 5 days prior to opening to public traffic, unless, at the option of the Contractor, the structure approach are constructed using concrete with a non-chloride Type C chemical admixture conforming to these special provisions. Portland cement for use in concrete using a non-chloride Type C chemical admixture shall be Type II Modified, Type II Prestress, or Type III. Type II Modified and Type III cement shall conform to the provisions in Section 90-2.01, "Cement," of the Standard Specifications. Type II Prestress cement shall conform to the requirements of Type II Modified cement, except the mortar containing the portland cement to be used and Ottawa sand, when tested in conformance with California Test 527, shall not contract in air more than 0.053-percent. The non-chloride Type C chemical admixture, approved by the Engineer, shall conform to the requirements in ASTM Designation: C 494 and Section 90-4, "Admixtures," of the Standard Specifications. The concrete with non-chloride Type C chemical admixture shall be prequalified prior to placement in conformance with the provisions for prequalification of concrete specified by compressive strength in Section 90-9.01, "General," of the Standard Specifications and the following: - A. Immediately after fabrication of the 5 test cylinders, the cylinders shall be stored in a temperature medium of 21 ± 1.5 °C until the cylinders are tested. - B. The 6-hour average strength of the 5 test cylinders shall not be less than 5.85 MPa. No more than 2 test cylinders shall have a strength of less than 5.5 MPa. Building paper shall be commercial quality No. 30 asphalt felt. Polyvinyl chloride (PVC) conduit used to encase the abutment tie rod shall be of commercial quality. The top surface of approach slabs shall be finished in conformance with the provisions in Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications. Edges of slabs shall be edger finished. Approach slabs shall be cured with pigmented curing compound (1) in conformance with the provisions for curing structures in Section 90-7.01B, "Curing Compound Method," of the Standard Specifications. Structure approach slabs constructed using concrete with a non-chloride Type C chemical admixture shall be cured for not less than 6 hours prior to opening to public traffic. The curing period shall be considered to begin at the start of discharge of the last truck load of concrete to be used in the slab. If the ambient temperature is below 18°C during the curing period for approach slabs using concrete with a non-chloride Type C chemical admixture, an insulating layer or blanket shall be used to cover the surface. The insulating layer or blanket shall have an R-value rating given in the table below. At the Contractor's option, a heating tent may be used in lieu of or in combination with the insulating layer or blanket. | Temperature range during curing period | R-value, minimum | |--|------------------| | 13°C to 18°C | 1 | | 7°C to 13°C | 2 | | 4°C to 7°C | 3 | #### JOINTS Hardboard and expanded polystyrene shall conform to the provisions in Section 51-1.12D, "Sheet Packing, Preformed Pads and Board Fillers," of the Standard Specifications. Type AL joint seals shall conform to the provisions in Section 51-1.12F, "Sealed Joints" of the Standard Specifications. The sealant may be mixed by hand-held power-driven agitators and placed by hand methods. The pourable seal between the steel angle and concrete barrier shall conform to the requirements for Type A and AL seals in Section 51-1.12F(3), "Materials and Installation," of the Standard Specifications. The sealant may be mixed by hand-held power-driven agitators and placed by hand methods. Immediately prior to placing the seal, the joint shall be thoroughly cleaned, including abrasive blast cleaning of the concrete surfaces, so that all foreign material and concrete spillage are removed from all joint surfaces. Joint surfaces shall be dry at the time the seal is placed. #### MEASUREMENT AND PAYMENT Structural concrete, approach slab (Type N) will be measured and paid for in conformance with the provisions in Section 51-1.22, "Measurement," and Section 51-1.23, "Payment," of the Standard Specifications and these special provisions. Full compensation for the structure approach drainage system including geocomposite drain, plastic pipe, drainage pads, treated permeable base, filter fabric, miscellaneous metal, pourable seals, bar reinforcement and miscellaneous bridge metal, waterstops, and sliding joints shall be considered as included in the contract price paid per cubic meter for structural concrete, approach slab of the type shown in the Engineer's Estimate, and no additional compensation will be allowed therefor. ## 10-1.49 STRUCTURE APPROACH SLABS (TYPE R) Structure approach slabs (Type R) shall consist of removing portions of existing structures, existing pavement and base including reinforced concrete approach slabs, and constructing new reinforced concrete approach slabs at structure approaches as shown on the plans and in conformance with these special provisions. ## **GENERAL** The thickness shown on the plans for structure approach slabs is the minimum thickness. The thickness will vary depending on the thickness of the pavement and base materials removed. Where pavement subsealing has been performed under existing approach slabs, the subsealing material shall be removed for its full depth. Where removal of cement treated base is required to construct the approach slab, the entire thickness of the cement treated base shall be removed. Voids between the new reinforced
structure approach slab and the base material remaining in place that are caused by removal of subsealing material or cement treated base shall be filled, at the option of the Contractor, with aggregate base (approach slab) or structure approach slab concrete. The Contractor shall establish a grade line for new approach slabs which shall provide a smooth profile grade. The profile grade will be subject to the approval of the Engineer. At locations where the removal of existing materials and approach slab construction is not required to be completed within the same work period, the requirements for "Temporary Roadway Structural Section" shall not apply. The Contractor shall have the option of: - A. Curing the approach slab concrete for not less than 5 days prior to opening to public traffic, or - B. Constructing the approach slab using concrete with a non-chloride Type C chemical admixture and curing the approach slab concrete at least 6 hours prior to opening to public traffic. ## REMOVING PORTIONS OF EXISTING STRUCTURES Attention is directed to "Existing Highway Facilities" of these special provisions. #### REMOVING EXISTING PAVEMENT AND BASE MATERIALS The outline of portland cement concrete to be removed shall be sawed full depth with a power-driven concrete saw. The outlines of excavations in asphalt concrete shall be cut on a neat line to a minimum depth of 75 mm with a power-driven concrete saw or wheel-type rock cutting excavator before any asphalt concrete material is removed. These excavations shall be permanently or temporarily backfilled to conform to the grade of the adjacent pavement prior to opening the lane to public traffic. Surplus excavated material may be used as temporary backfill material. Regardless of the type of equipment used to remove concrete within the sawed outline, the surface of the concrete to be removed shall not be impacted within 0.5-m of the pavement to remain in place. Removing existing pavement and base materials shall be performed without damage to the adjacent structure or pavement that is to remain in place. Damage to the structure or to the pavement that is to remain in place shall be repaired in conformance with the provisions in Section 7-1.11, "Preservation of Property," of the Standard Specifications. Materials removed shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. The base material remaining in-place, after removing the existing pavement and base materials to the required depth, shall be graded uniformly, watered, and compacted. The finished surface of the base material at any point shall not extend above the grade approved by the Engineer. Areas of the base material that are low as a result of over excavation shall be filled, at the Contractor's expense, with structure approach slab concrete at the time and in the same operation that the new concrete is placed. ## AGGREGATE BASE (APPROACH SLAB) The aggregate base (approach slab) for filling voids below the reinforced structure approach slab concrete shall be produced from commercial quality aggregates consisting of broken stone, crushed gravel or natural rough-surfaced gravel, and sand, or any combination thereof. The grading of the aggregate base shall conform to the 19-mm maximum grading specified in Section 26-1.02A, "Class 2 Aggregate Base," of the Standard Specifications. Aggregate base (approach slab) for filling voids below the reinforced structure approach slab concrete shall be spread and compacted by methods that will produce a well-compacted, uniform base, free from pockets of coarse or fine material. The aggregate base shall be watered and compacted to the grade approved by the Engineer. Where the required thickness of aggregate base is 200 mm or less, the base may be spread and compacted in one layer. Where the required thickness of aggregate base is more than 200 mm, the base shall be spread and compacted in 2 or more layers of approximately equal thickness. The maximum compacted thickness of any one layer shall not exceed 200 mm. The finished surface of the base material at any point shall not extend above the grade approved by the Engineer. Areas of the base material that are lower than the grade approved by the Engineer, shall be filled with structure approach slab concrete at the time and in the same operation that the new concrete is placed. ### STRUCTURE APPROACH SLAB Reinforced concrete approach slabs shall conform to the provisions for approach slabs in Section 51, "Concrete Structures," of the Standard Specifications and these special provisions. Concrete for use in approach slabs shall contain not less than 400 kg of cement per cubic meter. Steel components of abutment ties including plates, nuts, washers, and rods shall conform to the provisions in Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications. The steel angles at the concrete barrier joint shall conform to the provision in Section 75-1.03, "Miscellaneous Metal," of the Standard Specifications. Approach slab concrete that requires a minimum curing period of 6 hours shall be constructed using a non-chloride Type C chemical admixture. Mineral admixture will not be required in this concrete. Portland cement for use in concrete using a non-chloride Type C chemical admixture shall be Type II Modified, Type II Prestress, or Type III. Type II Modified and Type III cement shall conform to the provisions in Section 90-2.01, "Cement," of the Standard Specifications. Type II Prestress cement shall conform to the requirements of Type II Modified cement, except the mortar containing the portland cement to be used and Ottawa sand, when tested in conformance with California Test 527, shall not contract in air more than 0.053-percent. The non-chloride Type C chemical admixture shall be approved by the Engineer and shall conform to the requirements in ASTM Designation: C 494 and Section 90-4, "Admixtures," of the Standard Specifications. The concrete with non-chloride Type C chemical admixture shall be prequalified prior to placement in conformance with the provisions for prequalification of concrete specified by compressive strength in Section 90-9.01, "General," of the Standard Specifications and the following: - A. Immediately after fabrication of the 5 test cylinders, the cylinders shall be stored in a temperature medium of 21 ± 1.5 °C until the cylinders are tested. - B. The 6-hour average strength of the 5 test cylinders shall not be less than 5.85 MPa. No more than 2 test cylinders shall have a strength of less than 5.5 MPa. Building paper shall be commercial quality No. 30 asphalt felt. Polyvinyl chloride (PVC) conduit used to encase the abutment tie rod shall be commercial quality. Bar reinforcement or abutment tie rods in drilled holes shall be bonded in conformance with the provisions for drilling and bonding dowels in Section 83-2.02D(1), "General," of the Standard Specifications. If reinforcement is encountered during drilling before the specified depth is attained, the Engineer shall be notified. Unless the Engineer approves coring through the reinforcement, the hole will be rejected and a new hole, in which reinforcement is not encountered, shall be drilled adjacent to the rejected hole to the depth shown on the plans. The top surface of approach slabs shall be finished in conformance with the provisions in Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications. The finished top surface shall not vary more than 6 mm from the lower edge of a 3.6-m straightedge placed parallel with the centerline. Edges of slabs shall be edger finished. The surface of the approach slab will not be profiled and the Profile Index requirements shall not apply. Approach slabs shall be cured with pigmented curing compound (1) in conformance with the provisions for curing structures in Section 90-7.01B, "Curing Compound Method," of the Standard Specifications. The minimum curing period as specified herein shall be considered to begin at the start of discharge of the last truck load of concrete to be used in the slab. Fogging of the surface with water after the curing compound has been applied will not be required. Should the film of curing compound be damaged from any cause before the approach slab is opened to public traffic, the damaged portion shall be repaired immediately with additional compound, at the Contractor's expense. Damage to the curing compound after the approach slab is opened to public traffic shall not be repaired. If the ambient temperature is below 18°C during the curing period, an insulating layer or blanket shall cover the surface. The insulation layer or blanket shall have an R-value rating given in the table below. At the Contractor's option, a heating tent may be used in lieu of or in combination with the insulating layer or blanket: | Temperature range during curing period | R-value, minimum | |--|------------------| | 13°C to 18°C | 1 | | 7°C to 13°C | 2 | | 4°C to 7°C | 3 | Tests to determine the coefficient of friction of the final textured surface will be made only if the Engineer determines by visual inspection that the final texturing may not have produced a surface having the specified coefficient of friction. Tests to determine the coefficient of friction will be made after the approach slab is opened to public traffic, but not later than 5 days after concrete placement. The coefficient of friction will be measured by California Test 342. Portions of completed concrete surfaces that are found to have a coefficient of friction less than 0.35 shall be ground or grooved parallel to the center line in conformance with the provisions for bridge decks in Section 42, "Groove and Grind Pavement," of the Standard Specifications. #### **JOINTS** Hardboard and expanded polystyrene shall conform to the provisions in Section 51-1.12D,
"Sheet Packing, Preformed Pads and Board Fillers," of the Standard Specifications. Type AL joint seals shall conform to the provisions in Section 51-1.12F, "Sealed Joints," of the Standard Specifications. The sealant may be mixed by hand-held power-driven agitators and placed by hand methods. The pourable seal between the steel angle and concrete barrier shall conform to the requirements for Type A and AL seals in Section 51-1.12F(3), "Materials and Installation," of the Standard Specifications. The sealant may be mixed by hand-held power-driven agitators and placed by hand methods. Immediately prior to placing the seal, the joint shall be thoroughly cleaned, including abrasive blast cleaning of the concrete surfaces, so that all foreign material and concrete spillage are removed from all joint surfaces. Joint surfaces shall be dry at the time the seal is placed. # MEASUREMENT AND PAYMENT Structural concrete, approach slab (Type R) will be measured and paid for in conformance with the provisions in Section 51-1.22, "Measurement," and Section 51-1.23, "Payment," of the Standard Specifications and these special provisions. Full compensation for removing and disposing of portions of existing structures and pavement materials, and for furnishing and placing miscellaneous metal, Type AL joint seals, and pourable seals shall be considered as included in the contract price paid per cubic meter for structural concrete, approach slab (Type R) and no separate payment will be made therefor. The quantity of aggregate base (approach slab) to be paid for shall include the actual volume of aggregate base (approach slab) used to fill voids below the reinforced structure approach slab concrete, except for the volume of areas low as a result of over excavation. The volume to be paid for will be calculated on the basis of the constructed length, width, and thickness of the filled voids. Structure approach slab concrete used to fill voids lower than the approved grade of the base, except for the areas low as a result of over excavation by the Contractor, will be measured and paid for by the cubic meter as aggregate base (approach slab). The contract price paid per cubic meter for aggregate base (approach slab) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing aggregate base (approach slab), complete in place, including excavation and removing and disposing of base and subsealing materials, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Full compensation for drilling and bonding of bar reinforcement or abutment tie rods shall be considered as included in the contract price paid per cubic meter for structural concrete, approach slab (Type R) and no separate payment will be made therefor. ## 10-1.50 PAVING NOTCH EXTENSION This work shall consist of extending existing paving notches in conformance with the details shown on the plans and these special provisions. Concrete for the paving notch extensions shall conform to the provisions for structure approach slab concrete of these special provisions. At least 12 hours shall elapse between the time of placing concrete for the paving notch extension and placing concrete for the structure approach slab. Paving notch extensions shall be cured for not less than 5 days prior to opening to public traffic, unless, at the option of the Contractor, the paving notch extensions are constructed using a high-strength material conforming to these special provisions as follows. Concrete for paving notch extension shall be a high-strength material consisting of either magnesium phosphate concrete, modified high alumina based concrete, or portland cement based concrete. Magnesium phosphate concrete shall conform to the provisions for magnesium phosphate concrete in Section 83-2.02D(1), "General," of the Standard Specifications and these special provisions. Modified high alumina based concrete and portland cement based concrete shall be water activated and shall conform to the provisions for single component (water activated) magnesium phosphate concrete in Section 83-2.02D(1), "General," of the Standard Specifications and these special provisions. At least one hour shall elapse between the time of placing concrete for the paving notch extension and placing concrete for the structure approach slab. A clean uniform rounded aggregate filler may be used to extend the concrete. The moisture content of the aggregate shall not exceed 0.5-percent. Grading of the aggregate shall conform to the following: | Sieve Sizes | Percentage Passing | |-------------|--------------------| | 12.5-mm | 100 | | 1.18-mm | 0-5 | The amount of aggregate filler shall conform to the manufacturer's recommendation, but in no case shall the concrete strengths be less than that specified for magnesium phosphate concrete in Section 83-2.02D(1), "General," of the Standard Specifications. The components of dual component (with a prepackaged liquid activator) magnesium phosphate shall be combined by mixing complete units supplied by the manufacturer. Portions of units shall not be used. Water shall not be added to dual component magnesium phosphate. Magnesium phosphate concrete shall not be mixed in containers or worked with tools containing zinc, cadmium, aluminum or copper. Modified high alumina based concrete shall not be mixed in containers or worked with tools containing aluminum. Concrete shall not be retempered. Finishing tools that are cleaned with water shall be thoroughly dried before working the concrete. When placing concrete on slopes exceeding 5 percent, the Engineer may require the Contractor to provide a flow controlled modified material. Modified high alumina based concrete and portland cement based concrete shall be cured in conformance with the provisions in Section 90-7.01B, "Curing Compound Method," of the Standard Specifications. Magnesium phosphate concrete shall not be cured. The surface temperature of the areas to receive the concrete shall be 5°C or above when the concrete is placed. The contact surface to receive the magnesium phosphate concrete shall be dry. The contact surfaces to receive the modified high alumina concrete or portland cement based concrete may be damp but not saturated. The construction joint between the paving notch extension and the existing abutment shall conform to the provisions for horizontal construction joints in Section 51-1.13, "Bonding," of the Standard Specifications. Concrete shall be placed in the spalled portions of the existing paving notch concurrently with the concrete for the paving notch extension. Attention is directed to "Reinforcement" of these special provisions. Structure excavation and backfill shall conform to the provisions in Section 19-3, "Structure Excavation and Backfill," of the Standard Specifications, except for payment. Drilling of holes and bonding of reinforcing steel dowels shall conform to the provisions for drilling and bonding dowels in Section 83-2.02D(1), "General," of the Standard Specifications. If reinforcement is encountered during drilling before the specified depth is attained, the Engineer shall be notified. Unless the Engineer approves coring through the reinforcement, the hole will be rejected and a new hole, in which reinforcement is not encountered, shall be drilled adjacent to the rejected hole to the depth shown on the plans. The quantity of concrete for paving notch extension will be measured by the cubic meter as determined in conformance with the dimensions shown on the plans or other dimensions that may be ordered in writing by the Engineer. The contract price paid per cubic meter for paving notch extension shall include full compensation for furnishing all labor, materials (including concrete for the paving notch spalled areas), tools, equipment, and incidentals, and for doing all the work involved in constructing the paving notch extension, complete in place, including structure excavation and backfill, reinforcement, and drilling and bonding dowels, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. #### **10-1.51 SOUND WALL** #### DESCRIPTION This work shall consist of constructing sound walls of masonry block. Sound walls shall be supported on concrete barriers and retaining walls, as shown on the plans. #### SOUND WALL (MASONRY BLOCK) Sound wall (masonry block), consisting of a reinforced hollow unit masonry block stem, shall be constructed in conformance with the provisions in Sections 19, "Earthwork," 52, "Reinforcement," and 90, "Portland Cement Concrete," of the Standard Specifications and these special provisions. Sound wall masonry unit stems shall be constructed with joints of portland cement mortar. Wall stems shall be constructed with hand laid block. Wall stems shall not be constructed with preassembled panels. Concrete for pilasters, sound wall footings, pile caps, and grade beams, if required, shall be minor concrete. Concrete masonry units shall be hollow, load bearing, conforming to the requirements in ASTM Designation: C 90, lightweight or medium weight classification, Type II. The mass of each unit shall not exceed 17.2 kg. Standard or open end units may be used. Open end units, if used, shall not reduce the spacing of the bar reinforcement as shown on the plans. The masonry units shall be nominal size and texture and of uniform color. The color shall be tan, selected from the manufacturer's standards. When high strength concrete masonry units with fm=17.2 MPa are shown on the plans, the high strength masonry units shall have a minimum compressive strength of 26 MPa based on net area. Each high strength concrete masonry unit shall be identified with a groove embedded in an interior corner. The groove shall extend from a mortar surface for a length
of about 50 mm and shall have a depth of about 5 mm. Expansion joint filler shall conform to the requirements in ASTM Designation: D 1751 or ASTM Designation: D 2000 2AA-805. Portland cement mortar shall be colored to match the units. Coloring shall be chemically inert, fade resistant mineral oxide or synthetic type. Portland cement for wall stems shall conform to the provisions in Section 90-2.01, "Portland Cement," of the Standard Specifications. Hydrated lime shall conform to the requirements in ASTM Designation: C 207, Type S. Mortar sand shall be commercial quality. Mortar for laying masonry units shall consist, by volume, of one part portland cement, zero to 0.5 part hydrated lime, and 2.25 to 3 parts mortar sand. Sufficient water shall be added to make a workable mortar. Each batch of mortar shall be accurately measured and thoroughly mixed. Mortar shall be freshly mixed as required. Mortar shall not be retempered more than one hour after mixing. Prepackaged mortar materials and mortar containing admixtures may be used when approved in writing by the Engineer, provided the mortar shall not contain more than 0.05-percent soluble chlorides when tested in conformance with California Test 422 nor more than 0.25-percent soluble sulfates, as SO₄, when tested in conformance with California Test 417. Before laying masonry units using prepackaged mortar materials or mortar containing admixtures, the Contractor shall submit to the Engineer the proposed sources of the materials together with test data from an independent testing laboratory for mortar tested in conformance with California Test 551. The test data shall be from specimens having a moist cure, except, the sample shall not be immersed in lime water. The average 28-day compressive strength of the mortar shall be not less than 17.2 MPa. Aggregate for grout used to fill masonry units shall consist of fine aggregate and coarse aggregate conforming to the provisions in Section 90-2.02, "Aggregates," of the Standard Specifications. At least 20 percent of the aggregate shall be coarse aggregate. The Contractor shall determine the grading except that 100 percent of the combined grading shall pass the 12.5-mm sieve. At the option of the Contractor, grout for filling masonry units may be proportioned either by volume or mass. Grout shall contain only enough water to cause the grout to flow and fill the voids without segregation. The maximum amount of free water shall not exceed 0.7 times the weight of the cement for regular strength masonry. The maximum amount of free water shall not exceed 0.6 times the mass of the cement for high strength masonry. Grout proportioned by volume for regular strength masonry shall consist of at least one part portland cement and 4.5 parts aggregate. Grout proportioned by volume for high strength masonry shall consist of at least one part portland cement and 3.5 parts aggregate. Aggregate volumes shall be based on a loose, air-dry condition. Grout proportioned by mass for regular strength masonry shall contain not less than 325 kilograms of portland cement per cubic meter. Grout proportioned by mass for high strength masonry shall contain not less than 400 kilograms of portland cement per cubic meter. Reinforced concrete masonry unit wall stems shall be constructed with portland cement mortar joints in conformance with the following: - A. Concrete masonry unit construction shall be true and plumb in the lateral direction and shall conform to the grade shown on the plans in the longitudinal direction. Bond beam units or recesses for horizontal reinforcement shall be provided. - B. Mortar joints shall be approximately 10 mm wide. Walls and cross webs forming cells to be filled with grout shall be full bedded in mortar to prevent leakage of grout. All head and bed joints shall be solidly filled with mortar for a distance in from the face of the wall or unit not less than the thickness of the longitudinal face shells. Head joints shall be shoved tight. - C. Mortared joints around cells to be filled shall be placed so as to preserve the unobstructed vertical continuity of the grout filling. Any overhanging mortar or other obstruction or debris shall be removed from the inside of such cells. - D. Reinforcement shall be securely held in position at top and bottom with either wire ties or spacing devices and at intervals not exceeding 192 bar diameters before placing any grout. Wire shall be 16-gage (1.57 mm) or heavier. Wooden, aluminum, or plastic spacing devices shall not be used. - E. Splices in vertical reinforcement shall be made only at the locations shown on the plans. - F. Only those cells containing reinforcement shall be filled solidly with grout. All grout in the cells shall be consolidated at the time of placement by vibrating, and reconsolidated after excess moisture has been absorbed, but before plasticity is lost. Grout shall not be sliced with a trowel. - G. Walls shall be constructed in 1.2-m maximum height lifts. Grouting of each lift shall be completed before beginning masonry unit construction for the next lift. The top course of each lift shall consist of a bond beam. - H. A construction joint shall be constructed at the top of the top course to permit placement of the mortar cap. The mix design for the mortar cap shall be as approved by the Engineer. - I. Construction joints shall be made when the placing of grout, in grout filled cells, is stopped for more than one hour. The construction joint shall be approximately 12 mm below the top of the last course filled with grout. - J. Bond beams shall be continuous. The top of unfilled cells under horizontal bond beams shall be covered with metal or plastic lath. - K. When fresh masonry joins masonry that is partially or totally set, the contact surface shall be cleaned, roughened, and lightly wetted. - L. Surfaces of concrete on which the masonry walls are to be constructed shall be roughened and cleaned, exposing the aggregate, and shall be flushed with water and allowed to dry to a surface dry condition immediately before laying the masonry units. - M. Where cutting of masonry units is necessary, all cuts shall be made with a masonry saw to neat and true lines. Masonry units with cracking or chipping of the finished exposed surfaces will not be acceptable. - N. Masonry shall be protected in the same manner specified for concrete structures in Section 90-8, "Protecting Concrete," of the Standard Specifications and these special provisions. - O. During erection, all cells shall be kept dry in inclement weather by covering partially completed walls. The covering shall be waterproof fabric, plastic or paper sheeting, or other approved material. Wooden boards and planks shall not be used as covering materials. The covering shall extend down each side of masonry walls approximately 0.6-m. - P. Splashes, stains or spots on the exposed faces of the wall shall be removed. Cover plate and anchorage devices at electrolier locations shall conform to Section 75, "Miscellaneous Metal," of the Standard Specifications and these special provisions. Cover plates shall be galvanized and their front face shall be painted as provided herein for exposed galvanized surfaces. Exposed galvanized surfaces shall be prepared and painted in conformance with the provisions in Section 59-3, "Painting Galvanized Surfaces," of the Standard Specifications and these special provisions. Exposed areas of galvanized surfaces shall receive a minimum of 2 finish coats of paint conforming to either the requirements for White Tintable Finish Paint-Waterborne, Formula PWB-164B, or an exterior grade latex paint formulated for use on properly prepared surfaces and conforming to the following: A. | Property | Value | ASTM Designation | |---|--------------------|---------------------| | Pigment content, percent | 24 max. | D 3723 | | Nonvolatile content, mass percent | 49 min. | D 2369 | | Consistency, KU | 75 min. to 90 max. | D 562 | | Fineness of grind, Hegman | less than 25-μm | D 1210 | | Drying time at 25°C, 50% RH, 100-µm wet film: | | D 1640 | | Set to touch, minutes | 30 max. | | | Dry through, hours | 1 max. | | | Adhesion | 4A | D 3359, Procedure A | - B. No visible color change in the finish coats shall occur when tested in conformance with the requirements in ASTM Designation: G 53 using FS 40 UV-B bulbs for a minimum of 38 cycles. The cycle shall be 4 hours of ultraviolet (UV) exposure at 60°C and 4 hours of condensate exposure at 40°C. - C. The vehicle shall be an acrylic or modified acrylic copolymer with a minimum of necessary additives. The total dry film thickness of all applications of the first finish coat shall be not less than 50 µm. Except as approved by the Engineer, a minimum drying time of 12 hours shall be allowed between finish coats. The second finish coat color shall match the color of the masonry block. The total dry film thickness of all applications of the second finish coat shall be not less than $50 \mu m$. The 2 finish coats shall be applied in 2 or more applications to a total dry film thickness of not less than 100 μ m nor more than 200 μ m. #### **ACCESS GATES** Access gates shall conform to the details shown on the plans and these special provisions. Timber members shall be tongue and groove Douglas fir sub-flooring free of knotholes. The location of knots of adjoining boards shall be staggered. The construction of the gate shall be with the tongue placed in the up position. The tongue of the top board and the groove of the bottom board shall be removed. Timber members, steel frames, channels, anchorage devices, mounting hardware, gate rollers, corrugated steel pipe, nylon washers, and neoprene tubing shall be of commercial quality. The 25-mm round ladder rungs with non-skid surface shall consist of No. 25 deformed, diamond pattern, bar reinforcing steel of commercial quality. Gate rollers shall be rigid casters with
self-lubricating bearings and hard rubber wheels. All metal parts and hardware shall be hot-dip galvanized. Timber surfaces of the access gates shall be primed and then stained with 2 coats of stain to match the adjacent sound wall. Primer and stain shall be of the top grade primer and stain from an established manufacturer. An established manufacturer is one who has manufactured industrial paints and stains to meet custom specifications for at least 10 years. Where the back side of the masonry wall is to be split faced, or rough surface blocks, the bond beam above the gate opening upon which the upper gate guide is to be mounted shall have smooth sided blocks. Material from excavation may be used for backfill outside of the pipe landings. Aggregate filling inside the pipe landings shall be a coarse concrete aggregate of commercial quality. Compacting of the aggregate will not be required. #### MEASUREMENT AND PAYMENT Sound walls of the types designated in the Engineer's Estimate will be measured by the square meter of the area of wall projected on a vertical plane between the elevation lines shown on the plans and length of wall (including back up wall for access openings, and access gates). The contract price paid per square meter for sound wall of the types designated in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the sound wall, complete in place, including all anchorages, access gates, ladders, corrugated steel pipe landings, reinforcement, and galvanized cover plates and their painting as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Sound wall supports will be measured and paid for as separate items of work. Sound wall footings, pile caps, and grade beams will be measured and paid for as minor concrete (sound wall). The contract price paid per cubic meter for minor concrete (sound wall) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the footings, pile caps, grade beams, and pilasters complete in place, including excavation, backfill, and reinforcement, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ## 10-1.52 DRILL AND BOND DOWEL (EPOXY CARTRIDGE) Drilling and bonding dowels with epoxy cartridges shall conform to the details shown on the plans and these special provisions. Reinforcing steel dowels shall conform to the provisions in "Reinforcement" of these special provisions. Threaded rods used as dowels shall conform to the provisions in Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications. The threaded rods shall be installed in conformance with these requirements for dowels specified herein. The Contractor shall select an epoxy cartridge system which has passed the testing requirements of the International Conference of Building Officials (ICBO) document - AC58 and additional test requirements as specified in the Caltrans Augmentation/Revisions to ICBO AC58. Testing shall be performed by an independent testing facility and the results will be reviewed and approved by the Transportation Laboratory. The Caltrans Augmentation/Revisions to ICBO AC58 document may be obtained by contacting the Transportation Laboratory, telephone: (916) 227-7000. The epoxy cartridge system used shall be appropriate for the ambient concrete temperature and installation conditions at the time of installation in conformance with the manufacturer's specifications. Epoxy cartridges shall be accompanied by a Certificate of Compliance as provided in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The certificate shall state that the material complies in all respects to the requirements of ICBO AC58 and Caltrans Augmentation/Revisions to ICBO AC58. Each epoxy cartridge shall be clearly and permanently marked with the manufacturer's name, model number of the epoxy cartridge system, manufacturing date, and lot number. Each carton of epoxy cartridges shall contain the manufacturer's recommended installation procedures, minimum cure time, and such warning or precautions concerning the contents as may be required by State or Federal Laws and Regulations. The holes shall be drilled by methods that will not shatter or damage the concrete adjacent to the holes. If reinforcement is encountered during drilling, before the specified depth is attained, the Engineer shall be notified. Unless the Engineer approves, in writing, coring through the reinforcement, the hole will be rejected and a new hole, in which reinforcement is not encountered, shall be drilled adjacent to the rejected hole to the depth recommended by the manufacturer. The drilled holes shall be cleaned in conformance with the manufacturer's instructions and shall be dry at the time of placing the epoxy cartridge bonding material and the steel dowels. The bonding material shall be a 2-component epoxy system contained in a cartridge having 2 separate chambers and shall be inserted into the hole using a dispensing gun and replaceable mixing nozzle approved by the manufacturer. Unless otherwise specified, the depth of hole and the installation procedure shall be as recommended by the manufacturer. A copy of the manufacturer's recommended installation procedure shall be provided to the Engineer at least 2 days prior to the start of work. Immediately after inserting the dowels into the epoxy, the dowels shall be supported as necessary to prevent movement during curing and shall remain undisturbed until the epoxy has cured a minimum time as specified by the manufacturer. Dowels that are improperly bonded, as determined by the Engineer, will be rejected. Adjacent new holes shall be drilled, and new dowels shall be placed and securely bonded to the concrete. All work necessary to correct improperly bonded dowels shall be performed at the Contractor's expense. Unless otherwise provided, dowels to be bonded into drilled holes will be measured and paid for as bar reinforcing steel (bridge). Unless otherwise provided, drilling and bonding dowels with epoxy cartridges will be measured and paid for by the unit as drill and bond dowel (epoxy cartridge). The number of units to be paid for will be determined from actual count of the completed units in place. The contract unit price paid for drill and bond dowel (epoxy cartridge) shall include full compensation for furnishing all labor, materials (except dowels), tools, equipment, and incidentals, and for doing all the work involved in drilling the holes and bonding dowels with epoxy cartridges, including coring through reinforcement when approved by the Engineer, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. # 10-1.53 DRILL AND BOND DOWELS Drilling and bonding dowels shall conform to the details shown on the plans, the provisions in Section 83-2.02D(1), "General," of the Standard Specifications, and these special provisions. Dowels shall conform to the provisions for bar reinforcement in "Reinforcement" of these special provisions. If reinforcement is encountered during drilling before the specified depth is attained, the Engineer shall be notified. Unless the Engineer approves coring through the reinforcement, the hole will be rejected and a new hole, in which reinforcement is not encountered, shall be drilled adjacent to the rejected hole to the depth shown on the plans. Unless otherwise provided, dowels to be bonded into drilled holes will be paid for as bar reinforcing steel (bridge). Unless otherwise provided, drilling and bonding dowels will be measured and paid for by the meter determined by the number and the required depth of holes as shown on the plans or as ordered by the Engineer. The contract price paid per meter for drill and bond dowel shall include full compensation for furnishing all labor, materials (except reinforcing steel dowels), tools, equipment, and incidentals, and for doing all the work involved in drilling the holes, including coring through reinforcement when approved by the Engineer, and bonding the dowels, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. #### 10-1.54 POLYESTER CONCRETE EXPANSION DAM Polyester concrete expansion dams shall consist of preparing and cleaning contact surfaces and joints, placing bar reinforcing steel and dowels, removing asphaltic concrete surfacing, applying prime coat, and placing polyester concrete at bridge joints in accordance with the details shown on the plans and the requirements of these special provisions. The asphalt concrete overlay shall be placed and then saw cut and removed at expansion dams. Reinforcing steel shall conform to the provisions in Section 52, "Reinforcement," of the Standard Specifications. Where dowels are to be bonded in holes drilled into existing concrete, the holes shall be drilled 6 mm larger than the specified dowel diameter by methods that will not shatter or damage the concrete adjacent to the hole. The drilled holes shall be clean and dry at the time of placing the bonding material and the steel dowels. The bonding material and the steel dowel shall completely fill the drilled hole. The bonding material shall be the same resin used for the prime coat. Polyester concrete shall consist of polyester resin binder and dry graded concrete aggregate. The resin shall be an unsaturated isophthalic polyester-styrene copolymer conforming to the following: | POLYESTER RESIN BINDER | | | |--|----------------------------------|---------------------| |
PROPERTY | REQUIREMENT | TEST METHOD | | * Viscosity | 0.075 to 0.20 Pa·s | ASTM D 2196 | | | (RVT, No. 1 | | | | Spindle, 20 RPM at | | | | 25°C) | | | * Specific Gravity | 1.05 to 1.10 at 25°C | ASTM D 1475 | | Elongation | 35 percent, | ASTM D 638 | | | minimum Type I at | | | | 11.5 mm/min. | | | | Thickness= | | | | 6.5±1 mm | | | | Sample | ASTM D 618 | | | Conditioning: | | | | 18/25/50 + 5/70 | | | Tensile Strength | 17.5 MPa, | ASTM D 638 | | | minimum Type I | | | | at11.5 mm/min. | | | | Thickness= | | | | 6.5±1 mm | | | | Sample | ASTM D 618 | | | Conditioning: | | | # G | 18/25/50 + 5/70 | 1 CTT 1 D 22 (0 | | * Styrene Content | 40 percent to 50 | ASTM D 2369 | | G'1 G 1 | percent (by weight) | | | Silane Coupler | 1.0 percent, | | | | minimum (by | | | | weight of polyester | | | DCC Cotumpts 1 | styrene resin) | California Tast 551 | | PCC Saturated | 3.5 MPa, minimum at 24 hours and | California Test 551 | | Surface-Dry Bond | at 24 nours and 21±1°C | | | 3 | | | | * Test shall be performed prior to adding initiator. | | | The silane coupler shall be an organosilane ester, gammamethacryloxypropyltrimethoxysilane. The promoter shall be compatible with suitable methyl ethyl ketone peroxide (MEKP) and cumene hydroperoxide (CHP) initiators. Aggregate for polyester concrete shall conform to the provisions in Section 90-2.02, "Aggregates," of the Standard Specifications and either of the following combined aggregate gradings: | COMBINED AGGREGATE | | | |--------------------|-----------------|---------------| | Sieve Size | 9.5-mm Max. | 4.75-mm Sieve | | | Percent Passing | Max. Percent | | | | Passing | | 12.5-mm | 100 | 100 | | 9.5-mm | 83 - 100 | 100 | | 4.75-mm | 65 - 82 | 62 - 85 | | 2.36-mm | 45 - 64 | 45 - 67 | | 1.18-mm | 27 - 48 | 29 - 50 | | 600-μm | 12 - 30 | 16 - 36 | | 300-μm | 6 - 17 | 5 - 20 | | 150-μm | 0 - 7 | 0 - 7 | | 75-µm | 0 - 3 | 0 - 3 | Aggregate retained on the 2.36-mm sieve shall have a maximum of 45 percent crushed particles when tested in accordance with California Test 205. Fine aggregate shall consist of natural sand only. Aggregate absorption shall not exceed one percent when tested in accordance with California Test 206 and 207. At the time of mixing with the resin, the moisture content of the aggregate, as determined by California Test 226, shall not exceed one half of the aggregate absorption. Prior to placing polyester concrete, a prime coat shall be applied. The prime coat shall be either a wax free high molecular weight methacrylate resin or a 100 percent reactive wax-free unsaturated diaromatic oxide glycol fumerate modified polyester resin. The HMWM resin shall conform to the following: | High Molecular Weight Methacrylate (HMWM) Resin | | | | |--|-------------------------|---------------------|--| | PROPERTY | REQUIREMENT TEST METHOD | | | | * Viscosity | 0.025 Pa·s, | ASTM D 2196 | | | | maximum, | | | | | (Brookfield RVT | | | | | with UL adaptor, 50 | | | | | RPM at 25°C) | | | | * Specific Gravity | 0.90, minimum, at | ASTM D 1475 | | | | 25°C | | | | * Flash Point | 82°C, minimum | ASTM D 3278 | | | * Vapor Pressure | 1.0 mm Hg, | ASTM D 323 | | | maximum, at 25°C | | | | | Tack-free time | 400 minutes, | California Test 551 | | | | maximum at 25°C | | | | PCC Saturated | 3.5 MPa, minimum | California Test 551 | | | Surface-Dry Bond | at 24 hours and | | | | Strength | 21±1°C | | | | * Test shall be performed prior to adding initiator. | | | | The promoter/initiator system for the methacrylate resin shall consist of a metal drier and peroxide. If supplied separately from the resin, the metal drier shall at no time be mixed directly with the peroxide. The containers shall not be stored in a manner that will allow leakage or spillage from one material to contact the containers or material of the other. The fumerate modified polyester resin shall have the following unfilled resin characteristics: | Unfilled Resin Characteristics | | | | |--|---------------------------------|-------------------|--| | PROPERTY | REQUIREMENT TEST METHOD | | | | * Viscosity | 0.10 to 0.20 Pa·s | ASTM D 2196 | | | | (RVT, No. 1 | | | | | Spindle, 20 RPM at | | | | | 25°C) | | | | * Specific Gravity | 1.00 to 1.03 at 25°C | ASTM D 1475 | | | Elongation | 12 percent | ASTM D 638 | | | | maximum Type I at | | | | | 11.5 mm/min. | | | | | Thickness= | | | | | 6.5±1 mm | | | | | Sample | ASTM D 618 | | | | Conditioning: | | | | | 18/25/50 + 5/70 | | | | Tensile Strength | 34.5 MPa, | ASTM D 638 | | | | minimum Type I at | | | | | 11.5 mm/min. | | | | | Thickness= | | | | | 6.5±1 mm | | | | | Sample | ASTM D 618 | | | | Conditioning: | | | | * 0. 0 | 18/25/50 + 5/70 | A GEN (D. 22 () | | | * Styrene Content | 45 percent to 55 | ASTM D 2369 | | | C'1 C 1 | percent (by weight) | | | | Silane Coupler | 2.0 percent, | | | | | minimum (by | | | | | weight of polyester | | | | Haat Distantian | styrene resin) | A CTM D (40 | | | Heat Distortion | 104°C to 115.5°C | ASTM D 648 | | | Barcol Hardness | at 1.82 MPa
30 to 40 at 25°C | ASTM D 2583 | | | | | | | | * Test shall be performed prior to adding initiator. | | | | The silane coupler shall be an organosilane ester, gammamethacryloxypropyltrimethoxysilane. The promoter shall be compatible with suitable methyl ethyl ketone peroxide (MEKP) and cumene hydroperoxide (CHP) initiators. A Material Safety Data Sheet shall be furnished prior to use for each shipment of polyester resin binder and prime coat. The Contractor shall allow 14 days for sampling and testing of the polyester resin binder and high molecular weight methacrylate resin prior to proposed use. Cleaning the contact surfaces and joints shall be done by abrasive blasting before placing prime coat or installing joint seals. After abrasive blast cleaning, the area to receive the prime coat shall be dry and blown clean by compressed air to remove accumulated dust and any other loose material. The surface temperature shall be between 10°C and 38°C when the prime coat is applied. The prime coat shall be uniformly applied to completely cover the surface to receive the polyester concrete. The rate of spread shall be approximately 2.5 square meter per liter. The catalyst system shall be added to the HMWM resin as specified by the resin supplier. Under field conditions, the HMWM resin shall have a gel time between 30 and 90 minutes when tested in accordance with California Test 434 in a 120 ml volume. The prime coat shall be allowed to cure a minimum of 15 minutes before placing polyester concrete. If the prime coat becomes contaminated, the contaminated area shall be cleaned by abrasive blasting and reprimed at the Contractor's expense. Polyester concrete shall be mixed in mechanically operated mixers. The polyester resin binder in the concrete shall be approximately 12 percent by weight of the dry aggregate, the exact percentage will be determined by the Engineer. The amount of initiator used in polyester concrete shall be sufficient to produce initial set time between 30 and 120 minutes during placement. The initial set time will be determined by using an initial-setting time Gillmore needle in conformance with the requirements of ASTM Designation: C 266. Accelerators or inhibitors may be required to achieve proper set times and shall be used as recommended by the resin supplier. The resin binder shall be initiated and thoroughly blended just prior to mixing with aggregate. The polyester concrete shall be mixed a minimum of 2 minutes prior to placing. Polyester concrete shall be placed prior to gelling and within 15 minutes following addition of initiator, whichever occurs first. Polyester concrete that is not placed within this time shall be discarded. The surface temperature of the area to receive polyester concrete shall be the same as specified above for the prime coat. The polyester concrete shall be thoroughly tamped into place and surfaces shall be struck off to the required grade. Exposed surfaces shall receive a non-skid finish provided by sprinkling sand onto the top surface of the polyester concrete prior to gelling. The sand shall be commercial quality blast sand conforming to the quality and dryness requirements for polyester concrete aggregate as specified in these special provisions. Ninety-five percent of the sand shall pass the 2.36-mm sieve, and 95 percent shall be retained on the 850-µm sieve. The polyester concrete dam shall be protected from moisture, traffic, and equipment for a minimum of 4 hours following final finishing. The protection time shall be extended if additional time is required to avoid damaging the polyester concrete, as determined by the Engineer. Polyester concrete for expansion dams will be measured by the cubic meter as expansion dams in accordance with the nominal dimensions shown on the plans. No deduction will be made for volume occupied by bar reinforcing steel. The contract price paid per cubic meter for expansion dams shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in constructing expansion dams, complete in place, including polyester concrete, removing and disposing of asphalt concrete, preparing and cleaning contact surfaces, furnishing and placing bar reinforcing steel and dowels, furnishing and applying prime coat, and placing expansion dams, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. #### 10-1.55 SEALING JOINTS Joints in concrete bridge decks and joints between concrete structures and concrete approach slabs shall be sealed in conformance with the details shown on the plans, the provisions in Section 51, "Concrete Structures," of the Standard Specifications, and these special provisions. Where polyurethane seals are shown on the plans, a silicone sealant
conforming to the provisions in Section 51–1.12F, "Sealed Joints," of the Standard Specifications may be used. When ordered by the Engineer, a joint seal larger than called for by the Movement Rating shown on the plans shall be furnished and installed. Payment to the Contractor for furnishing the larger seal and for saw cutting the increment of additional depth of groove required will be determined as provided in Section 4-1.03, "Changes," of the Standard Specifications. #### 10-1.56 REFINISHING BRIDGE DECKS Surfaces of bridge decks that are exposed when existing railings, curbs, or sidewalks are removed shall be prepared and refinished flush with the adjoining deck surface with portland cement concrete or rapid setting concrete, at the option of the Contractor, in conformance with these special provisions. The exact area to be refinished will be designated by the Engineer. Attention is directed to "Public Safety" of these special provisions. When work is being performed within 3 m of a traffic lane or performed over traffic, dust and residue from deck preparation and cleaning shall be removed or controlled by vacuum, water spray, or shield methods approved by the Engineer. Concrete shall be removed without damage to concrete that is to remain in place. Damage to concrete which is to remain in place shall be repaired to a condition satisfactory to the Engineer. The concrete in deck areas to be refinished shall be removed to a depth of approximately 20 mm below the adjoining deck surface. A 20 mm deep saw cut shall be made along the perimeter of areas prior to removing the concrete. Existing areas of the deck more than 20 mm below the adjoining deck surface shall be prepared by removing not less than 6 mm of surface material to expose sound aggregates. Concrete removal may be done by abrasive blast cutting, abrasive sawing, impact tool cutting, machine rotary abrading, or by other methods, all to be approved by the Engineer. Cut areas shall be cleaned free of dust and all other loose and deleterious materials by brooming, abrasive blast cleaning, and high pressure air jets. Equipment shall be fitted with suitable traps, filters, drip pans or other devices to prevent oil or other deleterious matter from being deposited on the deck. Existing reinforcement, exposed during the removal of concrete, that is to remain in place shall be protected from damage. Steel dowels shall be cut off flush with the existing concrete or cut off at the bottom of concrete removal, whichever is lower. Patching around or over dowels in sound concrete will not be required. Existing voids around dowels, where refinishing is not required, shall be chipped back to sound concrete, the dowels removed 25 mm below the finished surface, and the hole filled with rapid setting concrete. Refinishing isolated high areas in the existing deck may be accomplished by cutting the concrete down to be flush with the plane of the adjoining deck surface by abrasive sawing, grinding, impact tool cutting, or by other methods to be approved by the Engineer. When grinding is performed to bring the deck concrete flush with the adjoining deck surface, the resulting surface shall have a coefficient of friction of not less than 0.35 as determined by California Test 342. #### PORTLAND CEMENT CONCRETE An epoxy adhesive shall be applied to the surfaces to be refinished before placing the portland cement concrete. Immediately prior to applying the adhesive, the area to receive the adhesive shall be cleaned by abrasive blasting and blown clean by compressed air to remove dust and any other loose material. The area to be covered shall be surface dry and the ambient temperature shall be 10°C or above when the adhesive is applied. The epoxy adhesive shall be furnished and applied in conformance with the provisions in Section 95-1, "General," and Section 95-2.03, "Epoxy Resin Adhesive for Bonding New Concrete to Old Concrete," of the Standard Specifications. Whenever the ambient temperature is below 18°C, Type II epoxy shall be used. The exact rate of applying epoxy adhesive will be as determined by the Engineer. The adhesive shall be worked onto the surface with stiff brushes or equal. Portland cement concrete used to fill the prepared areas shall conform to the provisions in Section 90, "Portland Cement Concrete," of the Standard Specifications and the following: - A. The concrete shall contain a minimum of 400 kilograms of portland cement per cubic meter. - B. The amount of free water used in concrete shall not exceed 166 kg/m³. - C. The aggregate shall contain between 50 and 55 percent fine aggregate and the remainder shall be pea gravel. The grading of pea gravel shall be such that 100 percent passes the 12.5 mm screen and not more than 5 percent passes the 1.18 mm sieve, unless a larger size is ordered by the Engineer. - D. Admixtures shall be furnished and used if directed by the Engineer. - E. Immediately after depositing on the newly placed adhesive, the portland cement concrete shall be thoroughly consolidated until all voids are filled and free mortar appears on the surface and then struck off to the required grade. - F. Concrete shall be cured as provided in Section 90-7.03, "Curing Structures," of the Standard Specifications. - G. No loads of any kind shall be applied to the portland cement concrete for at least 7 days after placing, unless otherwise permitted by the Engineer. ## RAPID SETTING CONCRETE The concrete used to fill the prepared areas shall be a high-strength material consisting of either magnesium phosphate concrete, modified high alumina based concrete, or portland cement based concrete. Magnesium phosphate concrete shall conform to the requirements for magnesium phosphate concrete in Section 83-2.02D(1), "General," of the Standard Specifications and these special provisions. Modified high alumina based concrete and portland cement based concrete shall be water activated and shall conform to the requirements for single component (water activated) magnesium phosphate concrete in Section 83-2.02D(1), "General," of the Standard Specifications and the following: A. A clean uniform rounded aggregate filler may be used to extend the concrete. The moisture content of the aggregate shall not exceed 0.5 percent. Grading of the aggregate shall conform to the following: | Sieve Size | Percentage Passing | |------------|--------------------| | 12.5 mm | 100 | | 1.18 mm | 0-5 | - B. The amount of aggregate filler shall conform to the manufacturer's recommendation, but in no case shall the concrete strengths be less than that specified for magnesium phosphate concrete in Section 83-2.02D(1), "General," of the Standard Specifications. - C. Mixing of components of dual component (with a prepackaged liquid activator) magnesium phosphate shall be by complete units, supplied by the manufacturer. Portions of units shall not be used. Water shall not be added to dual component magnesium phosphate. - D. Immediately prior to applying the rapid setting concrete, the surface shall be dry and blown clean by compressed air to remove accumulated dust and any other loose material. If the surface becomes contaminated at any time prior to placing the concrete, the surface shall be cleaned by abrasive blasting. The surface temperature of the areas to be covered shall be 4°C or above when the concrete is applied. Methods proposed to heat said surfaces are subject to approval by the Engineer. The surface for the magnesium phosphate concrete shall be dry. The surfaces for modified high alumina based concrete or portland cement based concrete may be damp but not saturated. - E. Magnesium phosphate concrete shall not be mixed in containers or worked with tools containing zinc, cadmium, aluminum or copper. Modified high alumina based concrete shall not be mixed in containers or worked with tools containing aluminum. - F. Concrete shall not be retempered. Finishing tools that are cleaned with water shall be thoroughly dried before working the concrete. - G. When placing concrete on slopes exceeding 5 percent, the Engineer may require the Contractor to provide a flow controlled modified material. - H. Modified high alumina based concrete and portland cement based concrete shall be cured in conformance with the provisions in Section 90-7.01B, "Curing Compound Method," of the Standard Specifications. Magnesium phosphate concrete shall not be cured. - I. Unless otherwise permitted in writing by the Engineer, public traffic shall not be permitted on the new concrete until at least 24 hours after final set. # FINISHING REQUIREMENTS In advance of the curing operations, the surface of the concrete shall be textured by brooming with a stiff bristled broom or by other suitable devices which will result in uniform scoring. Brooming shall be performed transversely. The operation shall be performed at a time and in a manner that to produces a hardened surface having a uniform texture and a coefficient of friction of not less than 0.35 as determined by California Test 342. Refinished surfaces that are found to have a coefficient of friction less than 0.35 shall be ground or grooved by the Contractor at his expense in conformance with the applicable provisions in Section 42, "Groove and Grind Pavement," of the Standard Specifications. In the longitudinal direction, refinished surfaces shall not vary more than 6 mm from the lower edge of a 3.6 m straightedge. The refinished surface shall be flush with the existing adjoining surface. #### MEASUREMENT AND PAYMENT No adjustment of compensation will be made for any increase or decrease in the quantity of refinish bridge deck, regardless of the reason for the increase or decrease. The provisions in Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications shall not apply to the contract item of refinish bridge deck. The quantity in square meters of refinish bridge deck to be paid for will be determined from the lengths and
widths of the refinished areas, measured horizontally, plus 0.02-m² for patching around each dowel. The contract price paid per square meter for refinish bridge deck shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in refinishing areas of the existing bridge deck (including cutting steel dowels), complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ## 10-1.57 POLYESTER CONCRETE OVERLAY ## **GENERAL** This work shall consist of constructing a polyester concrete overlay, including application of a prime coat, in conformance with the details shown on the plans and these special provisions. Before starting deck overlay work on the project, the Contractor shall submit for approval by the Engineer, a program for public safety associated with the use of methacrylate resin and polyester concrete during the construction of the project. This program shall identify materials, equipment, and methods to be used. The Contractor shall not perform any deck overlay work on the project, other than that specifically authorized in writing by the Engineer, until the program has been approved. If the measures being taken by the Contractor are inadequate to provide for public safety associated with the use of methacrylate resin and polyester concrete, the Engineer will direct the Contractor to revise the operations and public safety program. These directions will be in writing and will specify the items of work for which the Contractor's program for public safety associated with the use of methacrylate resin and polyester concrete is inadequate. No further work shall be performed on these items until the public safety measures are adequate, and if required, a revised program for public safety associated with the use of methacrylate resin and polyester concrete has been approved. The Engineer will notify the Contractor in writing of the approval or rejection of any submitted or revised program for public safety associated with the use of methacrylate resin and polyester concrete in not more than 10 working days following submittal. The State will not be liable to the Contractor for failure to approve all or any portion of an originally submitted or revised program for public safety associated with the use of methacrylate resin and polyester concrete, nor for any delays to the work due to the Contractor's failure to submit an acceptable program for public safety associated with the use of methacrylate resin and polyester concrete. # **MATERIALS** Polyester concrete shall consist of polyester resin binder and dry aggregate. The resin shall be an unsaturated isophthalic polyester-styrene co-polymer conforming to the following: | PROPERTY | POLYESTER RESIN BINDER | | | |--|-------------------------------|---|---| | * Specific Gravity | PROPERTY | REQUIREMENT | TEST METHOD | | * Specific Gravity Elongation 35 percent, minimum Type I at 11.5 mm/min. Thickness= 6.5±1 mm Sample Conditioning: 18/25/50 + 5/70 Tensile Strength 17.5 MPa, minimum Type I at 11.5 mm/min. Thickness= 6.5±1 mm Sample Conditioning: 18/25/50 + 5/70 ASTM D 618 ASTM D 638 * | * Viscosity | (RVT, No. 1
Spindle, 20 RPM at | ASTM D 2196 | | Elongation 35 percent, minimum Type I at 11.5 mm/min. Thickness= 6.5±1 mm Sample Conditioning: 18/25/50 + 5/70 Tensile Strength 17.5 MPa, minimum Type I at 11.5 mm/min. Thickness= 6.5±1 mm Sample Conditioning: 18/1.5 mm/min. Thickness= 6.5±1 mm Sample ASTM D 638 **Styrene Content **Styrene Content **Styrene Content PCC Saturated Surface-Dry Bond Strength **Static Volatile Emission **Management | * Specific Gravity | | ASTM D 1475 | | Sample Conditioning: 18/25/50 + 5/70 Tensile Strength 17.5 MPa, minimum Type I at11.5 mm/min. Thickness= 6.5±1 mm Sample Conditioning: 18/25/50 + 5/70 * Styrene Content * Styrene Content Silane Coupler PCC Saturated Surface-Dry Bond Strength PCC Saturated Surface-Dry Bond Strength * Static Volatile Emission Sample Conditioning: 18/25/50 + 5/70 ASTM D 618 638 ASTM D 618 ASTM D 638 ASTM D 618 ASTM D 638 63 | | minimum Type I at
11.5 mm/min.
Thickness= | ASTM D 638 | | Tensile Strength 17.5 MPa, minimum Type I at11.5 mm/min. Thickness= 6.5±1 mm Sample Conditioning: 18/25/50 + 5/70 * Styrene Content 40 percent to 50 percent (by weight) Silane Coupler 1.0 percent, minimum (by mass of polyester styrene resin) PCC Saturated Surface-Dry Bond Strength 21±1°C * Static Volatile Emission Tensile Strength ASTM D 638 618 California Test 551 South Coast Air Quality Management | | Sample
Conditioning: | ASTM D 618 | | Sample Conditioning: 18/25/50 + 5/70 * Styrene Content 40 percent to 50 percent (by weight) Silane Coupler 1.0 percent, minimum (by mass of polyester styrene resin) PCC Saturated Surface-Dry Bond Strength 21±1°C * Static Volatile Emission Sample ASTM D 618 | Tensile Strength | 17.5 MPa,
minimum Type I
at11.5 mm/min.
Thickness= | ASTM D 638 | | * Styrene Content 40 percent to 50 percent (by weight) Silane Coupler 1.0 percent, minimum (by mass of polyester styrene resin) PCC Saturated Surface-Dry Bond Strength * Static Volatile Emission Management | | Sample
Conditioning: | ASTM D 618 | | minimum (by mass of polyester styrene resin) PCC Saturated Surface-Dry Bond Strength * Static Volatile Emission * Static Volatile Emission * Static Volatile Management * Static Volatile Management * Static Volatile Management | * Styrene Content | 40 percent to 50 | ASTM D 2369 | | Surface-Dry Bond Strength * Static Volatile Emission Surface-Dry Bond 21±1°C * Static Volatile Emission * Go gram per square meter, loss, maximum Management | Silane Coupler | 1.0 percent,
minimum (by mass
of polyester styrene | | | Emission meter, loss, Quality maximum Management | Surface-Dry Bond | at 24 hours and | California Test 551 | | * Test shall be performed prior to adding initiator. | * Static Volatile
Emission | meter, loss,
maximum | Quality
Management
District, Standard
Method | The silane coupler shall be an organosilane ester, gammamethacryloxypropyltrimethoxysilane. The promoter shall be compatible with suitable methyl ethyl ketone peroxide (MEKP) and cumene hydroperoxide (CHP) initiators. Aggregate for polyester concrete shall conform to the provisions in Section 90-2.02, "Aggregates," of the Standard Specifications and either of the following combined aggregate gradings: | COMBINED AGGREGATE | | | | |--------------------|-------------|--------------------|--| | | Percentag | Percentage Passing | | | Sieve Size | 9.5-mm Max. | 4.75-mm Max. | | | 12.5-mm | 100 | 100 | | | 9.5-mm | 83 - 100 | 100 | | | 4.75-mm | 65 - 82 | 62 - 85 | | | 2.36-mm | 45 - 64 | 45 - 67 | | | 1.18-mm | 27 - 48 | 29 - 50 | | | 600-μm | 12 - 30 | 16 - 36 | | | 300-μm | 6 - 17 | 5 - 20 | | | 150-μm | 0 - 7 | 0 - 7 | | | 75-μm | 0 - 3 | 0 - 3 | | Aggregate retained on the 2.36-mm sieve shall have a maximum of 45 percent crushed particles when tested in conformance with California Test 205. Fine aggregate shall consist of natural sand. The polyester resin binder in the concrete shall be approximately 12 percent by mass of the dry aggregate; the exact percentage will be determined by the Engineer. The average of coarse and fine aggregate absorption shall not exceed one percent as determined by California Tests 206 and 207. At the time of mixing with the resin, the moisture content of the aggregate, as determined by California Test 226, shall not exceed one half of the aggregate absorption. The prepared surface shall receive a wax-free, low odor, high molecular weight methacrylate prime coat. The prime coat shall be a resin, and prior to adding initiator, the resin shall have a maximum volatile content of 30 percent when
tested in conformance with the requirements in ASTM Designation: D 2369, and shall conform to the following: | High Molecular Weight Methacrylate (HMWM) Resin | | | | |--|----------------------------------|---------------------|--| | PROPERTY | PROPERTY REQUIREMENT TEST METHOD | | | | * Viscosity | 0.025 Pa·s, | ASTM D 2196 | | | | maximum, | | | | | (Brookfield RVT | | | | | with UL adaptor, 50 | | | | | RPM at 25°C) | | | | * Specific Gravity | 0.90, minimum, at | ASTM D 1475 | | | | 25°C | | | | * Flash Point | 82°C, minimum | ASTM D 3278 | | | * Vapor Pressure | 1.0 mm Hg, | ASTM D 323 | | | maximum, at 25°C | | | | | Tack-free time | 400 minutes, | California Test 551 | | | | maximum at 25°C | | | | PCC Saturated | 3.5 MPa, minimum | California Test 551 | | | Surface-Dry Bond | at 24 hours and | | | | Strength | 21±1°C | | | | * Test shall be performed prior to adding initiator. | | | | The promoter/initiator system for the methacrylate resin shall consist of a metal drier and peroxide. If supplied separately from the resin, at no time shall the metal drier be mixed with the peroxide directly. The containers shall not be stored in a manner that will allow leakage or spillage from one material to contact the containers or material of the other. A Material Safety Data Sheet shall be furnished prior to use for each shipment of polyester resin binder and high molecular weight methacrylate resin. The Contractor shall allow 14 days for sampling and testing of the polyester resin binder and high molecular weight methacrylate resin prior to proposed use. If bulk resin is to be used, the Contractor shall notify the Engineer in writing 10 days prior to the delivery of the bulk resin to the jobsite. Bulk resin is any resin that is stored in containers in excess of 209 liters. #### CONSTRUCTION When magnesium phosphate concrete is placed prior to the deck overlay, the magnesium phosphate concrete shall be placed at least 72 hours prior to placing the prime coat. When modified high alumina based concrete is placed prior to the deck overlay, the prime coat shall not be placed on the concrete until at least 30 minutes after final set. Expansion joints shall be adequately isolated prior to overlaying or may be sawed within 4 hours after overlay placement, as approved by the Engineer. The exact time of sawing will be determined by the Engineer. Prior to applying the prime coat, the area to receive the prime coat shall be dry and blown clean by compressed air to remove accumulated dust and any other loose material. The surface temperature shall be at least 10°C and the relative humidity less than 85 percent when the prime coat is applied. The prime coat shall be uniformly applied to completely cover the surface to receive the polyester concrete. The rate of spread shall be approximately 1.5 square meters per liter. The prime coat shall be allowed to cure a minimum of 15 minutes before placing polyester concrete. If the primed surface becomes contaminated, the contaminated area shall be cleaned by abrasive blasting and reprimed at the Contractor's expense. Polyester concrete shall be placed within 120 minutes after the prime coat has been applied. Polyester concrete shall be mixed in mechanically operated mixers. Mixer size shall be limited to a 0.25-cubic meter capacity, unless approved by the Engineer. A continuous mixer, employing an auger screw/chute device, may be approved for use by the Engineer upon demonstrating its ability to produce a satisfactory product. The continuous mixer shall 1) be equipped with a metering device that automatically measures and records the aggregate volumes and the corresponding resin volumes, and 2) have a readout gage, visible to the Engineer at all times, that displays the volumes being recorded. The volumes shall be recorded at no greater than 5 minute intervals along with the time and date of each recording. A printout of the recordings shall be furnished to the Engineer at the end of each workshift. The amount of initiator used in polyester concrete shall be sufficient to produce an initial set time between 30 and 120 minutes during placement. The initial set time will be determined by using an initial-setting time Gillmore needle in conformance with the requirements in ASTM Designation: C 266. Accelerators or inhibitors may be required to achieve proper set times and shall be used as recommended by the resin supplier. The resin binder shall be initiated and thoroughly blended just prior to mixing with aggregate. The polyester concrete shall be mixed a minimum of 2 minutes prior to placing. Polyester concrete shall be placed prior to gelling and within 15 minutes following addition of initiator, whichever occurs first. Polyester concrete that is not placed within this time shall be discarded. The surface temperature of the area to receive polyester concrete shall be the same as specified above for the prime coat. The finishing equipment used shall strike off the polyester concrete to the established grade and cross section. Finishing equipment shall be fitted with vibrators or other means of consolidating the polyester concrete to the required compaction. The polyester concrete shall be consolidated to a relative compaction of not less than 97 percent in conformance with California Test 552. The finished surface of the polyester concrete overlay shall conform to the provisions in Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications and these special provisions. Polyester concrete surfaces shall receive an abrasive sand finish. The sand shall be commercial quality blast sand conforming to the quality and dryness requirements for polyester concrete aggregate as specified in these special provisions. Ninety-five percent of the sand shall pass the 2.36-mm sieve, and 95 percent shall be retained on the 850-µm sieve. The sand finish shall be uniformly applied immediately after overlay strike-off and before gelling occurs to provide a minimum uniform coverage of 0.4-kilogram per square meter. The surface texture of polyester concrete overlay surfaces shall be uniform and shall have a coefficient of friction of not less than 0.35 as measured by California Test 342. Portions of surfaces that do not meet the above provision shall be ground or grooved parallel to the centerline in conformance with the provisions of Section 42, "Groove and Grind Pavement," of the Standard Specifications until the above tolerance is met. Traffic and equipment shall not be permitted on the overlay for a minimum of 4 hours following final finishing. Overlays shall be protected from moisture for a minimum of 4 hours after finishing. ## MEASUREMENT AND PAYMENT Furnishing polyester concrete overlay will be measured by the cubic meter. The volume to be paid for will be determined from calculations based on the quantity of resin binder used and the yield of the specified mix design. The Contractor shall furnish suitable measuring devices to assure correct proportioning of materials and accurate measurements for calculating pay quantities. The pay quantity shall be the calculated quantity of polyester concrete overlay used in the work, exclusive of any wasted or unused material. Placing polyester concrete overlay will be measured by the square meter. The area to be paid for will be based on the dimensions shown on the plans. The contract price paid per cubic meter for furnish polyester concrete overlay shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing polyester concrete, including polyester resin binder, promoter/initiator, and aggregate, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract price paid per square meter for place polyester concrete overlay shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the polyester concrete overlay, complete in place, including application of prime coat, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Full compensation for compliance with the requirements for a program for public safety associated with use of methacrylate resin and polyester concrete shall be considered as included in the contract prices paid for the items of work involving polyester concrete overlay and no additional compensation will be allowed therefor. ## 10-1.58 ARCHITECTURAL SURFACE (TEXTURED CONCRETE) Architectural texture for concrete surfaces shall conform to the details shown on the plans and the provisions in Section 51, "Concrete Structures," of the Standard Specifications and these special provisions. Architectural textures listed below are required at concrete surfaces shown on the plans: ## A. Fractured rib texture and V notch The architectural texture shall simulate a formed relief constructed to the dimensions and shapes shown on the plans. Corners at the intersection of plane surfaces shall be sharp and crisp without easing or rounding. A Class 1 surface finish shall be applied to the architectural texture. The fractured rib texture areas shall simulate the appearance of straight ribs of concrete with a fractured concrete texture imparted to the raised surfaces of the ribs. Grooves between ribs shall be continuous with no apparent curves or discontinuities. Variation of the groove from straightness shall not exceed 6 mm for each 3 m of groove. The architectural texture shall have random shadow patterns. Broken concrete at adjoining ribs and groups of ribs shall have a random pattern. The architectural texture shall not have secondary patterns imparted by shadows or repetitive fractured surfaces. ## **TEST PANELS** Three test panels shall be successfully
completed at a location approved by the Engineer before beginning work on architectural textures. The test panels shall model the formed relief wall treatment at the Wilshire Boulevard Undercrossing, and the fractured rib texture required at this and other structures and retaining walls. Test panel #1 shall be at least 1.25 m wide by 1.50 m high in size, and shall represent the circular feature at the top of wall and the associated vertical elements beneath the circle. Test panel #2 shall be at least 1.25m wide by 0.50m high and shall represent the semi-circular feature and associated angled elements in the barrier recess. Test panel #3 shall be at least 1.25 m wide by 1.25 m high in size, and shall represent the fractured rib texture. The test panels shall be constructed and finished with the materials, tools, equipment and methods to be used in constructing the architectural texture. If ordered by the Engineer, additional test panels shall be constructed and finished until the specified finish, texture and color are obtained, as determined by the Engineer. The test panels approved by the Engineer shall be used as the standard of comparison in determining acceptability of architectural texture for concrete surfaces. ## FORM LINERS Form liners shall be used for textured concrete surfaces and shall be installed in conformance with the manufacturer's recommendations, unless other methods of forming textured concrete surfaces are approved by the Engineer. Form liners shall be manufactured from an elastomeric material or a semi-elastomeric polyurethane material by a manufacturer of commercially available concrete form liners. No substitution of other types of formliner material will be allowed. Form liners shall leave crisp, sharp definition of the architectural surface. Recurring textural configurations exhibited by repeating, recognizable shadow patterns shall be prevented by proper casting of form liner patterns. Textured concrete surfaces with such recurring textural configurations shall be reworked to remove such patterns as approved by the Engineer or the concrete shall be replaced. Form liners shall have the following properties: | | ASTM Designation: | | |-------------------------------|-------------------|------------| | Description | | Range | | Elastomeric material | | | | Shore A hardness | D 2240 | 20 to 65 | | Tensile
strength (MPa) | D 412 | 0.9 to 6.2 | | Semi-elastomeric polyurethane | | | | Shore D
hardness | D 2240 | 55 to 65 | | Tensile
strength (MPa) | D 2370 | 18 minimum | Cuts and tears in form liners shall be sealed and repaired in conformance with the manufacturer's recommendations. Form liners that are delaminated from the form shall not be used. Form liners with deformations to the manufactured surface caused by improper storage practices or any other reason shall not be used. Form liners shall extend the full length of texturing with transverse joints at 2.5 m minimum spacing. Small pieces of form liners shall not be used. Grooves shall be aligned straight and true. Grooves shall match at joints between form liners. Joints in the direction of grooves in grooved patterns shall be located only in the depressed portion of the textured concrete. Adjoining liners shall be butted together without distortion, open cracks or offsets at the joints. Joints between liners shall be cleaned before each use to remove any mortar in the joint. Adhesives shall be compatible with the form liner material and with concrete. Adhesives shall be approved by the liner manufacturer. Adhesives shall not cause swelling of the liner material. #### RELEASING FORM LINERS Products and application procedures for form release agents shall be approved by the form liner manufacturer. Release agents shall not cause swelling of the liner material or delamination from the forms. Release agents shall not stain the concrete or react with the liner material. For reliefs simulating fractured concrete or wood grain surfaces the application method shall include the scrubbing method using a natural bristle scrub brush in the direction of grooves or grain. The release agent shall coat the liner with a thin film. Following application of form release agent, the liner surfaces shall be cleaned of excess amounts of agent using compressed air. Buildup of form release agent caused by the reuse of a liner shall be removed at least every 5 uses. Form liners shall release without leaving particles or pieces of liner material on the concrete and without pulling or breaking concrete from the textured surface. The concrete surfaces exposed by removing forms shall be protected from damage. # **CURING** Concrete surfaces with architectural texture shall be cured only by the forms-in-place or water methods. Seals and curing compounds shall not be used. # MEASUREMENT AND PAYMENT Architectural texture will be measured and paid for by the square meter. The contract price paid per square meter for architectural texture of the types listed in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in architectural texture, complete in place, including test panels, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Full compensation for architectural texture on the concrete barrier of Constitution Ave UC (Br. No. 53-0710) shall be considered as included in the contract price paid per meter for concrete barrier (Type 736 Modified) and no separate payment will be made therefor. #### 10-1.59 REINFORCEMENT Reinforcement shall conform to the provisions in Section 52, "Reinforcement," of the Standard Specifications and these special provisions. The Department's mechanical splices prequalified list can be found at the following internet site: http://www.dot.ca.gov/hq/esc/approved_products_list/ The provisions of "Welding Quality Control" of these special provisions shall not apply to resistance butt welding. Bar reinforcement shown on the plans to be galvanized shall be galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing," of the Standard Specifications. #### MEASUREMENT AND PAYMENT Measurement and payment for reinforcement in structures shall conform to the provisions in Section 52-1.10, "Measurement," and Section 52-1.11, "Payment," of the Standard Specifications and these special provisions. Full compensation for galvanizing bar reinforcing steel shall be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be allowed therefor. #### 10-1.60 SIGN STRUCTURES Sign structures and foundations for overhead signs shall conform to the provisions in Section 56-1, "Overhead Sign Structures," of the Standard Specifications and these special provisions. Before commencing fabrication of sign structures, the Contractor shall submit 2 sets of working drawings to the Engineer in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The working drawings shall include sign panel dimensions, span lengths, post heights, anchorage layouts, proposed splice locations, a snugging and tensioning pattern for anchor bolts and high strength bolted connections, and details for permanent steel anchor bolt templates. The working drawings shall be supplemented with a written quality control program that includes methods, equipment, and personnel necessary to satisfy the requirements specified herein and in the special provisions. Working drawings shall be 559 mm x 864 mm or 279 mm x 432 mm in size and each drawing and calculation sheet shall include the State assigned designations for the contract number, sign structure type and reference as shown on the contract plans, District-County-Route-Kilometer Post, and contract number. The Engineer shall have 20 working days to review the sign structure working drawings after a complete submittal has been received. No fabrication or installation of sign structures shall be performed until the working drawings are approved in writing by the Engineer. Should the Engineer fail to complete the review within the time allowance and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the sign structure working drawings, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. A permanent steel template shall be used to maintain the proper anchor bolt spacing. One top nut, one leveling nut, and 2 washers shall be provided for the upper threaded portion of each anchor bolt. Surfaces of base plates which are to come in contact with concrete, grout, or washers and leveling nuts shall be flat to within 3 mm tolerance in 305 mm, and to within 5 mm tolerance overall. Faying surfaces of plates in high-strength bolted connections including flange surfaces of field splices, chord joints, and frame junctures, and contact surfaces of plates used for breakaway slip base assemblies shall be flat to within 2 mm tolerance in 305 mm, and within 3 mm tolerance overall. Thermally cut holes made in tubular members of sign supports, other than holes in base and flange plates, shall initially be made a minimum of 2 mm undersized, and then be mechanically enlarged by reaming or grinding to the final required size and shape. All edges shall have a surface roughness of not greater than 6.35 µm. Round holes may be drilled to the exact final diameter. No holes shall be made in members unless the holes are shown on the plans or are approved in writing by the Engineer. Steel members used for overhead sign structures shall receive nondestructive testing (NDT) in conformance with AWS D1.1 and the following: | Weld Location | Weld Type | Minimum
 |--|----------------------|---------------| | | | Required NDT | | Welds for butt joint welds in tubular | CJP groove weld with | 100% UT or RT | | sections, nontubular sections, and posts | backing ring | | | Longitudinal seam welds* | PJP groove weld | 25% MT | | | CJP groove weld | 100% UT or RT | | Welds for base plate, flange plate, or end | CJP groove weld | 25% UT or RT | | cap to post or mast arm | | | | | Fillet weld | 25% MT | | * Longitudinal seam welds shall have 60% minimum penetration, except that within | | | | 150 mm of any circumferential weld, longitudinal seam welds shall be CJP groove welds. | | | - B. A written procedure approved by the Engineer shall be used when performing UT on material less than 8 mm thick. Contoured shoes shall be used when performing UT on round tubular sections under 1270 mm in diameter. - C. When less than 100 percent of a weld is specified for NDT, and if defects are found during this inspection, additional NDT shall be performed. This additional NDT shall be performed on 25 percent of the total weld for all similar welds, as determined by the Engineer, produced for sign structures in the project. If any portion of the additional weld inspected is found defective, 100 percent of all similar welds produced for sign structures in the project, as determined by the Engineer, shall be tested. Circumferential welds and base plate to post welds may be repaired only one time without written permission from the Engineer. The following substitutions of high-strength steel fasteners shall be made: | METRIC SIZE SHOWN ON THE PLANS | SIZE TO BE SUBSTITUTED | |--|---| | ASTM Designation: A 325M (Nominal bolt diameter (mm or mm x thread pitch)) | ASTM Designation: A 325
(Nominal bolt diameter (inch)) | | 13 or 12.70, M12, M12 x 1.75 | 1/2 | | 16 or 15.88, M16, M16 x 2 | 5/8 | | 19 or 19.05, M20, M20 x 2.5 | 3/4 | | 22 or 22.22, M22, M22 x 2.5 | 7/8 | | 24, 25, or 25.40, M24, M24 x 3 | 1 | | 29 or 28.58, M27, M24 x 3 | 1 1/8 | | 32 or 31.75, M30, M30 x 3.5 | 1 1/4 | | 38 or 38.10, M36, M36 x 4 | 1 1/2 | # ROTATIONAL CAPACITY TESTING PRIOR TO SHIPMENT TO JOB SITE Rotational capacity tests shall be performed on all lots of high-strength fastener assemblies prior to shipment of these lots to the project site. Zinc-coated assemblies shall be tested after all fabrication, coating, and lubrication of components has been completed. One hardened washer shall be used under each nut for the tests. Each combination of bolt production lot, nut lot, and washer lot shall be tested as an assembly. A rotational capacity lot number shall be assigned to each combination of lots tested. Each shipping unit of fastener assemblies shall be plainly marked with the rotational capacity lot number. Two fastener assemblies from each rotational capacity lot shall be tested. The following equipment, procedure, and acceptance criteria shall be used to perform rotational capacity tests on and determine acceptance of long bolts. Fasteners are considered to be long bolts when full nut thread engagement can be achieved when installed in a bolt tension measuring device: ## A. Long Bolt Test Equipment: - 1. Calibrated bolt tension measuring device with adequate tension capacity for the bolts being tested. - 2. Calibrated dial or digital torque wrench. Other suitable tools will be required for performing Steps 7 and 8 of the Long Bolt Test Procedure. A torque multiplier may be required for large diameter bolts. - 3. Spacer washers or bushings. When spacer washers or bushings are required, they shall have the same inside diameter and equal or larger outside diameter as the appropriate hardened washers conforming to the requirements in ASTM Designation: F436. - 4. Steel beam or member, such as a girder flange or cross frame, to which the bolt tension measuring device will be attached. The device shall be accessible from the ground. ## B Long Bolt Test Procedure: - 1. Measure the bolt length. The bolt length is defined as the distance from the end of the threaded portion of the shank to the underside of the bolt head. - 2. Install the nut on the bolt so that 3 to 5 full threads of the bolt are located between the bearing face of the nut and the underside of the bolt head. Measure and record the thread stickout of the bolt. Thread stickout is determined by measuring the distance from the outer face of the nut to the end of the threaded portion of the shank. - 3. Insert the bolt into the bolt tension measuring device and install the required number of washers, and additional spacers as needed, directly beneath the nut to produce the thread stickout measured in Step 2 of this procedure. - 4. Tighten the nut using a hand wrench to a snug-tight condition. The snug tension shall not be less than the Table A value but may exceed the Table A value by a maximum of 2 kips. Table A | 1 4010 7 1 | | | |--|--------------|--| | High-Strength Fastener Assembly Tension Values | | | | to Approximate Snug-Tight Condition | | | | Bolt Diameter | Snug Tension | | | (inches) | (kips) | | | 1/2 | 1 | | | 5/8 | 2 | | | 3/4 | 3 | | | 7/8 | 4 | | | 1 | 5 | | | 1 1/8 | 6 | | | 1 1/4 | 7 | | | 1 3/8 | 9 | | | 1 1/2 | 10 | | 5. Match-mark the assembly by placing a heavy reference start line on the face plate of the bolt tension measuring device which aligns with 1) a mark placed on one corner of the nut, and 2) a radial line placed across the flat on the end of the bolt, or on the exposed portions of the threads of tension control bolts. Place an additional mark on the outside of the socket that overlays the mark on the nut corner such that this mark will be visible while turning the nut. Make an additional mark on the face plate, either 2/3 of a turn, one turn, or 1 1/3 turn clockwise from the heavy reference start line, depending on the bolt length being tested as shown in Table B. Table B | Table B | | | |---|--------------------------|--| | Required Nut Rotation for Rotational Capacity (a,b) Tests | | | | Bolt Length (measured in Step 1) | Required Rotation (turn) | | | 4 bolt diameters or less | 2/3 | | | Greater than 4 bolt | 1 | | | diameters but no more than 8 bolt diameters | | | | Greater than 8 bolt | 1 1/3 | | | diameters, but no more | | | | than 12 bolt | | | | diameters (c) | | | | | | | - (a) Nut rotation is relative to bolt, regardless of the element (nut or bolt) being turned. For bolts installed by 1/2 turn and less, the tolerance shall be plus or minus 30 degrees; for bolts installed by 2/3 turn and more, the tolerance shall be plus or minus 45 degrees. - (b) Applicable only to connections in which all material within grip of the bolt is steel. - (c) When bolt length exceeds 12 diameters, the required rotation shall be determined by actual tests in a suitable tension device simulating the actual conditions. - 6. Turn the nut to achieve the applicable minimum bolt tension value listed in Table C. After reaching this tension, record the moving torque, in foot-pounds, required to turn the nut, and also record the corresponding bolt tension value in pounds. Torque shall be measured with the nut in motion. Calculate the value, T (in ft-lbs), where T=[(the measured tension in pounds) x (the bolt diameter in inches) / 48 in/ft]. Table C | Minimum Tension Values for High-Strength | | | |--|-----------------|--| | Fastener Assemblies | | | | Bolt Diameter | Minimum Tension | | | (inches) | (kips) | | | 1/2 | 12 | | | 5/8 | 19 | | | 3/4 | 28 | | | 7/8 | 39 | | | 1 | 51 | | | 1 1/8 | 56 | | | 1 1/4 | 71 | | | 1 3/8 | 85 | | | 1 1/2 | 103 | | - Turn the nut further to increase bolt tension until the rotation listed in Table B is reached. The rotation is measured from the heavy reference line made on the face plate after the bolt was snug-tight. Record this bolt tension - 8. Loosen and remove the nut and examine the threads on both the nut and bolt. ## C. Long Bolt Acceptance Criteria: 1. An assembly shall pass the following requirements to be acceptable: 1) the measured moving torque (Step 6) shall be less than or equal to the calculated value, T (Step 6), 2) the bolt tension measured in Step 7 shall be greater than or equal to the applicable turn test tension value listed in Table D, 3) the nut shall be able to be removed from the bolt without signs of thread stripping or galling after the required rotation in Step 7 has been achieved, 4) the bolt does not shear from torsion or fail during the test, and 5) the assembly does not seize before the final rotation in Step 7 is reached. Elongation of the bolt in the threaded region between the bearing face of the nut and the underside of the bolt head is expected and will not be considered a failure. Both fastener assemblies tested from one rotational capacity lot shall pass for the rotational capacity lot to be acceptable. Table D | Turn Test Tension Values | | |--------------------------|-------------------| | Bolt Diameter | Turn Test Tension | | (inches) | (kips) | | 1/2 | 14 | | 5/8 | 22 | | 3/4 | 32 | | 7/8 | 45 | | 1 | 59 | | 1 1/8 | 64 | | 1 1/4 | 82 | | 1 3/8 | 98 | | 1 1/2 | 118 | The following equipment, procedure, and acceptance criteria shall be used to perform rotational capacity tests on and determine acceptance of short bolts. Fasteners are considered to be short bolts when full nut thread engagement cannot be achieved when installed in a bolt tension measuring device: ## A. Short Bolt Test Equipment: - 1. Calibrated dial or digital torque wrench. Other suitable tools will be required for performing Steps 7 and 8 of the Short Bolt Test Procedure. A torque multiplier may be required for large diameter bolts. - 2. Spud
wrench or equivalent. - 3. Spacer washers or bushings. When spacer washers or bushings are required, they shall have the same inside diameter and equal or larger outside diameter as the appropriate hardened washers conforming to the requirements in ASTM Designation: F436. - 4. Steel plate or girder with a hole to install bolt. The hole size shall be 1.6 mm greater than the nominal diameter of the bolt to be tested. The grip length, including any plates, washers, and additional spacers as needed, shall provide the proper number of threads within the grip, as required in Step 2 of the Short Bolt Test Procedure. ## B. Short Bolt Test Procedure: - 1. Measure the bolt length. The bolt length is defined as the distance from the end of the threaded portion of the shank to the underside of the bolt head. - 2. Install the nut on the bolt so that 3 to 5 full threads of the bolt are located between the bearing face of the nut and the underside of the bolt head. Measure and record the thread stickout of the bolt. Thread stickout is determined by measuring the distance from the outer face of the nut to the end of the threaded portion of the shank - 3. Install the bolt into a hole on the plate or girder and install the required number of washers and additional spacers as needed between the bearing face of the nut and the underside of the bolt head to produce the thread stickout measured in Step 2 of this procedure. - 4. Tighten the nut using a hand wrench to a snug-tight condition. The snug condition shall be the full manual effort applied to the end of a 305 mm long wrench. This applied torque shall not exceed 20 percent of the maximum allowable torque in Table E. Table E | Tuble E | | |--|------------| | Maximum Allowable Torque for High-Strength | | | Fastener A | Assemblies | | Bolt Diameter | Torque | | (inches) | (ft-lbs) | | 1/2 | 145 | | 5/8 | 285 | | 3/4 | 500 | | 7/8 | 820 | | 1 | 1220 | | 1 1/8 | 1500 | | 1 1/4 | 2130 | | 1 3/8 | 2800 | | 1 1/2 | 3700 | - 5. Match-mark the assembly by placing a heavy reference start line on the steel plate or girder which aligns with 1) a mark placed on one corner of the nut and 2) a radial line placed across the flat on the end of the bolt or on the exposed portions of the threads of tension control bolts. Place an additional mark on the outside of the socket that overlays the mark on the nut corner such that this mark will be visible while turning the nut. Make 2 additional small marks on the steel plate or girder, one 1/3 of a turn and one 2/3 of a turn clockwise from the heavy reference start line on the steel plate or girder. - 6. Using the torque wrench, tighten the nut to the rotation value listed in Table F. The rotation is measured from the heavy reference line described in Step 5 made after the bolt was snug-tight. A second wrench shall be used to prevent rotation of the bolt head during tightening. Measure and record the moving torque after this rotation has been reached. The torque shall be measured with the nut in motion. Table F | 1 4016 1 | | | |---|-----|--| | Nut Rotation Required for Turn-of-Nut Installation | | | | Bolt Length (measured in Step 1) Required Rotation (turn) | | | | 4 bolt diameters or less | 1/3 | | | (a) Nut rotation is relative to bolt, regardless of the element (nut or bolt) being turned. For bolts | | | | installed by 1/2 turn and less, the tolerance shall be plus or minus 30 degrees. (b) Applicable only to connections in which all | | | 7. Tighten the nut further to the 2/3-turn mark as indicated in Table G. The rotation is measured from the heavy reference start line made on the plate or girder when the bolt was snug-tight. Verify that the radial line on the bolt end or on the exposed portions of the threads of tension control bolts is still in alignment with the start line. Table (material within grip of the bolt is steel. | Required Nut Rotation for Rotational Capacity Test | | |--|-----| | Bolt Length (measured Required Rotation (turn | | | in Step 1) | | | 4 bolt diameters or less | 2/3 | 8. Loosen and remove the nut and examine the threads on both the nut and bolt. ## C. Short Bolt Acceptance Criteria: 1. An assembly shall pass the following requirements to be acceptable: 1) the measured moving torque from Step 6 shall be less than or equal to the maximum allowable torque from Table E, 2) the nut shall be able to be removed from the bolt without signs of thread stripping or galling after the required rotation in Step 7 has been achieved, 3) the bolt does not shear from torsion or fail during the test, and 4) the assembly shall not seize before the final rotation in Step 7 is reached. Elongation of the bolt in the threaded region between the bearing face of the nut and the underside of the bolt head will not be considered a failure. Both fastener assemblies tested from one rotational capacity lot shall pass for the rotational capacity lot to be acceptable. # INSTALLATION TENSION TESTING AND ROTATIONAL CAPACITY TESTING AFTER ARRIVAL ON THE JOB SITE Installation tension tests and rotational capacity tests on high-strength fastener assemblies shall be performed by the Contractor prior to acceptance or installation and after arrival of the fastener assemblies on the project site. Installation tension tests and rotational capacity tests shall be performed at the job-site, in the presence of the Engineer, on each rotational capacity lot of fastener assemblies. Installation tension tests shall be performed on 3 representative fastener assemblies in conformance with the provisions in Section 8, "Installation," of the RCSC Specification. For short bolts, Section 8.2, "Pretensioned Joints," of the RCSC Specification shall be replaced by the "Pre-Installation Testing Procedures," of the "Structural Bolting Handbook," published by the Steel Structures Technology Center, Incorporated. The rotational capacity tests shall be performed in conformance with the requirements for rotational capacity tests in "Rotational Capacity Testing Prior to Shipment to Job Site" of these special provisions. At the Contractor's expense, additional installation tension tests, tests required to determine job inspecting torque, and rotational capacity tests shall be performed by the Contractor on each rotational capacity lot, in the presence of the Engineer, if 1) any fastener is not used within 3 months after arrival on the jobsite, 2) fasteners are improperly handled, stored, or subjected to inclement weather prior to final tightening, 3) significant changes are noted in original surface condition of threads, washers, or nut lubricant, or 4) the Contractor's required inspection is not performed within 48 hours after all fasteners in a joint have been tensioned. Failure of a job-site installation tension test or a rotational capacity test will be cause for rejection of unused fasteners that are part of the rotational capacity lot. When direct tension indicators are used, installation verification tests shall be performed in conformance with Appendix Section X1.4 of ASTM Designation: F959, except that bolts shall be initially tensioned to a value 5 percent greater than the minimum required bolt tension. Full compensation for furnishing anchor bolt templates and for testing of welds shall be considered as included in the contract price paid per kilogram for furnish sign structure and no additional compensation will be allowed therefor. ## 10-1.61 ROADSIDE SIGNS Roadside signs shall be installed at the locations shown on the plans or where designated by the Engineer and in conformance with the provisions in Section 56-2, "Roadside Signs," of the Standard Specifications and these special provisions. Wood posts shall be pressure treated after fabrication in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," of the Standard Specifications with creosote, creosote coal tar solution, creosote petroleum solution (50-50), pentachlorophenol in hydrocarbon solvent, copper naphthenate, ammoniacal copper arsenate, or ammoniacal copper zinc arsenate. In addition to the preservatives listed above, Southern yellow pine may also be pressure treated with chromated copper arsenate. When other than one of the creosote processes is used, blocks shall have a minimum retention of 6.4 kg/m³, and need not be incised. Type N, Type P, and Type R marker panels mounted on a post with a roadside sign shall be considered to be sign panels and will not be paid for as markers. Roadside signs mounted on barriers will be measured and paid for by the kilogram as metal (barrier mounted sign). The contract price paid per kilogram for metal (barrier mounted sign) shall include full compensation for furnishing all labors, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing median barrier mounted roadside signs, complete in place, including attaching sign panels to medal posts, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. #### 10-1.62 INSTALL SIGN PANEL ON EXISTING FRAME Sign panels shall be installed on existing frames at the locations shown on the plans or where designated by the Engineer and in conformance with the provisions in Section 56-1.06, "Sign Panels and Fastening Hardware," of the Standard Specifications and these special provisions. Existing sign panels, as shown on the plans, shall be removed and disposed of as provided in Section 15, "Existing Highway Facilities," of the Standard Specifications. Installing sign panels on existing frames will be measured by the square meter and the quantity to be paid for will be the total area, in square meters, of sign panels installed in place. The
contract price paid per square meter for install sign panel on existing frame shall include full compensation for furnishing all labor, materials (except State-furnished sign panels and mounting bolts), tools, equipment, and incidentals, and for doing all the work involved in installing sign panels on existing frames, complete in place (including removing and disposing of existing sign panels), as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. #### 10-1.63 INSTALL BRIDGE MOUNTED SIGN (STICKY BACK) Bridge mounted signs (sticky back) shall be installed on bridges as shown on the plans and in conformance with these special provisions. Bridge mounted signs (sticky back) will be furnished by the State as provided under "Materials" of these special provisions. Bridge surfaces receiving sticky back signs shall be cleaned of dirt and foreign substances to ensure complete adherence. Sticky back signs that do not completely adhere to bridge surfaces shall be removed, disposed of and replaced at the Contractor's expenses. Installing bridge mounted signs (sticky back) will be measured by the square meter. The contract price paid per square meter for install bridge mounted signs (sticky back) shall include full compensation for furnishing all labor, materials (except signs (sticky back), tools, equipment, and incidentals, and for doing all the work involved in installing sign overlay panels on bridges, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ## 10-1.64 PLASTIC PIPE Plastic pipe shall conform to the provisions in Section 64, "Plastic Pipe," of the Standard Specifications. ## 10-1.65 REINFORCED CONCRETE PIPE Reinforced concrete pipe shall conform to the provisions in Section 65, "Reinforced Concrete Pipe," of the Standard Specifications and these special provisions. Where embankment will not be placed over the top of the pipe, a relative compaction of not less than 85 percent shall be required below the pipe spring line for pipe installed using Method 1 backfill in trench, as shown on Standard Plan A62D. Where the pipe is to be placed under the traveled way, a relative compaction of not less than 90 percent shall be required unless the minimum distance between the top of the pipe and the pavement surface is the greater of 1.2 m or one half of the outside diameter of the pipe. Except as otherwise designated by classification on the plans or in the specifications, joints for culvert and drainage pipes shall conform to the plans or specifications for standard joints. When reinforced concrete pipe is installed in conformance with the details shown on Revised Standard Plan A62DA, the fifth paragraph of Section 19-3.04, "Water Control and Foundation Treatment," of the Standard Specifications shall not apply. When solid rock or other unyielding material is encountered at the planned elevation of the bottom of the bedding, the material below the bottom of the bedding shall be removed to a depth of 1/50 of the height of the embankment over the top of the culvert, but not less than 150 mm nor more than 300 mm. The resulting trench below the bottom of the bedding shall be backfilled with structure backfill material in conformance with the provisions in Section 19-3.06, "Structure Backfill," of the Standard Specifications. The excavation and backfill below the planned elevation of the bottom of the bedding will be paid for as extra work as provided in Section 4-1.03D, "Extra Work." of the Standard Specifications. The Outer Bedding shown on Revised Standard Plan A62DA shall not be compacted prior to placement of the pipe. Full compensation for concrete pipe anchors shall be considered as included in the contract price paid per meter for the reinforced concrete pipe and no separate payment will be made therefor. ## 10-1.66 CORRUGATED METAL PIPE AND RISER Corrugated steel pipe and riser shall conform to the provisions in Section 66, "Corrugated Metal Pipe," of the Standard Specifications. # 10-1.67 GRATED LINE DRAIN This work shall consist of furnishing and installing precast grated line drain, with necessary fittings, coupling systems, frames, grates and associated items as shown on the plans and in conformance with these special provisions. The interior surface of the grated line drain, below the level of the frame and grate and associated connections, shall be smooth. Grated line drain channel sections shall be manufactured of monolithic polymer concrete with no side extensions. Monolithic polymer concrete shall be made from a composition of aggregate and polyester resin or vinylester resin and shall have the following properties when tested as follows: | PROPERTY | ASTM | VALUE | |---|-------------|-----------| | | TEST METHOD | | | Tensile Strength, MPa | C 307 | 10 min. | | Compressive Strength, MPa | C 579 | 80 min. | | Bending Strength, MPa | C 580 | 20 min. | | Moisture Absorption, % | C 140 | 0.5 max. | | Chemical Resistance | C 267 | Pass | | Freeze/Thaw, number of cycles w/o weight loss | C 666 | 1600 min. | The manufacturer of the grated line drain shall furnish the Engineer a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. Grated line drain frames and grates shall be manufactured of ductile iron conforming to the provisions in Section 75-1.02, "Miscellaneous Iron and Steel," of the Standard Specifications. The frames and grates need not be galvanized or coated with asphalt paint. Bolts, nuts, frame anchors, and other connecting hardware shall conform to the provisions in Section 75-1.02, "Miscellaneous Iron and Steel," of the Standard Specifications. Frames and grates, when installed in conformance with the manufacturer's recommendations and these special provisions, shall withstand load testing conforming to the requirements in Federal Specification RR-F-621E for "Frames, Covers, Gratings, Steps, Manhole Sump and Catch Basin." Grates shall fit into the frames without rocking. Frames shall be secured to the surrounding concrete backfill with steel anchoring rods as shown on the plans. Other methods may be used to secure the frame to the concrete backfill or grated line drain wall provided that a minimum pullout resistance of 10 kN per meter of length of grated line drain frame is maintained. Grates and frames shall be one piece or the grates shall be removable. Removable grates shall be held in place by locking devices that are tamper resistant. Removable grates shall provide a minimum repetitive pullout resistance of 5 kN per meter of length after completion of 1000 hours of salt spray testing in conformance with the requirements in ASTM Designation: B 117. When a combination of one piece frame and grate and removable grates are used, the locations of the removable grates shall be shown on the plans. Except for grates installed within designated pedestrian paths of travel, grates shall accept inflow of runoff through openings. The openings shall consist of a minimum of 60 percent of the total top surface area of the grate, with individual openings or slots having a dimension not greater than 50 mm measured in the direction of the grated line drain flow line. Grates installed within designated pedestrian paths of travel shall be certified as conforming to the requirements of the "Americans with Disabilities Act." Grated line drains shall be installed in trenches excavated to the lines and grades established by the Engineer. The bottom of the trench shall be graded and prepared to provide a firm and uniform bearing throughout the entire length of the grated line drain. Grated line drains shall be installed and jointed in conformance with the manufacturer's recommendations. Grated line drains shall be installed to the lines and grades with sections closely jointed and secured to ensure that no separation of the line drains occurs during backfilling. The frame or grate of the grated line drain shall not extend above the level of the surrounding concrete backfill. Grated line drains shall be connected to new or existing drainage facilities as shown on the plans. Excavation and backfill shall conform to the provisions in Section 19-3, "Structure Excavation and Backfill," of the Standard Specifications. Backfill for the grated line drains shall be either minor concrete or Class 3 concrete conforming to the provisions in Section 90, "Portland Cement Concrete," of the Standard Specifications, except that minor concrete shall contain not less than 300 kg of cement per cubic meter. Concrete backfill shall be placed in the trench as shown on the plans. Concrete backfill shall be placed against undisturbed material at the sides and bottom of the trench and in a manner that will prevent floating or shifting of the grated line drain and voids in, or segregation of, the concrete. Foreign material which falls into the trench, prior to or during placement of the concrete, shall be immediately removed. Where necessary, earth plugs shall be constructed and compacted at the ends of the planned concrete backfill to contain the concrete within the trench. Concrete backfill shall be finished flush with the adjacent surfacing. The surface of the concrete shall be textured with a broom or burlap drag to produce a durable skid-resistant surface. The length the grated line drain to be paid for will be the length measured by the meter along the pavement surface as designated by the Engineer. No payment will be made for grated line drain placed in excess of the designated length. The contract price paid per meter for grated line drain shall include full compensation for furnishing all labor, materials (including frames and grates), tools, equipment, and incidentals, and for doing all the work involved in installing grated line drains, complete in
place, including excavation and backfill, connecting grated line drains to new or existing facilities, concrete collars, reinforcement, and other connecting devices, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. #### 10-1.68 SLOPE PROTECTION Slope protection shall be placed or constructed in conformance with the provisions in Section 72, "Slope Protection," of the Standard Specifications and these special provisions. Rock slope protection fabric shall be woven or nonwoven type fabric, Type A or Type B, at the option of the Contractor. ## 10-1.69 MISCELLANEOUS CONCRETE CONSTRUCTION Curbs, gutters, gutter depressions, and sidewalks shall conform to the provisions in Section 73, "Concrete Curbs and Sidewalks," of the Standard Specifications and these special provisions. Curb ramp detectable warning surface shall consist of raised truncated domes constructed or installed on curb ramps in conformance with the details shown on the plans and these special provisions. At the option of the Contractor, the detectable warning surface shall be prefabricated, cast-in-place, or stamped into the surface of the curb ramp. The color of the detectable warning surface shall be yellow conforming to Federal Standard 595B, Color No. 33538. Prefabricated detectable warning surface shall be in conformance with the requirements established by the Department of General Services, Division of State Architect and be attached in conformance with the manufacturer's recommendations. Cast-in-place and stamped detectable warning surfaces shall be painted in conformance with the provisions in Section 59-6, "Painting Concrete," of the Standard Specifications. The finished surfaces of the detectable warning surface shall be free from blemishes. Prior to constructing the cast-in-place or stamping the detectable warning surface, the Contractor shall demonstrate the ability to produce a detectable warning surface conforming to the details shown on the plans and these special provisions by constructing a 600-mm by 600-mm test panel. The manufacturer shall provide a written 5-year warranty for prefabricated detectable warning surfaces, guaranteeing replacement when there is defect in the dome shape, color fastness, sound-on-cane acoustic quality, resilience, or attachment. The warranty period shall begin upon acceptance of the contract. Full compensation for constructing or furnishing and installing curb ramp detectable warning surfaces shall be considered as included in the contract price paid per cubic meter for minor concrete (miscellaneous construction) and no separate payment will be made therefor. Minor concrete (gutter) for retaining walls shall be measured and paid as per meter for minor concrete (gutter). The contract price paid per meter for minor concrete (gutter) for retaining walls shall include full compensation for furnishing all labor, materials (including excavation, backfill, and bar reinforcing steel), tools, equipment, and incidentals, and for doing all the work involved in constructing gutters, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ## 10-1.70 MISCELLANEOUS IRON AND STEEL Miscellaneous iron and steel shall conform to the provisions in Section 75, "Miscellaneous Metal," of the Standard Specifications. # 10-1.71 CHAIN LINK FENCE Chain link fence shall be Type CL-1.8 and shall conform to the provisions in Section 80, "Fences," of the Standard Specifications. # 10-1.72 CHAIN LINK WALK GATE Chain link walk gates shall be Type CL-1.8 conforming to the provisions in Section 80, "Fences," of the Standard Specifications and these special provisions. Gates shall be installed in existing fences at the locations shown on the plans. Gate installations shall be complete with gate post, latch post, concrete footings, braces, truss rods, and hardware. Gate and latch posts shall be braced to the next existing line post as shown on the plans. At each gate location, an existing line post shall be removed and the new gate installed so that the gate is centered on the post hole of the removed post. Holes resulting from the removal of line posts shall be backfilled. Gate mounting and latching hardware shall not contain open-end slots for the fastening bolts. Chain link fabric for gates shall be of the same mesh size as the existing fence in which the gates are installed. Openings made in existing fences for installation of gates shall be closed during the working day in which the openings are made and when work is not in progress. Temporary closures shall be made with the existing fence fabric or with additional 1.83-m chain link fabric as directed by the Engineer. Full compensation for making the openings in existing fences, for temporary closing of the openings (including furnishing additional fence fabric if necessary), and for new posts, footings, hardware, braces, and truss rods shall be considered as included in the contract unit price paid for 1.5-m chain link gate (Type CL-1.8) and no additional compensation will be allowed therefor. #### 10-1.73 MARKERS AND DELINEATORS Markers and delineators shall conform to the provisions in Section 82, "Markers and Delineators," of the Standard Specifications and these special provisions. Markers and delineators on flexible posts shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Flexible posts shall be made from a flexible white plastic which shall be resistant to impact, ultraviolet light, ozone, and hydrocarbons. Flexible posts shall resist stiffening with age and shall be free of burns, discoloration, contamination, and other objectionable marks or defects which affect appearance or serviceability. Retroreflective sheeting for metal and flexible target plates shall be the retroreflective sheeting designated for channelizers, markers, and delineators conforming to the requirements in ASTM Designation: D 4956-95 and in conformance with the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. # 10-1.74 METAL BEAM GUARD RAILING Metal beam guard railing shall be constructed in conformance with the provisions in Section 83-1, "Railings," of the Standard Specifications and these special provisions. Attention is directed to "Order of Work" of these special provisions. Line posts and blocks shall be wood. ## TERMINAL SYSTEM (TYPE ET) Terminal system (Type ET) shall be furnished and installed as shown on the plans and in conformance with these special provisions. Terminal system (Type ET) shall be an ET-2000 PLUS (4-tube system) extruder terminal as manufactured by Trinity Industries, Inc., and shall include all the items detailed for terminal system (Type ET) shown on the plans. Arrangements have been made to insure that any successful bidder can obtain the ET-2000 PLUS (4-tube system) extruder terminal from the manufacturer, Trinity Industries Inc., P.O. Box 99, 950 West 400S, Centerville, UT 84014, Telephone 1-800-772-7976. The price quoted by the manufacturer for the ET-2000 PLUS (4-tube system) extruder terminal, FOB Centerville, Utah is \$1,650, not including sales tax. The above price will be firm for orders placed on or before December 19, 2004, provided delivery is accepted within 90 days after the order is placed. The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that the terminal systems (Type ET) conform to the contract plans and specifications, conform to the prequalified design and material requirements, and were manufactured in conformance with the approved quality control program. The terminal system (Type ET) shall be installed in conformance with the manufacturer's installation instructions and these requirements. The steel foundation tubes with soil plates attached shall be, at the Contractor's option, either driven, with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 100 mm thick and each layer shall be moistened and thoroughly compacted. The wood terminal posts shall be inserted into the steel foundation tubes by hand and shall not be driven. Before the wood terminal posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 65°C or less. The edges of the wood terminal posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes. ## TERMINAL SYSTEM (TYPE SRT) Terminal system (Type SRT) shall be furnished and installed as shown on the plans and in conformance with these special provisions. Terminal system (Type SRT) shall be a SRT-350 Slotted Rail Terminal (8 post system) as manufactured by Trinity Industries, Inc., and shall include all the items detailed for terminal system (Type SRT) shown on the plans. The 5 mm x 44 mm x 75 mm plate washer shown on the elevation view and in Section D-D at Wood Post No. 1 shall be omitted. Arrangements have been made to insure that any successful bidder can obtain the SRT-350 Slotted Rail Terminal (8 post system) from the manufacturer, Trinity Industries, Inc., P.O. Box 99, 950 West 400S, Centerville, UT 84014, Telephone 1-800-772-7976. The price quoted by the manufacturer for the SRT-350 Slotted Rail Terminal (8 post system), FOB Centerville, Utah is \$1,195.00, not including sales tax. The above price will be firm for orders placed on or before December 19, 2004, provided delivery is accepted within 90 days after the order is placed. The Contractor shall provide
the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that terminal systems (Type SRT) conform to the contract plans and specifications, conform to the prequalified design and material requirements and were manufactured in conformance with the approved quality control program. The terminal system (Type SRT) shall be installed in conformance with the manufacturer's installation instructions and these requirements. The steel foundation tubes with soil plates attached, shall be, at the Contractor's option, either driven, with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 100 mm thick and each layer shall be moistened and thoroughly compacted. Wood terminal posts shall be inserted into the steel foundation tubes by hand. Before the wood terminal posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 65°C or less. The edges of the wood terminal posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes. #### 10-1.75 CHAIN LINK RAILING Chain link railing shall conform to the provisions in Section 83-l, "Railings," of the Standard Specifications and these special provisions. The chain link fabric shall be 9-gage (3.76 mm), Type IV, Class B, bonded vinyl coated fabric, conforming to the requirements in AASHTO Designation: M 181. The strength of the bond between the coating material and steel of the bonded vinyl coated chain link fabric shall be equal to or greater than the cohesive strength of the polyvinyl chloride (PVC) coating material. #### 10-1.76 CONCRETE BARRIER Concrete barriers shall conform to the provisions in Section 83-2, "Barriers," of the Standard Specifications and these special provisions. Concrete barrier markers shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. At those locations shown on the plans, concrete barrier markers shall be cemented to the barrier in conformance with the manufacturer's recommendations. Concrete barriers (Type 60W Mod) will be measured and paid for as concrete barrier (Type 60W). Joint sealant for concrete barrier (Type 60W) and (Type 60 Modified) shall be flexible watertight gaskets conforming to the requirement of AASHTO Designation M198-751. Metal cover plates which are incorporated into the concrete barrier (Type 60R) shall conform to the provisions in Section 75, "Miscellaneous Metal," of the Standard Specifications. Plastic pipe culverts shall conform in accordance with the provisions in Section 64 of the Standard Specifications. Full compensation for concrete barrier end anchorage shall be considered as included in the contract price paid per meter for various types of concrete barrier and no separate payment will be made therefor. Full compensation for furnishing and installing metal cover plates closure on concrete barrier at column post shall be considered as included in the contract price paid per concrete barrier (Type 60R) and no separate payment will be made therefor. Full compensation for furnishing and applying joint sealant shall be considered as included in the contract price paid per meter for concrete barrier (Type 60W) and (Type 60 Modified) and no additional compensation will be allowed therefor. Plastic pipe culverts shall conform in accordance with the provisions in Section 64 of the Standard Specifications. Steel plate closure used to join concrete barrier at drainage structures will be measured and paid for as concrete barrier (Type 60W). Attention is directed to "Architectural Surface (Textured Concrete)" of these special provisions. Concrete barrier (Type 60A) will be measured and paid for as concrete barrier (Type 60 modified). Concrete barriers (Types 736A, 736A modified, and 736 modified (architectural)) will be measured and paid for as concrete barrier (Type 736 modified). Full compensation for the additional concrete and reinforcement at electrolier locations shall be considered as included in the contract price paid for concrete barrier of the type or types listed in the Engineer's Estimate and no separate payment will be made therefor. ## 10-1.77 CONCRETE BARRIER (TYPE K) Concrete barrier (Type K) shall conform to the provisions in Section 83-2, "Barriers," of the Standard Specifications and these special provisions. Concrete barrier (Type K) shall consist of precast units conforming to the provisions for temporary railing (Type K) in Section 12-3.08, "Temporary Railing (Type K)," of the Standard Specifications, except that removable panels shall not be used and the concrete barrier (Type K) shall remain in place at the completion of the contract. Temporary railing (Type K) reflectors on concrete barrier (Type K) shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Full compensation for furnishing and installing temporary railing (Type K) reflectors on concrete barrier (Type K) shall be considered as included in the contract price paid per meter for concrete barrier (Type K) and no additional compensation will be allowed therefor. ## 10-1.78 CRASH CUSHION (REACT) Crash cushion (REACT) shall be furnished and installed as shown on the plans and in conformance with the provisions in the Standard Specifications and these special provisions. Crash cushion (REACT) shall be a multiple recoverable type, manufactured by Energy Absorption Systems, Inc. Crash cushion (REACT) and additional components shall conform to the descriptions as follows: | Contract Item Description | Manufacturer's Product Description | |----------------------------|------------------------------------| | | | | Crash Cushion (REACT 9CBB) | REACT 350.9 Concrete Side Mount | The successful bidder can obtain the crash cushion from the following source: - A. Manufacturer: Energy Absorption Systems, Inc., A Quixote Company, One East Wacker Drive, Suite 3000, Chicago, Illinois 60601. - B. Distributors: - 1. Southern California: Traffic Control Service, Inc., 1881 Betmor Lane, Anaheim, California 92805, Telephone 1-800-222-8274, FAX 1-714-937-1070. - Northern California: Traffic Control Service, Inc., 8585 Thys Court, Sacramento, California 95828, Telephone 1-800-884-8274, FAX 1-916-387-9734. The price quoted by the manufacturer for Crash Cushion (REACT 9CBB), FOB Pell City, Alabama is \$33,171.00, not including sales tax. The above prices will be firm for orders placed within 30 days of contract award, and provided delivery is accepted within 90 days after the order is placed. The prices quoted do not include the concrete backup block, concrete anchor slab or the W-Beam connection to barrier. Crash cushion shall be installed in conformance with the manufacturer's recommendations. Concrete anchorage devices used for attaching the crash cushion to the base slab shall be limited to those which have been proven satisfactory by previous testing. The concrete anchor slab and backup block shall conform to the provisions in Section 51, "Concrete Structures," and Section 52, "Reinforcement," of the Standard Specifications and these special provisions. The concrete anchor slab and backup block shall be constructed of concrete containing not less than 350 kg of cement per cubic meter. The Contractor shall furnish the Engineer one copy of the manufacturer's plan and parts list for each model installed. The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that crash cushion conforms with the contract plans and specifications, and conforms to the prequalified design and material requirements. Crash cushion will be measured by the unit as determined from actual count in place in the completed work. The contract unit prices paid for crash cushion (REACT 9CBB) shall include full compensation for furnishing all labor, materials (including anchor bolts, nuts, washers, and marker panels), tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing the crash cushions, complete in place, including structure excavation, structure backfill, bar reinforcing steel, concrete for backup block and anchor slab, transition plate, and for furnishing high strength bolts and plate washers, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. # 10-1.79 THERMOPLASTIC PAVEMENT MARKING Thermoplastic pavement markings shall be applied in conformance with the provisions in Section 84, "Traffic Stripes and Pavement Markings," of the Standard Specifications and these special provisions. Thermoplastic material shall be free of lead and chromium, and shall conform to the requirements in State Specification PTH-02ALKYD. Retroreflectivity of the thermoplastic pavement markings shall conform to the requirements in ASTM Designation: D 6359-99. White thermoplastic pavement markings shall have a minimum initial retroreflectivity of 250 mcd·m⁻²·lx⁻¹. Yellow thermoplastic pavement markings shall have a minimum initial retroreflectivity of 150 mcd·m⁻²·lx⁻¹. Where striping joins existing striping, as shown on the plans, the Contractor shall begin and end the transition from the existing striping pattern into or from the new striping pattern a sufficient distance to ensure continuity of the striping pattern. Thermoplastic pavement markings shall be free of runs, bubbles, craters, drag marks, stretch marks, and debris. ##
10-1.80 PROFILED THERMOPLASTIC TRAFFIC STRIPE Profiled thermoplastic traffic stripe (traffic lines) shall conform to the provisions in Section 84, "Traffic Stripes and Pavement Markings," of the Standard Specifications and these special provisions. Profiled thermoplastic material shall conform to the requirements of State Specification PTH 499A. Profiled thermoplastic traffic stripe shall be inverted profile or raised and inverted profile, as designated on the plans. During application of the thermoplastic material, the pavement shall be clean and completely dry, the temperature of the pavement shall be between 16°C and 60°C, and the temperature of the thermoplastic material shall be as recommended by the manufacturer. A primer of the type recommended by the thermoplastic manufacturer shall be applied whenever the pavement temperature is below 22°C and also when applying inverted profile thermoplastic to portland cement concrete pavements, asphalt concrete pavements over 6 months old, or over existing striping. The thermoplastic material shall be applied at a minimum thickness of 2.8 mm before being profiled. The viscosity and thixotropy of the applied thermoplastic shall be such that the thermoplastic line shall retain its profile height and shape, and shall not flow or flatten while cooling or when bearing traffic. Glass beads shall be applied to the surface of the molten thermoplastic material in 2 equal applications at a combined total rate of not less than 70 kg of glass beads per kilometer of 100 mm wide solid stripe. At least 14 days prior to the scheduled start of production of profiled thermoplastic, the Contractor shall submit a written Quality Control Plan to the Engineer. At the request of the Engineer or the Contractor, the Contractor shall discuss details of the Quality Control Plan with the Engineer. The Engineer shall review and approve the Quality Control Plan in writing, prior to the placement of the test stripe. The Quality Control Plan shall describe the organization and procedures that will be used to administer the quality control system, including the procedures used to control the production process, the procedures used to determine when changes to the production process are needed, and the procedures proposed to be used to implement the required changes. Profiled thermoplastic production and placement shall not begin until the Engineer approves the Quality Control Plan in writing. Approval of the Quality Control Plan does not imply a warranty by the Engineer that adherence to the plan will result in production of acceptable profiled thermoplastic. It shall remain the responsibility of the Contractor to demonstrate such compliance. The Quality Control Plan shall include the name and qualifications of a Quality Control Manager, experienced with the equipment, materials, and application of profiled thermoplastic traffic striping. The Quality Control Manager shall be responsible for the administration of the Quality Control Plan, including compliance with the plan and plan modifications. The Quality Control Manager shall be responsible to the Contractor and shall have the authority to make decisions concerning the quality of the work or product. Except in cases of emergency and with the written approval of the Engineer, the Quality Control Manager cannot be a foreman, member of the production or striping crew, an inspector, or tester on the project during stripe production and placement. The Quality Control Plan may be modified as work progresses. A supplement shall be submitted in writing to the Engineer whenever there are changes to quality control procedures or personnel. Profiled thermoplastic production and placement shall not resume or continue until the Engineer approves the revisions to the Quality Control Plan in writing. Prior to application, and in the presence of the Quality Control Manager, the Contractor shall place a test stripe on roofing felt or other suitable material to demonstrate the Contractor's abilities to apply a stripe with the desired profile for a minimum length of 15 meters. The Contractor shall not place striping material on the roadway without the approval of the Engineer. The Engineer shall require the Contractor to delay installation of the material if, in the opinion of the Engineer, the Contractor does not have suitable equipment or skills to place the striping materials in a suitable manner. If the Contractor's initial test stripe is not approved, the Quality Control Manager shall work with the Contractor to perform the necessary training and adjustments to repeat the test stripe application to the satisfaction of the Engineer. The Contractor shall provide a profile template or profile height gauge to the Engineer during application and inspection of the thermoplastic striping to determine if the applied thermoplastic line is profiled to match the plans. The Quality Control Manager shall be present during placement of the test stripe, the initial application, the final application, and at selected intervals as outlined in the Quality Control Plan. The Quality Control Manager shall immediately alert the Contractor and the Engineer to anything that could affect the performance of the product. The Quality Control Manager shall ensure that materials are placed in conformance with accepted procedures. Profiled thermoplastic traffic stripe will be measured and paid for in the same manner specified for thermoplastic traffic stripe in Section 84-2, "Thermoplastic Traffic Stripes and Pavement Markings," of the Standard Specifications. ## 10-1.81 PAINT TRAFFIC STRIPE AND PAVEMENT MARKING Painted traffic stripes (traffic lines) and pavement markings shall be applied in conformance with the provisions in Section 84, "Traffic Stripes and Pavement Markings," of the Standard Specifications and these special provisions. Traffic stripe and pavement marking paint shall conform to the requirements in State Specification No. PTWB-01. The color of the painted traffic stripes and pavement markings shall conform to the requirements in ASTM Designation: D 6628-01. Retroreflectivity of the paint traffic stripes and pavement markings shall conform to the requirements in ASTM Designation: D 6359-99. White painted traffic stripes and pavement markings shall have a minimum initial retroreflectivity of 250 mcd·m⁻²·lx⁻¹. Yellow painted traffic stripes and pavement markings shall have a minimum initial retroreflectivity of 150 mcd·m⁻²·lx⁻¹. At the option of the Contractor, permanent traffic striping and pavement marking tape conforming to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions may be placed instead of painted traffic stripes and pavement markings. Permanent tape, if used, shall be placed in conformance with the manufacturer's specifications. If permanent tape is placed instead of painted traffic stripes and pavement markings, the tape will be measured and paid for by the meter as paint traffic stripe and by the square meter as paint pavement marking of the number of coats designated in the Engineer's Estimate. ## 10-1.82 PAVEMENT MARKERS Pavement markers shall be placed in conformance with the provisions in Section 85, "Pavement Markers," of the Standard Specifications and these special provisions. Attention is directed to "Traffic Control System For Lane Closure" of these special provisions regarding the use of moving lane closures during placement of pavement markers with bituminous adhesive. The Contractor shall furnish the Engineer certificates of compliance for the pavement markers in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. Retroreflective pavement markers shall be marked as abrasion resistant on the body of the markers. ## SECTION 10-2 HIGHWAY PLANTING AND IRRIGATION SYSTEMS ## **10-2.01 GENERAL** The work performed in connection with highway planting and irrigation systems shall conform to the provisions in Section 20, "Erosion Control and Highway Planting," of the Standard Specifications and these special provisions. The Contractor shall notify the Engineer not less than 72 hours prior to requiring initial access to the existing irrigation controllers. When the Engineer determines that access to the controllers is required at other times, arrangements will be made to provide this access. When fluctuations of water pressure and water supply are encountered during normal working hours, plants shall be watered at other times, as often, and in sufficient amounts as conditions may require to keep the soil and plant roots moist during the life of the contract. Full compensation for watering plants outside normal working hours shall be considered as included in the contract lump sum prices paid for highway planting and plant establishment work and no additional compensation will be allowed therefor. ## PROGRESS INSPECTIONS Progress inspections will be performed by the Engineer for completed highway planting and irrigation system work at designated stages during the life of the contract. Progress inspections will not relieve the Contractor of responsibility for installation in conformance with the special provisions, plans and Standard Specifications. Work within an area shall not progress beyond each stage until the inspection has been completed, corrective work has been performed, and the work is approved, unless otherwise permitted by the Engineer. The requirements for progress inspections will not preclude additional inspections of work by the Engineer at other times during the life of the contract. The Contractor shall notify the Engineer, in writing, at least 4 working days prior to completion of the work for each stage of an area and shall allow a minimum of 3 working days for the inspection. Progress inspections will be performed at the following stages of work: - A. During pressure testing of the pipelines on the supply side of control
valves. - B. During testing of low voltage conductors. - C. Irrigation functional test. - D. Before planting begins and after completion of the work specified for planting in Section 20-4.03, "Preparing Planting Areas," of the Standard Specifications. - E. Before plant establishment work begins and after completion of the work specified for planting in Section 20-4.05, "Planting," of the Standard Specifications. - F. At intervals of one month during the plant establishment period. ## COST BREAK-DOWN The Contractor shall furnish the Engineer a cost break-down for the contract lump sum items of highway planting and irrigation system. Cost break-down tables shall be submitted to the Engineer for approval within 15 working days after the contract has been approved. Cost break-down tables shall be approved, in writing, by the Engineer before any partial payment will be made for the applicable items of highway planting and irrigation system involved. Attention is directed to "Time-Related Overhead" of these special provisions regarding compensation for time-related overhead. Cost break-downs shall be completed and furnished in the format shown in the samples of the cost break-downs included in this section. Line item descriptions of work shown in the samples are the minimum to be submitted. Additional line item descriptions of work may be designated by the Contractor. If the Contractor elects to designate additional line item descriptions of work, the quantity, value and amount for those line items shall be completed in the same manner as for the unit descriptions shown in the samples. The line items and quantities given in the samples are to show the manner of preparing the cost break-downs to be furnished by the Contractor. The Contractor shall determine the quantities required to complete the work shown on the plans. The quantities and their values shall be included in the cost break-downs submitted to the Engineer for approval. The Contractor shall be responsible for the accuracy of the quantities and values used in the cost break-downs submitted for approval. The sum of the amounts for the line items of work listed in each cost break-down table for highway planting and for irrigation system work shall be equal to the contract lump sum price bid for Highway Planting and Irrigation System, respectively. Overhead and profit, except for time-related overhead, shall be included in each individual line item of work listed in a cost break-down table. No adjustment in compensation will be made in the contract lump sum prices paid for highway planting and irrigation system due to differences between the quantities shown in the cost break-downs furnished by the Contractor and the quantities required to complete the work as shown on the plans and as specified in these special provisions. Individual line item values in the approved cost break-down tables will be used to determine partial payments during the progress of the work and as the basis for calculating an adjustment in compensation for the contract lump sum items of highway planting and irrigation system due to changes in line items of work ordered by the Engineer. When the total of ordered changes to line items of work increases or decreases the lump sum price bid for either Highway Planting or Irrigation System by more than 25 percent, the adjustment in compensation for the applicable lump sum item will be determined in the same manner specified for increases and decreases in the total pay quantity of an item of work in Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications. # HIGHWAY PLANTING COST BREAK-DOWN # Contract No. 07-195904 | | | APPROXIMATE | | | |--------------------------------------|------|-------------|-------|--------| | UNIT DESCRIPTION | UNIT | QUANTITY | VALUE | AMOUNT | | ROADSIDE CLEARING | LS | LUMP SUM | | | | | | | | | | MULCH (100 MM THICK) | M3 | 200 | | | | | | | | | | PLANT (GROUP A) | EA | 2073 | | | | | | | | | | PLANT (GROUP F) | EA | 72,519 | | | | | | , | | | | PALNT (GROUP U) | EA | 300 | | | | | | | | | | COMMERICAL FERTILIZER (SLOW RELEASE) | KG | 860 | | | | | | | | | | SOIL AMENDMENT | M3 | 19 | l. | | | | | | TOTAL | | |--------------|--| | | | # IRRIGATION SYSTEM COST BREAK-DOWN # Contract No. 07-195904 | | 1 | A DDD OVID A A TEE | | ı | |--|------|-------------------------|--------|---------| | UNIT DESCRIPTION | UNIT | APPROXIMATE
OUANTITY | VALUE | AMOUNT | | CHECK, TEST, AND REMOVE EXISTING IRRIGATION FACILITIES | LS | LUMP SUM | VILLEL | THROUTT | | CONTROL AND NEUTRAL CONDUCTORS | LS | LUMP SUM | | | | 50 MM PRESSURE REDUCING VALVE | EA | 1 | | | | 4 STATION SOLAR IRRIGATION CONTROLLER | EA | 1 | | | | 6 STATION SOLAR IRRIGATION CONTROLLER | EA | 1 | | | | 16 STATION SOLAR IRRIGATION CONTROLLER | EA | 1 | | | | 12 STATION IRRIGATION CONTROLLER | EA | 1 | | | | 16 STATION IRRIGATION CONTROLLER | EA | 2 | | | | 25 MM ELECTRIC REMOTE CONTROL VALVE | EA | 12 | | | | 40 MM ELECTRIC REMOTE CONTROL VALVE | EA | 22 | | | | 50 MM ELECTRIC REMOTE CONTROL VALVE | EA | 21 | | | | 65 MM ELECTRIC REMOTE CONTROL VALVE | EA | 1 | | | | 40 MM BALL VALVE | EA | 4 | | | | 50 MM BALL VALVE | EA | 13 | | | | SPRINKLERS (TYPE A-5) | EA | 239 | | | | SPRINKLERS (TYPE A-7) | EA | 101 | | | | SPRINKLERS (TYPE B-1) | EA | 188 | | | | SPRINKLERS (TYPE B-5) | EA | 107 | | | | SPRINKLERS (TYPE C-2) | EA | 695 | | | | SPRINKLERS (TYPE C-3) | EA | 58 | | | | 20 MM PLASTIC PIPE (PR 200) (SUPPLY LINE) | M | 5735 | | | | 25 MM PLASTIC PIPE (PR 200) (SUPPLY LINE) | M | 2895 | | | | 32 MM PLASTIC PIPE (PR 200) (SUPPLY LINE) | M | 875 | | | | 40 MM PLASTIC PIPE (PR 200) (SUPPLY LINE) | M | 1365 | | | | 50 MM PLASTIC PIPE (PR 200) (SUPPLY LINE) | M | 1030 | | | | 65 MM PLASTIC PIPE (PR 200) (SUPPLY LINE) | M | 1450 | | |---|----|------|--| | 25 MM BACKFLOW PREVENTER ASSEMBLY | EA | 1 | | | 50 MM BACKFLOW PREVENTER ASSEMBLY | EA | 1 | | | 65 MM BACKFLOW PREVENTER ASSEMBLY | EA | 1 | | | BACKFLOW PREVENTER ENCLOSURE | EA | 2 | | | | | | | | | | | | | | | | | | TOTA | T. | | | |------|----|--|--| | | | | | ## 10-2.02 EXISTING HIGHWAY PLANTING In addition to the provisions in Section 20, "Erosion Control and Highway Planting," of the Standard Specifications, work performed in connection with existing highway planting shall conform to the provisions in "Existing Highway Facilities," of these special provisions. Replacement planting shall conform to the provisions in "Preservation of Property" of these special provisions. ## MAINTAIN EXISTING PLANTED AREAS Existing planted areas shall be maintained as directed by the Engineer. Maintaining existing planted areas will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. Attention is directed to "Preservation of Property" of these special provisions. ## REMOVE EXISTING PLANTS FOR TRENCHING Removing existing plants for trenching shall conform to the provisions in Section 20-5.026, "Remove Existing Plants for Trenching," of the Standard Specifications and these special provisions. Removing existing plants for trenching work shall consist of removing ground cover, pruning trees and shrubs within trench locations, applying preemergents and disposing of removed ground cover and prunings. Replacement of removed ground cover within the maximum 1.8-m width, as specified in Section 20-5.026, "Remove Existing Plants for Trenching," of the Standard Specifications, will not be required. Trees and shrubs adjacent to soundwalls, retaining walls, dikes, walks, fences, guard railing, and pavement edges may be pruned back 3 m from these facilities to facilitate trenching work. When trenching is to be performed adjacent to other trees and shrubs that cannot be avoided, the trees and shrubs may be pruned upon receipt of prior written approval of the Engineer. Pruning shall include removal of deadwood, suckers, and broken or bruised branches 25 mm or larger in diameter. Pruning shall conform to the provisions in Section 20-4.055, "Pruning," of the Standard Specifications. Removed ground cover and pruned materials shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. One application of a preemergent pesticide shall be applied to trenched areas in existing ground cover areas and to trenched areas adjacent to fences, curbs, dikes and shoulders. The Engineer will determine when the preemergent pesticide shall be applied. # PRUNE EXISTING PLANTS Existing plants, as determined by the Engineer, shall be pruned. Pruning of the existing plants, except as otherwise provided in these special provisions, will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. ## 10-2.03 EXISTING HIGHWAY IRRIGATION FACILITIES The work performed in connection with the various existing highway irrigation system facilities shall conform to the provisions in "Existing Highway Facilities," of these special provisions. Water shall be maintained in conformance with the provisions in Section 20-5.025, "Maintain Existing Water Supply," of the Standard Specifications. ## LOCATE EXISTING CROSSOVERS AND CONDUITS Existing crossovers and conduits shown on the plans to be incorporated in the new work shall be located in conformance with the provisions for locating conduits in Section 20-5.03B, "Conduit for Irrigation Crossovers," of the Standard Specifications. Unless otherwise directed by the Engineer, existing crossovers and conduits shown on the plans to be incorporated in the new work shall be located prior to performing work on irrigation systems. If debris is encountered in the ends of conduits, the debris shall be removed
prior to performing other work in the conduits. Removal of debris within the first one meter in these conduits shall be at the Contractor's expense. If debris is encountered in the conduits more than one meter from the ends of the conduits, the additional debris shall be removed as directed by the Engineer and the removal work will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. ## CHECK AND TEST EXISTING IRRIGATION FACILITIES Existing irrigation facilities that are to remain or to be relocated, and that are within those areas where clearing and grubbing or earthwork operations are to be performed, shall be checked for missing or damaged components and proper operation prior to performing clearing and grubbing or earthwork operations. Existing irrigation facilities outside of work areas that are affected by the construction work shall also be checked for proper operation. A written list of existing irrigation system deficiencies shall be submitted to the Engineer within 5 working days after checking the existing facilities. Deficiencies found during checking of the existing facilities shall be corrected as directed by the Engineer. Corrective work ordered by the Engineer will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. When existing irrigation facilities are checked, existing backflow preventers shall be tested for proper operation in conformance with the provisions in Section 20-5.03J, "Check and Test Backflow Preventers," of the Standard Specifications. Existing backflow preventers shall be retested one year after the satisfactory completion of the previous test, and each year thereafter until the plant establishment period is completed. An additional test shall be provided not more than 10 days prior to acceptance of the contract. Length of watering cycles for use of potable water from water meters for checking or testing existing irrigation facilities shall be as determined by the Engineer. ## REMOVE EXISTING IRRIGATION FACILITIES Existing irrigation facilities where shown on the plans to be removed, shall be removed. Facilities that are more than 150 mm below finished grade may be abandoned in place. Immediately after disconnecting an existing irrigation facility to be removed or abandoned from an existing facility to remain, the remaining facility shall be capped or plugged, or shall be connected to a new or existing irrigation facility. ## 10-2.04 HIGHWAY PLANTING The work performed in connection with highway planting shall conform to the provisions in Section 20-4, "Highway Planting," of the Standard Specifications and these special provisions. ## HIGHWAY PLANTING MATERIALS # **Mulch (Green Material)** Mulch shall be woody material. Woody materials shall consist of chipped, shredded or ground green materials such as shrubs, tree trimmings or clean processed wood products. Deleterious materials such as rocks, glass, plastics, metals, clods, weeds, weed seeds, coarse objects, sticks larger than the specified particle size, salts, paint, petroleum products, pesticides or other chemical residues that would be harmful to plant or animal life shall not exceed 0.1-percent of the mulch volume. Chipping shall include shredding, grinding or other methods used to reduce mulch materials to the specified size. Green materials shall be processed and have reached an internal temperature of 56°C for a minimum of 15 consecutive days. During the processing period, the green material shall have been turned a minimum of 5 times. Green material shall have a particle size conforming to the provisions for shredded bark in Section 20-2.08, "Mulch," of the Standard Specifications. # **Commercial Fertilizer (Slow Release)** Commercial fertilizer (slow release) shall be a pelleted or granular form, shall be slow or controlled release with a nutrient release over an 8- to 12-month period, and shall fall within the following guaranteed chemical analysis range: | Ingredient | Percentage | |----------------------|------------| | Nitrogen | 16-21 | | Phosphoric Acid | 6-8 | | Water Soluble Potash | 4-10 | ## ROADSIDE CLEARING Prior to preparing planting areas and erosion control (type D)areas, or commencing irrigation trenching operations for planting areas, trash and debris shall be removed from these areas and a distance of 3 m beyond the edges of those areas. In addition to removing trash and debris, the project area shall be cleared as specified herein: A. Weeds shall be killed and removed within proposed mulch areas adjacent to soundwall, retaining wall construction and within the proposed planting areas. After the initial roadside clearing is complete, additional roadside clearing work shall be performed as necessary to maintain the areas, as specified above, in a neat appearance until the start of the plant establishment period. This work shall include the following: - A. Trash and debris shall be removed. - B. Rodents shall be controlled. - C. Weed growth shall be killed before the weeds reach the seed stage of growth or exceed 150 mm in length. - D. Existing ground cover shall be killed and removed from within the 2-m diameter areas specified for each proposed plant location within the existing ground cover areas. - E. Weeds in plant basins, including basin walls, shall be removed by hand pulling, after the plants have been planted. ## **Weed Control** Weed control shall also conform to the following: - A. Stolon type weeds shall be killed with glyphosate. - B. Removed weeds and ground cover shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Roadside clearing work shall not include work required to be performed as clearing and grubbing as specified in Section 16, "Clearing and Grubbing," of the Standard Specifications. ## **PESTICIDES** Pesticides used to control weeds shall conform to the provisions in Section 20-4.026, "Pesticides," of the Standard Specifications. Except as otherwise provided in these special provisions, pesticide use shall be limited to the following materials: Cacodylic Acid Diquat Fluazifop-butyl Glyphosate Isoxaben (Preemergent) Sethoxydim Oxadiazon - 50 percent WP (Preemergent) Oryzalin (Preemergent) Pendimethalin (Preemergent) Prodiamine (Preemergent) Trifluralin (Preemergent) Napropamide (Preemergent) Granular preemergents may be used when applied to areas that will be covered with mulch, excluding plant basins. Granular preemergents shall be limited to the following materials: Dichlobenil (Preemergent) Oxadiazon (Preemergent) Granular preemergents shall be applied prior to the application of mulch. Mulch applications shall be completed in these areas on the same working day. Photosensitive dye will not be required. Glyphosate shall be used to kill stolon type weeds. Oxadiazon shall be of the emulsifiable concentration or wettable powder type, except when Oxadiazon is used under mulch in conformance with these special provisions. Preemergents shall not be applied within 450 mm of plants. If the Contractor elects to request the use of other pesticides on this project, the request shall be submitted, in writing, to the Engineer not less than 15 days prior to the intended use of the other pesticides. Except for the pesticides listed in these special provisions, no pesticides shall be used or applied without prior written approval of the Engineer. Pesticides shall not be applied within the limits of the plant basins. Pesticides shall not be applied in a manner that allows the pesticides to come in contact with the foliage and woody parts of the plants. ## PREPARING PLANTING AREAS Plants adjacent to drainage ditches shall be located so that after construction of the basins, no portion of the basin walls shall be less than the minimum distance shown on the plans for each plant involved. ## **PLANTING** Backfill material for plant holes shall be a mixture of soil and soil amendment. The quantity of soil amendment shall be as shown on the Plant List. Soil amendment shall conform to the provisions in Section 20-2.03, "Soil Amendment," of the Standard Specifications. Backfill material shall be thoroughly mixed and uniformly distributed throughout the entire depth of the plant hole without clods and lumps. Commercial fertilizer (pelleted and granular) shall be applied or placed at the time of planting and at the rates shown on the Plant List and in conformance with the provisions in Section 20-4.05, "Planting," of the Standard Specifications and these special provisions. A granular preemergent shall be applied to areas to be covered with mulch outside of plant basins in conformance with the provisions in "Pesticides" of these special provisions. Mulch placed in areas outside of plant basins shall be spread to a uniform depth of 100 mm. Mulch shall be spread from the outside of the proposed plant basin to the adjacent edges of shoulders, dikes, curbs, sidewalks, walls, fences, and existing plantings. If the proposed plant material is 3.6 m or more from the adjacent edges of shoulders, dikes, curbs, sidewalks, walls, fences, and other existing plantings, the mulch shall be spread 2 m beyond the outside edge of the proposed plant basins. Mulch shall not be placed within one meter of the centerline of earthen drainage ditches, within one meter of the edge of paved ditches, and within one meter of the centerline of drainage flow lines. Attention is directed to "Irrigation Systems Functional Test" of these special provisions regarding functional tests of the irrigation systems. Planting shall not be performed in an area until the functional test has been completed for the irrigation system serving that area. ## PLANT ESTABLISHMENT WORK The plant establishment period shall be Type 2 and shall not be less than 250 working days. Attention is directed to "Relief From
Maintenance and Responsibility" in these special provisions regarding relief from maintenance and protection. Commercial fertilizer (slow release) shall be applied to trees, shrubs, vines and ground cover during not more than 5 days prior to the completion of the plant establishment period. Commercial fertilizer shall be applied at the rates shown on the plans and shall be spread with a mechanical spreader wherever possible. The center to center spacing of replacement plants for unsuitable ground cover plants shall be determined by the number of completed plant establishment working days at the time of replacement and the original spacing in conformance with the following: | ORIGINAL SPACING
(Millimeters) | SPACING OF REPLACEMENT GROUND COVER PLANTS (Millimeters) | | | |-----------------------------------|--|-----------------------------|------------------| | | Number of Cor | npleted Plant Establishment | t Working Days | | | 1-125 | 126-190 | 191-End of Plant | | | | | Establishment | | 230 | 230 | 150 | 150 | | 300 | 300 | 230 | 150 | | 460 | 460 | 300 | 230 | | 600 | 600 | 460 | 300 | | 910 | 910 | 600 | 460 | Weeds within plant basins, including basin walls and ground cover, shall be controlled by hand pulling. Weeds outside of mulched areas, plant basins, ground cover, the median, and paved areas shall be controlled by mowing. At locations where proposed planting areas are 3.6 m or more from the edges of existing plantings to remain and from shoulders, dikes, curbs, sidewalks, fences, and walls, the mowing limit shall be 2 m beyond the outer limits of the proposed planting area. Weeds within median areas, pavement, curbs, sidewalk, and other surfaced areas shall be controlled by killing. Vines shall be trained onto walls. At the option of the Contractor, plants of a larger container size than those originally specified may be used for replacement plants during the plant establishment period. The use of plants of a larger container size than those originally specified for replacement plants shall be at the Contractor's expense. After 125 working days of the plant establishment period have been completed, replacement of plants, except for ground cover plants, shall be No. 1 size for seedlings, pot and liner size plants; No. 5 size for No. 1 size plants; No. 15 size for No. 5 size plants; and other plant replacement plants shall be the same size as originally specified. When ordered by the Engineer, one application of a preemergent pesticide conforming to the provisions in "Pesticides" of these special provisions, shall be applied between 20 and 30 working days prior to completion of the plant establishment period. This work will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. The final inspection shall be performed in conformance with the provisions in Section 5-1.13, "Final Inspection," of the Standard Specifications and shall be completed a minimum of 20 working days before the estimated completion of the contract. ## 10-2.05 IRRIGATION SYSTEMS Irrigation systems shall be furnished and installed in conformance with the provisions in Section 20-5, "Irrigation Systems," of the Standard Specifications, except materials containing asbestos fibers shall not be used. Attention is directed to the provisions in "Obstructions" of these special provisions, regarding work over or adjacent to existing underground facilities. Excavation for proposed irrigation facilities shall not be started until the existing underground facilities have been located. Method A pressure testing shall conform to the provisions in Section 20-5.03H(1), "Method A", of the Standard Specifications, except leaks that develop in the tested portion of the system shall be located and repaired after each test period when a drop of more than 35 kPa is indicated by the pressure gage. After the leaks have been repaired, the one hour pressure test shall be repeated and additional repairs made until the drop in pressure is 35 kPa or less. Pipe supply lines shall be pressure tested in conformance with the provisions in Section 20-5.03H, "Pressure Testing," of the Standard Specifications, except the pipe (supply line) on the discharge side of the control valve shall be tested by Method B as specified in Section 20-5.03H(2), "Method B," of the Standard Specifications. Only pipeline trenches and excavation pits for supply lines being supplied from one water service point shall be open at one time. After pressure testing is complete, trenches and pits excavated for pipe supply lines, being supplied from one water service point, shall be backfilled prior to commencing excavations for pipe supply lines being supplied from another water service point. ## VALVE BOXES Valve boxes shall conform to the provisions in Section 20-2.24, "Valve Boxes," of the Standard Specifications, except as otherwise provided herein. Valve boxes shall be precast portland cement concrete. Covers for concrete valve boxes shall be cast iron or steel. Cast iron and steel covers shall be hinged with brass hinge pins for valve boxes containing valves smaller than 50 mm. Valve boxes shall be identified on the top surface of the covers by labels containing the appropriate abbreviation for the irrigation facility contained in the valve box as shown on the plans. Valve boxes that contain remote control valves shall be identified by the appropriate letters and numbers (controller and station numbers). Labels for valve boxes shall conform to the provisions in Section 20-5.03F, "Valves and Valve Boxes," of the Standard Specifications. Label material shall be polyurethane. ## **BALL VALVES** Ball valves shall be furnished and installed as shown on the plans and in conformance with these special provisions. Ball valves shall be manufactured from Chlorinated Polyvinyl Chloride (CPVC) or polyvinyl chloride (PVC) and shall conform to the following: | Specification | Minimum Requirement | |---------------------------------------|---------------------| | Non-shock cold water working pressure | 1623 kPa | | for 20 mm - 100 mm valves | | | Non-shock cold water working pressure | 1034 kPa | | for 150 mm valves | | | Seats | PTFE (Teflon) | | O-Ring Seals | EPDM or Viton | Ball valves shall be of the same size as the pipeline which the valves serve, unless otherwise noted on the plans. Ball valves shall be installed in a valve box. # ELECTRIC AUTOMATIC IRRIGATION COMPONENTS ## **Irrigation Controllers (Solar)** The solar automatic irrigation controller shall conform to the following: - A. Photovoltaic power system, computer with lockable, waterproof, vandal resistant case. - B. All power will be provided by an internal photovoltaic system. Power shall be available for continuous 24-hour operation. - C. The computer liquid-crystal display will be powered by a 9-volt battery key mechanism. - D. Irrigation controller shall be fully automatic and capable of operating a complete one day to 90 day cycle, scheduling up to 32 totally independent programs, each having its own start time, day cycle, assigned stations, duration, and program time. Each station shall be capable of one minute to 24 hours in one minute increments. - E. Irrigation controller shall have an emergency program backup system. - F. Low voltage control and neutral conductors and splice connectors shall be manufactured by the same company. - G. The watering time of each station shall be displayed on the face of the control panel. The irrigation controller (solar) shall be enclosed in a stainless steel enclosure with inside mounted hinges and an inside mounting clamp. The enclosure shall be equipped with a stainless steel lock. Prior to acceptance of the contract, 2 keys shall be delivered to the Engineer. The enclosure cover, shall be resistant to crazing, staining, discoloration, creep, warping, and the long range deleterious effects of vehicle fumes, direct sunlight, heat (up to 90°C), water, oils, and aging. ## **Electric Remote Control Valves** Electric remote control valves shall conform to the provisions in Section 20-2.23, "Control Valves," of the Standard Specifications and the following: - A. Valves shall be brass, bronze, or cast iron construction. - B. Valves shall be straight pattern (side inlet). - C. Valve solenoids for (solar/battery) controller shall be DC latching and operate on 3.5 V. ## **Pull Boxes** Pull box installations shall conform to the provisions in Section 20-5.027I, "Conductors, Electrical Conduits and Pull Boxes," of the Standard Specifications. ## Conductors Low voltage, as used in this section "Conductors," shall mean 36 V or less. Low voltage control and neutral conductors in pull boxes and valve boxes, at irrigation controller terminals, and at splices shall be marked with adhesive cloth wrap-around markers. Low voltage control and neutral conductors in pull boxes and valve boxes, at irrigation controller terminals, and at splices shall be marked as follows: - A. Conductor terminations and splices shall be marked with adhesive backed paper markers or adhesive cloth wrap-around markers, with clear, heat-shrinkable sleeves sealed over the markers. - B. Non-spliced conductors in pull boxes and valve boxes shall be marked with clip-on, "C" shaped, white extruded polyvinyl chloride sleeves. Marker sleeves shall have black, indented legends of uniform depth with transparent overlays over the legends and "chevron" cuts for alignment of 2 or more sleeves. Markers for the control conductors shall be identified with the appropriate number or letter designations of irrigation controllers and station numbers. Markers for neutral conductors shall be identified with the appropriate number or letter designations of the irrigation controllers. The color of low voltage neutral and control conductor insulation, except for the striped portions, shall be homogeneous throughout the entire thickness of the insulation. Insulation
for conductors may be UL listed polyethylene conforming to UL44 test standards with a minimum insulation thickness of 1.05 mm for wire sizes 10AWG and smaller. At the option of the Contractor, other types of splice sealing materials and methods may be used provided other materials and methods have been approved in writing by the Engineer prior to installation of the connectors. Prior to granting relief from maintenance and responsibility, as provided in these special provisions, the functional test, in conformance with the provisions in Section 20-5.027J, "Testing," of the Standard Specifications, shall be satisfactorily completed, and instruction shall be given to the Engineer on the use and adjustment of the installed irrigation controllers. ## PIPE ## **Plastic Pipe** Plastic pipe supply lines shall be polyvinyl chloride (PVC) 1120 or 1220 pressure rated pipe with the minimum pressure rating (PR) shown on the plans. Plastic pipe supply lines shall have solvent cemented type joints. Primers shall be used on the solvent cemented type joints. Plastic pipe supply lines (main) shall have a minimum cover of 0.45 m. Plastic pipe supply lines downstream from the remote control valves for Type C-2 sprinklers shall have a minimum cover of 150 mm. Fittings for plastic pipe supply lines with a pressure rating (PR) of 315 shall be Schedule 80. ### WATER METER Water meters for the irrigation systems will be furnished and installed by the serving utility at the locations shown on the plans. The Contractor shall make the arrangements and pay the costs and fees required by the serving utility. The DWP Water Company has established a fee of \$4,500.00 for furnishing and installing a water meter. If, at the time of installation, this fee has been changed, the State will take a credit for the reduction in the fee, or the State will pay the difference for the increase in the fee. The credit or payment will be taken or paid on the first monthly progress payment made after the meter is installed. The Contractor shall furnish the Engineer with a copy of the invoice for the installation fee. Attention is directed to Section 20-4.06, "Watering," of the Standard Specifications. The Contractor shall make the arrangements for furnishing and applying water until the water meters have been installed by the serving utility. The quantity of water meters will be measured by the unit as determined from actual count in place. The contract unit price paid for water meter shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing and installing water meters, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ## **BACKFLOW PREVENTER ASSEMBLIES** Backflow preventers shall conform to the provisions in Section 20-2.25, "Backflow Preventers," of the Standard Specifications and these special provisions. Pressure loss through the backflow preventers shall not exceed the following: | BACKFLOW PREVENTER SIZE | FLOW RATE | PRESSURE LOSS | |-------------------------|---------------------|---------------| | (millimeters) | (Liters per minute) | (kPa) | | 25 | 227 | 24 | | 50 | 454 | 48 | Backflow preventer assemblies shall be painted with a minimum of 2 applications of a commercial quality enamel paint. The color of the paint shall be light brown. When backflow preventer assembly enclosures are specified, the portland cement concrete pads for the enclosures will be paid for in conformance to the provisions in "Backflow Preventer Assembly Enclosures" of these special provisions. ## BACKFLOW PREVENTER ASSEMBLY ENCLOSURE Enclosures shall be fabricated of structural steel angles and flattened expanded metal and shall be installed over backflow preventer assemblies on a portland cement concrete pad as shown on the plans and in conformance with these special provisions. Expanded metal for sides, ends and top panels shall be fabricated from 1.9 mm (14-gage), minimum thickness, sheet steel. The flattened expanded metal openings shall be approximately 20 mm by 45 mm in size. Expanded metal panels shall be attached to the steel frames by a series of welds, not less than 6.4 mm in length and spaced not more than 100 mm on centers, along the edges of the enclosure. Enclosure door handles shall have provisions for padlocking in the latched position. Padlocks will be State-furnished. Attention is directed to "State-furnished Materials" of these special provisions. Enclosures shall be galvanized, after fabrication, in conformance with the provisions in Section 75-1.05, "Galvanizing," of the Standard Specifications. Concrete for the concrete pad shall conform to the provisions in Section 20-2.26, "Concrete," of the Standard Specifications. Hold down bolt assemblies shall be galvanized and shall be installed when the portland cement concrete pad is still plastic. Nuts shall be hexagonal and washers shall be the lock type. Enclosures shall be painted with one application of a commercial quality pre-treatment, vinyl wash primer and a minimum of one application of a commercial quality, exterior enamel for metal. The finish color shall be light brown. All parts of the backflow preventer assembly enclosure, including hold down assemblies, may be constructed of stainless steel instead of standard steel materials specified above. Stainless steel enclosures shall conform to the provisions herein except galvanizing, priming and painting shall not be required. Stainless steel enclosures shall be powder coated a light brown color by the manufacturer. The minimum clearance between the backflow preventer assembly and the backflow preventer assembly enclosure shall be 50 mm. The concrete pad shall extend a minimum of 50 mm beyond the outer limits of the backflow preventer assembly enclosure, unless otherwise shown on the plans or specified in these special provisions. Full compensation for furnishing and installing backflow preventer assembly enclosures and constructing the portland cement concrete pads for the enclosures shall be considered as included in the contract unit price paid for the size of backflow preventer assembly involved and no separate payment will be made therefor. ## TESTING NEW BACKFLOW PREVENTERS New backflow preventers shall be tested for proper operation in conformance with the provisions in Section 20-5.03J, "Check and Test Backflow Preventers," of the Standard Specifications and these special provisions. Tests for new backflow preventers shall be satisfactorily completed after installation and before operation of the irrigation systems. ### **SPRINKLERS** Sprinklers shall conform to the type, pattern, material, and operating characteristics listed in the "Sprinkler Schedule" shown on the plans. Flexible risers shall be ultraviolet (UV) resistant, brown in color and shall conform to the details shown on the plans. Flow shutoff device on risers for sprinklers (Type A) shall automatically and instantly stop the flow of water from a riser when the riser is broken on the downstream side of the device. Flow shutoff device shall be brightly colored for visibility. The flow shutoff device shall be installed as recommended by the manufacturer of the device. ## PRESSURE REDUCING VALVE Pressure reducing valves shall consist of pressure reducing valves, pressure gages, valve boxes with wire mesh and gravel or crushed rock, fittings ,and pipe as shown on plans. Pressure reducing valves shall be the spring diaphragm type, manufactured of bronze or cast iron construction, hydraulically operated and pilot controlled, and shall have flanged or threaded pipe connections. Pressure reducing valves with threaded connections shall be installed with unions on the inlet side of the valves. Pressure reducing valves shall not have internal filter screens. Pressure gages for pressure reducing valves shall be hermetically sealed with neoprene and shall have watertight polycarbonate cases and covers with molded clear polycarbonate windows. Gages shall be 50 mm in diameter, calibrated from 0 kPa to 1103 kPa, and have black aluminum pointers that contrast with gage faces and have brass stems. Internal gage parts shall be brass and phosphor bronze. Pressure reducing valves shall have an adjustable discharge pressure range of 103 kPa to 689 kPa. ## FINAL IRRIGATION SYSTEM CHECK A final check of existing and new irrigation facilities shall be performed not more than 20 working days prior to acceptance of the contract. The length of watering cycles using potable water measured by water meters for the final check of irrigation facilities will be determined by the Engineer. Remote control valves connected to the new irrigation controllers shall be checked for automatic performance when the controllers are in automatic mode. Unsatisfactory performance of irrigation facilities installed or modified by the Contractor shall be repaired and rechecked at the Contractor's expense until satisfactory performance is obtained, as determined by the Engineer. Nothing in this section "Final Irrigation System Check" shall relieve the Contractor of full responsibility for making good or repairing defective work or materials found before the formal written acceptance of the entire contract by the Director. ## SECTION 10-3. SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS ## 10-3.01 DESCRIPTION Modifying signals and lighting (City), lighting (City) lighting and sign illumination, ramp metering systems, traffic monitoring station, communication system routing, video node SD301 and data node SD301, providing signal and lighting (temporary-City), relocating extinguishable message sign, changeable message sign (CMS) No. 32, closed circuit television CCTV camera SD307 and closed circuit television CCTV camera SD321, installing lighting (City), traffic monitoring station 2421, irrigation controller enclosure cabinets (CEC) and electric
service (irrigation), and system testing and documentation shall conform to the provisions in Section 86, "Signals, Lighting and Electrical Systems," of the Standard Specifications and these special provisions. Traffic Monitoring station 2421 (New), shall be installed at KP 47.92, Southbound Route 405 south of Exposition Boulevard. Communication conduit is included in the following structures: - A. Olympic Blvd Undercrossing (Bridge No. 53-0706) - B. Santa Monica Blvd Undercrossing (Bridge No. 53-0708) - C. Ohio Ave Undercrossing (Bridge No. 53-1097) - D. Wilshire Blvd Undercrossing (Bridge No. 53-0710) - E. Constitution Ave Undercrossing (Bridge No. 0711) Traffic signal work shall be performed at the following locations: - A. Route 405 at Sawtelle. and-Tennessee Avenue - B. Route 405 at Church Lane and Sunset Boulevard - C. Route 405 at Church Lane and Route 405, SB Ramps Closed Circuit Television Camera (CCTV) system work shall be performed at the following locations: - A. Closed circuit television camera SD307 (Relocate), KP 49.90, Southbound Route 405 south of Ohio Avenue - B. Closed circuit television camera SD321 (Relocate), KP 51.68, Southbound Route 405 at Waterford Street. Changeable Message Sign (CMS) work shall be performed at CMS No. 32 (Relocate), KP 49.62, Southbound Route 405 at Santa Monica Boulevard. Modify Data Node and Video Note work shall be performed at, (KP 48.4), Southbound Route 405 south of Olympic Boulevard Data node work shall be performed at the following locations: - A. Data Node (Location SD0251), KP 40.4, Southbound Route 405 south of Howard Hughes Parkway. - B. Data Node (Location SD0301), KP 48.4, Southbound Route 405 south of Olympic Boulevard. The Contractor shall confirm equipment placement with the Engineer before installing any equipment. # 10-3.02 ABBREVIATIONS AND GLOSSARY The following Abbreviations and Glossary apply to Section 10-3 of these special provisions. ## **ABBREVIATIONS** & And # number ADM: Add Drop Multiplexer. AFC: Automated Frequency Control. AGC: Automatic gain control. AIS: Alarm Indication Signal. AISI: American Iron and Steel Institute. AMI: Alternate Mark Inversion (a data transmission protocol.) APD: Avalanche Photo diode. APL: Average picture level. APS: Automatic Protection Switch. AVC Automatic vehicle classification system AWG American wire gauge AWM: Appliance Wiring Material. B8ZS: Bipolar 8 Zero Suppression(data transmission protocol) BER: Bit error rate. BERTS: Bit Error Rate Test Set. BITS: Building Integrated Timing Supply. BNC: Bayonet Navy Connector. Bits per second. Bps: BPV: Bipolar Violation. Charge-Coupled Device. CCD: Camera Control Key pad. CCK: Camera Control Receiver CCR: CCT: Camera Control Transmitter. Closed Circuit Television. CCTV: Code of Federal Regulations. NTR: CIDH: Cast In Drilled Hole. CMIP: Configuration Management Information Protocol. CMISE: Common Management Information Service Entity. CMP: Configuration Management Plan. CMS: Changeable Message Sign. CODEC: Coder - Decoder. COMM Communication CPU: Central Processing Unit. CRT: Cathode Ray Tube. CTRL Controller DACCS Digital access and cross connection system D4: 4th version of the D-signal format for time division multiplexers. DB: Decibel. DBm: Decibel referred to milliwatt. DBrn: Decibel above reference noise. DCD: Data carrier detect DCE: Data communication equipment. DTE: Data Circuit Terminating Equipment. DEMARC Demarcation DEMUX Demultiplexer DCS: Digital Cross-Connect System. DS-1: Digital Signal Level 1. Digital Transmission Rate - 1.544 megabits per second. DS-3: Digital Signal Level 3. Digital Transmission Rate - 44.876 megabits per second. DWP: LA Dept. of Water and Power EIA: Electronics Industries Association. EMT: Electrical Metallic Tubing. ESF: Extended Superframe or Extended Superframe Format (4). E/O east of FCC Federal Communications Commission F/O or FO: Fiber optic. FDF Fiber Distribution Frame FDU: Fiber Distribution Unit. FRP: Fiberglass Reinforced Plastic. FXS: Foreign Exchange Subscriber. GFCI: Ground Fault Circuit Interrupter. GUI Graphical User Interface. HAR: Highway Advisory Radio. HVAC: Heating Ventilation and Air Conditioning. Hz: Hertz. IRE: IRE is a SMPTE Standard video reference level. ITUR International Telecommunications Union Radio JKFD: Jackfield KP Kilometer Post LA Los Angeles M13: Multiplexer, 28 DS-1 circuits to 1 DS-3 circuit. MHz: Megahertz. MMFO: Multimode fiber optics MUX: Multiplexer NEMA: National Electrical Manufacturers Association. NHD North Hollywood Nm: nanometer. NMS: Network Management System. NRZ: Non-return to Zero. NTSC: National Television Standards Committee. OC: Optical Channel. OD: Outside Diameter. OEM Original Equipment Manufacturer. OSHA: Occupational Safety and Health Administration. OW Order wire (Multiple voice circuit) P Pai P22 Pair 22 American Wire Gauge PAC BELL Pacific Bell telephone Company p-p: Peak to Peak. PC: Personal Computer. PCMS: Pasadena City Municipal Services or Portable Changeable Message Sign PDA Power distribution assembly PIN: P-type, intrinsic, N-type. PM: Post Mile Contract No. 07-195904 PR Pair PRBS: Pseudo-Random Bit Sequence pattern. QRSS: Quasi-Random Signal Source. REA: United States Rural Electrification Administration. RETMA: Radio-Electronics-Television Manufacturers Association (Former name of EIA.) RF: Radio Frequency. RG: Regulatory Guide. RMS: Ramp Metering System. Rms: Root-mean-square. RTS: Request to send. SF: Superframe Format (D4). SM: Singlemode. SMFO: Singlemode Fiber Optic. SONET: Synchronous Optical Network. SSOVP: Solid State Over-voltage Protector. SSPC: Steel Structures Painting Council. ST: Type of Connector. TDM: Time Division Multiplexer. THHN: Heat Resistant thermoplastic with Nylon Jacket Conductor. THWN: Moisture and Heat Resistant Thermoplastic with Nylon Jacket Conductor. TIA: Telecommunications Industries Association. TL-1: Transaction Language 1. TLP: Transmission Level Point. TOSNET: Traffic Operational System Network TMC: Traffic Management Center.TSG: Test Signal Generator.TSI: Time Slot Interchange.UNC: Unified National Coarse. UNIX: Specific operating system found in real- time applications. UV: Ultraviolet. V: Volt. V(ac) V, Alternating Current. V(dc) V, Direct current VID: Video Identification and Date/Time Display. VSK: Video switch keypad. VSM: Video switch matrix. VT-1.5: Virtual Tributary-Level 1.5 (1.728 Mb/s.). VT: Virtual Tributary. W: Watt. WFM: Waveform Monitor. WTO: Wire Transit Only. X.11, X.25: specific protocol standards generated by the International Telecommunications Union (formerly CCITT.) XHHW: Moisture and Heat Resistant Cross Linked Synthetic Polymer Conductor. ## **GLOSSARY** ## **Breakout** Cable "breakout" is produced by removing jackets just beyond the last tie-wrap point, exposing 0.9 m to 1.8 m of cable buffers, Aramid strength yarn and central fiberglass strength members and cutting Aramid yarn, central strength members and buffer tubes to expose individual glass fibers for splicing or connection to the appropriate device. # Cable Storage Cabinet A cabinet for holding excess cable slack, allowing flexibility in equipment location and allowing cable pulling for resplicing. ## Channel An information path between a discrete input and a discrete output. One single input to a multiplexer or output from a demultiplexer. ## **Closed Circuit Television Assembly** Camera, lens, environmental enclosure, and necessary connectors and cables. ## Connector A mechanical device providing the means for attaching to and decoupling from a transmitter, receiver or another fiber (such as on a patch panel). ## Connectorized A fiber with a connector affixed to it. # **Connector Module Housing (CMH)** A patch panel used in the FDF to terminate singlemode fibers with most common connector types. It may include a jumper storage shelf and a hinged door. ## **Couplers** Devices normally located within FDF's mounted in panels, that mate 2 fiber optic connectors to facilitate the transition of optical light signals from one connector into another. They may also be used unmounted, to join 3 simplex fiber runs. Couplers may also be referred to as adapters, feed-throughs and barrels. # Fiber Distribution Frame (FDF) A rack mounted system usually installed in the TMC that consists of a standard equipment rack, fiber routing guides, horizontal jumper troughs, fiber distribution units (FDU), connector module housings (CMH) and splice module housings (SMH). FDF's serves as the "home" for passive fiber optic components from cable breakout, for connection by jumpers, to the electronics. # Fiber Distribution Unit (FDU) An enclosure containing a Connector Module Housing (CMH) and a Splice Module Housing enclosure. # Field Cabinet A roadside cabinet housing controllers or communications equipment. ## **Intermediate Distribution Frame Room (IDF room)** The room or area inside a hub or hut containing the FDF and other distribution hardware. # **Jumper** A short fiber optic cable with connectors installed on both ends, typically used for connection within an FDF. ## **Light Source** A portable piece of fiber optic test equipment used to perform end-to-end attenuation testing in conjunction with a power meter containing a stabilized light source operating at the designed wavelength of the system under test. ### Link A passive section of the system, the ends of which are to be connected to active components. A link may include splices and couplers. For example, a video link may be from a F/O transmitter to a video Multiplexer (MUX). ## **Main Distribution Frame Room (MDF room)** The room inside the TMC which contains the FDF and other distribution hardware. ### Mux/Demux Multiplexer/Demultiplexer. # **Optical Time Domain Reflectometer (OTDR)** Fiber optic test equipment used to measure total amount of power loss between 2 points and the corresponding distance. It provides a visual and printed display of the relative location of system components such
as fiber sections, splices and connectors and as losses attributable to each component or defect in fiber. ## Patchcord A short jumper. ## Pigtail A short length of fiber optic cable with a connector installed on one end. ## **Power Meter** A portable fiber optic test equipment used to perform end-to-end attenuation testing in conjuction with a light source, containing a detector that is sensitive to light at the designed wavelength of the system under test. Its display indicates the amount of power injected by the light source that arrives at the receiving end of the link. # Segment A section of F/O cable not connected to an active device which may or may not have splices per the design. # Splice Closure An environmentally sealed container used to organize and protect splice trays, normally installed in a splice vault that allows splitting or routing of fiber cables from multiple locations. # **Splice Module Housing (SMH)** A housing for storage of splice trays, pigtails and short cable lengths. ## **Splice Tray** A container used to organize and protect spliced fibers. # **Splice Vault** A vault used to house splice closures. ## 10-3.03 COST BREAK-DOWN Cost break-downs shall conform to the provisions in Section 86-1.03, "Cost Break-Down," of the Standard Specifications and these special provisions. The Engineer shall be furnished a cost break-down for each contract lump sum item of work described in this Section 10-3. The cost break-down shall be submitted to the Engineer for approval within 15 days after the contract has been approved. The cost break-down shall be approved, in writing, by the Engineer before any partial payment for the items of electrical work will be made. The cost breakdown shall include the following items in addition to those listed in the Standard Specifications: - A. Fiber distribution units - B. Pull boxes, communication pull boxes and splice vaults each type - C. Twisted pair and fiber optic cables - D. Twisted pair and fiber optic cable splice closures - E. CCTV poles - F. System testing ## 10-3.04 MAINTAINING EXISTING AND TEMPORARY ELECTRICAL SYSTEMS Traffic signal system shutdowns shall be limited to periods between the hours of 9:00 a.m. and 3:00 p.m. except the normal lighting schedule shall be maintained on weekends and on designated holidays as defined in "Maintaining Traffic" of these special provisions. Traffic turn on or "switch over" may be done on any working day except Friday, or the day preceding a legal holiday. The Contractor shall notify the Engineer 5 days prior to the scheduled traffic signal turn-on. The Contractor shall maintain existing service to existing circuits, modify and reconnect existing and new circuits in a sequence as directed by the Engineer. Lighting and sign illumination system shutdowns shall be limited to periods allowed for lane closures listed or specified in "Maintaining Traffic" of these special provisions. Two adjacent series circuits shall not be shut down at the same time. Traffic signal controller shall not be disconnected from its electrical power for more than 15 minutes in any 24-hour period without prior written approval from the Engineer. Traffic signal controllers shall not be disconnected or disrupted between the hours of 6:00 a.m. and 9:00 a.m. and from 3:00 p.m. to 7:00 p.m. Monday through Friday. The Contractor shall obtain written approval from the Engineer, at least 72 hours prior to system cutover, testing, disconnection or disruption of service from the existing lighting and sign illumination, changeable message sign system, ramp metering system and traffic monitoring station. # MAINTAINING EXISTING TRAFFIC SIGNAL The Contractor shall notify the Engineer first and the City of Los Angeles Department of Transportation (LADOT) traffic signal inspector at 213-847-3724, 3 working days prior to start of construction. For work in the automated traffic surveillance and control (ATSAC) area, a field meeting shall be scheduled with the Engineer, the ATSAC project engineer at 213-847-0303 and the senior maintenance supervisor at 213-847-5054, 7 working days prior to the beginning of construction. Restoration of the ATSAC system shall occur within 5 working days after shut down. ## MAINTAINING EXISTING STREET LIGHTING The Contractor shall notify the Engineer first and the City of Los Angeles, Department of Water and Power, Street Lighting Maintenance, telephone 213-481-4366, at least72 hours prior to performing work on existing street lighting circuits. Existing City of Los Angeles electroliers to be removed or modified as shown on the plans shall be maintained in service until new electrolier lighting systems are placed in service. Other electroliers on affected circuits shall be maintained in service. The Contractor may provide alternate lighting in lieu of maintaining existing electroliers in service if approved by the Engineer. The Contractor shall immediately notify the Engineer and the City of Los Angeles, Bureau of Street Lighting, Field Operations Division at 213-913-4743 of damages to electrical systems caused by operations. After 4:30 p.m. Mondays through Thursdays and after 3:30 p.m. Fridays, the Contractor shall notify the Electric Trouble Board of Department of Water and Power (LADWP) at 800-821-5278 for the City. ## MAINTAINING EXISTING TRAFFIC CONTROL SIGNING Existing traffic control signing shall be maintained with standard sign brackets by the Contractor. Traffic control signing damaged or lost by the Contractor shall be replaced at the Contractor's expense. Arrangements for obtaining replacement signing (with subsequent billing) shall be made with LADOT's cost accounting section at 213-580-5098. # 10-3.05 MAINTAINING EXISTING COMMUNICATION SYSTEM ROUTING GENERAL Elements of existing communication system routing located within the project limits may conflict with construction operations and shall remain in place and be protected from damage. In areas where excavation operations are performed, the Contractor shall notify the Engineer a minimum of 72 hours prior to starting work and obtain as-built plans for the area. The Contractor shall obtain written approval from the Engineer, a minimum of 72 hours prior to system cut-over or disconnection of service from existing individual electrical systems for existing communication system routing elements, including, but not limited to, traffic monitoring systems (TMS) and closed circuit television (CCTV) camera systems. The Contractor shall use hand tools to excavate, relocate, repair, replace and remove existing communication system routing elements and devices. If part of the existing communication system elements is damaged or fails due to the Contractor's operations, the Engineer shall be notified immediately and damaged communication system routing elements shall be repaired or replaced, at the Contractor's expense, within 5 working days. Replaced communication system routing elements shall be new, of equal or better quality than damaged communication system elements. ## PRE-CONSTRUCTION CHECK The Contractor and the Engineer shall jointly conduct a pre-construction check of the existing communication system routing elements. The Engineer will approve in advance and in writing, replacement methods and replaced facilities; including communication conduit types and bend radius and fusion splicing of fiber optic cables. If fiber optic cables are damaged due to the Contractor's operations, the Contractor shall install new fiber optic cables from an original splice point to an original splice point, unless otherwise authorized in writing by the Engineer. Fiber optic cable shall be spliced at existing splice vaults. The amount of new fiber optic cable slack in splice vaults and the number of new fiber optic cable splices shall be the same as original. Fusion splicing will be required. The Contractor shall demonstrate that repaired or replaced facilities operate in a manner identical to that prior to damage. If the Contractor fails to perform required repairs or replacement work, as determined by the Engineer, the State will perform repair or replacement work and the cost of performing such repairs or replacement work will be deducted from any money due, or to become due the Contractor. Electrically related construction may be suspended, as determined by the Engineer, until repairs and replacement work have been completed. Full compensation for pre-construction check of existing communication system routing elements shall be considered as included in the contract lump sum price paid for communication system touting (modify) and no additional compensation will be allowed therefor. # RESTRICTIONS OF CLOSED CIRCUIT TELEVISION (CCTV) CAMERA, AND TRAFFIC MONITORING STATION, RAMP METERING SYSTEM AND CHANGEABLE MESSAGE SIGN An individual electrical system for communication system routing, traffic monitoring system, closed circuit television (CCTV) camera system, ramp metering system and changeable message sign shall be considered "offline" for the duration of time it is disconnected from AC power and disrupted from active communications with the Transportation Management Center (TMC), so messages and commands cannot be transmitted to communication system routing elements through the exercise of remote control commands from the TMC. Electrical systems for communication system routing, traffic monitoring system, closed circuit television (CCTV) camera, ramp metering and changeable message sign work shall be subject to the following restrictions, except as otherwise provided in these special provisions or directed by the Engineer: - A. Ramp metering systems or traffic monitoring station controllers shall not be disconnected or disrupted between the hours of 6:00 a.m., and 9:00 a.m., and from 3:00 p.m. to 7:00 p.m., Monday through Friday. - B. Ramp metering systems or traffic monitoring station controllers shall not be disconnected from electrical power for more than 15 minutes in any
24-hour period without prior written approval from the Engineer. - C. No more than 5 individual Model 170 Controller locations, each with its own unique controller I.D. number, shall be subject to disruption during system cut-over. - D. Changeable message signs shall not be disconnected or disrupted on weekends, beginning at 9:00 p.m. Friday and ending at 6:00 a.m. Monday. - E. Changeable message signs shall not be disconnected or disrupted between the hours of 6:00 a.m. and 7:00 p.m. any day. - F. No individual CMS shall be offline for more than 20 consecutive calendar days. # 10-3.06 COMMUNICATION SYSTEM ROUTING ## **GENERAL** Communication system routing consists of, but is not limited to, communication conduits and fiber optic and twisted-pair cables, fiber optic and twisted-pair splice closures, innerducts, communication pull boxes and splice vaults. Communication system routing connects various field elements such as closed circuit television (CCTV) cameras, fiber optic video, data, and cable nodes, ramp metering systems (RMS), traffic monitoring stations (TMS), count stations (CS), irrigation systems, traffic signal systems, changeable message signs (CMS) system with various communication system Hub buildings. Modifying communication system routing shall conform to rules and regulations of the Federal Communications Commission (FCC), the provisions in Section 86, "Signals, Lighting and Electrical Systems," of the Standard Specifications and these special provisions. New equipment shall be current standard production units and shall have been in production for a minimum of 6 months. As-built plans for existing communication system routing and field elements are available for inspection or conving at As-built plans for existing communication system routing and field elements are available for inspection or copying at the Department of Transportation, Construction Office, 120 South Spring Street, Room 244, Los Angeles California 90012, telephone (213) 897-0054. The Contractor shall perform work conforming to the provisions in "Order of Work," of these special provisions, as directed by the Engineer, and in the following order: - A. A jointly conducted pre-construction check shall be conducted with the Engineer, conforming to the requirements in "Maintaining Existing Communication System Routing," of these special provisions. - B. The Contractor shall submit an installation and test plan, in accordance with manufacturer's specifications, for approval in advance by the Engineer. The test plan shall verify that existing materials and equipment are operationally functional before construction commences and record the working condition of those materials and equipment. - C. The Contractor shall modify communication system routing work according to the approved schedule specifying the timetable of construction activities conforming to the requirements in "Order of Work," of these special provisions. - D. The Contractor shall perform system testing conforming to the requirements in "System Testing for Modify Communication System Routing," and system cut-over work conforming to the requirements in "Communication System Routing Cut-over," of these special provisions. The Contractor shall arrange, at the Contractor's expense, to have a technician qualified to work on existing communication system routing and field element equipment present at the time the communication system routing and field element equipment is installed, modified or reconnected. # 10-3.07 MODIFY COMMUNICATION SYSTEM ROUTING, RELOCATE CMS AND CCTV CAMERAS, MODIFY VIDEO NODE AND DATA NODE, AND TRAFFIC MONITORING STATION Modifying communication system routing, video node and data node, relocating CMS and CCTV cameras and installing traffic monitoring station, shall consist of, but is not limited to, removal and disposal of existing conductors, cables and communication pull boxes, furnishing and installing new pull boxes, electrical conductors and conduits, communication pull boxes, communication conduits, fiber optic and twisted pair cables and splice closures, innerducts, splice vaults, relocating existing changeable message sign (CMS) No. 32 and the pole to new location and on new foundation, relocating existing CCTV camera systems, including Model 334-TV controller cabinets and camera poles to new locations and on new foundations and performing system testing and communication system routing cut-over to provide full functionality of communication system routing, complete in place, as shown on plans and as directed by the Engineer. A CCTV camera system typically consists of a Model 334-TV cabinet and control equipment, camera control receiver (CCR), video transmitter (VTX), fiber optic interface cables, fiber distribution unit, fiber optic data modem, camera control circuits and accessories, CCTV wiring, including enclosed cables for video and camera controls, connectors, coaxial cables, CCTV camera assemblies, including pan and tilt units, color video cameras, camera lens, camera housing, camera poles, camera junction boxes and other equipment. A traffic monitoring station typically consists of a Model 334 cabinet and Model 170 controller, fiber optic interface cables, fiber distribution unit, control equipment, detector loop lead-in cables, inductive loop detectors, connectors and sensor units. ## 10-3.08 RELOCATE CLOSED CIRCUIT TELEVISON CAMERA Relocate closed circuit television (CCTV) camera at various locations shall consist of relocating the existing camera assembly, including camera pole, camera lens, camera housing, DSP color video camera unit, pan and tilt unit, and relocating existing Type 334-TV cabinet, including camera control receiver, modem and video transmitter, as shown on the plans, and as directed by the Engineer. ## 10-3.09 RELOCATE COUNT STATION AND TRAFFIC MONITORING STATION Relocate count station and traffic monitoring station (TMS) shall consist of relocating the existing Type 334 cabinet, including controller assembly, terminal block and other equipment housed in the existing Type 334 cabinet, to a new Type 334 cabinet foundation, installing new loop detectors and connecting conduits, wires, cables, and incidentals required to make the relocated cabinet fully operational, as shown on the plans and as directed by the Engineer. ## 10-3.10 RELOCATE CHANGEABLE MESSAGE SIGN Relocate changeable message sign (CMS) at various locations shall consist of relocating the existing Type 334-C cabinet, including controller assembly, terminal block and other equipment housed in the existing Type 3-C cabinet, to a new Type 33-C cabinet foundation, relocating the existing CMS sign panel and structure, installing new power and telephone conduits, and connecting wires, cables, and incidentals required to make the relocated cabinet fully operational, as shown on the plans and as directed by the Engineer. ## 10-3.11 MODIFY DATA AND VIDEO NODE Modify cable node shall consist of installing new fiber distribution unit and connecting wires, cables, and incidentals required to make the modified data and video node fully operational, as shown on the plans and as directed by the Engineer. ## 10-3.12 FOUNDATIONS Reinforced cast-in-drilled-hole concrete pile foundations for traffic signal and lighting standards shall conform to the provisions in "Piling" of these special provisions. Foundations for City of Los Angeles electroliers and traffic signals standards shall conform to the City of Los Angeles Department of Transportation Standard Drawings as shown on plans. Full compensation for cast-in-drilled-hole concrete pile foundations shall be considered as included in the contract lump sum price paid for modify signal and lighting (City) and no separate payment will be made therefor. ## 10-3.13 STANDARDS, STEEL PEDESTALS AND POSTS Standards, steel pedestals and posts for traffic signal and lighting standards shall conform to the provisions in "Steel Structures" of these special provisions. The sign panels will be State-furnished in conformance with the provisions in "Materials" of these special provisions. Type 1 standards shall be assembled and set with the handhole on the downstream side of the pole in relation to traffic or as shown on the plans. Full compensation for straps, seals and saddle brackets shall be considered as included in the contract lump sum price paid for modify signal and lighting (City) and no additional compensation will be allowed therefor. ## 10-3.14 CONDUIT Conduit to be installed underground, including conduit for power conductors, in jacking runs, masonry walls and sidewalks, from pull boxes and splice vaults to cabinets and junction boxes, and in or on structures shall be Type 1 unless otherwise specified. Detector termination conduits shall be Type 1. Type 3 conduit shall be used for communication trunk line. Conduit shall be installed by methods shown on the plans except as specified in these special provisions. A flat, woven, lubricated, polyester tape with a minimum tensile strength of 80 kN minimum shall be placed in conduits. A minimum of 1.2 m of tape shall extend beyond terminations. The conduit in a foundation and between a foundation and the nearest pull box shall be Type 1. Conduit sizes shown on the plans and specified in the Standard Specifications and these special provisions are referenced to metallic type conduit. When rigid non-metallic conduit is required or allowed, the nominal equivalent industry size shall be used as shown in the following table: | Size Designation for Metallic Type Conduit | Equivalent Size for Rigid Non-metallic Conduit | |--|--| | 21 | 20 | | 27 | 25 | | 41 | 40 | | 53 | 50 | | 63 | 65 | | 78 | 75 | | 103 | 100 | When a standard coupling cannot be used for joining Type 1 conduit, a UL listed threaded union coupling conforming to the provisions in Section 86-2.05C, "Installation," of the Standard
Specifications shall be used. When Type 3 communication conduit is placed in a trench, after the bedding material is placed and the conduit is installed, the trench shall be backfilled with slurry cement backfill conforming to the requirements in Section 19-3.062 of the Standard Specifications, except the maximum size of aggregate shall be 10 mm (pea gravel), containing not less than 150 kg of portland cement per cubic meter and commercial quality cement sand, to not less than 50 mm above the conduit before additional backfill material is placed. In areas where a jacking pits in concrete shoulders are necessary to jack conduit across roadways and the work is not completed in a work shift, the Contractor shall cover the jacking pit with steel plates after each completed work day. When the work has been completed in a particular jacking area. The surface shall be restored to original condition. When conduit is placed in trenches under paved shoulders, after bedding material is placed and conduit installed, trenches shall be backfilled with cement slurry backfill as specified above to a minimum of 30 mm from of existing shoulder surface Conduits located within the same trench shall have not less than 50 mm separation. Trenches shall be less than or equal to 200 mm width. No underground conduit shall be installed within 300-mm from existing PCC gutter depressions. Attention is directed to "Aerially Deposited Lead" of these special provisions. Immediately prior to installing conductors, cables and innerducts, conduits shall be blown out with compressed air until foreign material is removed. After conductors have been installed, the ends of conduits terminating in various pull boxes, splice vaults, service equipment enclosures, and various controller cabinets shall be sealed with an approved type of sealing compound. At those locations where conduit is required to be installed under pavement and existing underground facilities require special precautions in conformance with the provisions in "Obstructions" of these special provisions, conduit shall be placed by the "Trenching in Pavement Method" in conformance with the provisions in Section 86-2.05C, "Installation," of the Standard Specifications. At locations where conduit is required to be installed under pavement and if a delay to vehicles will not exceed 5 minutes, conduit may be installed by the "Trenching in Pavement Method." Conduit shall not be installed by trenching along the pavement of freeway lanes except in those section of the highway where there is insufficient clearance to locate a longitudinal trench off the traveled way, or where obstructions off the traveled way would necessitate bends in the conduits in excess of those allowed. Where conduits are shown on the plans parallel and adjacent to each other, they shall be installed together in a common trench as shown on the conduit installation details. Should the Contractor choose to install the conduits in separate trenches, only the "shared trench" quantities of trenching will be paid. Power conduits placed in the same trench as communication conduits shall not terminate in communication pull boxes. Communication conduits shall not terminate in power pull boxes. Trenching in pavement method is not allowed across freeway lanes, connectors and ramps. Full compensation for furnishing and installing conduit of various sizes, types, and installation methods, shall be considered as included in the contract lump sum price paid for the items of work involved and no separate payment will be made therefor. ## **CITY CONDUIT** The Contractor shall verify horizontal and vertical alignments of existing utilities prior to installation of conduits. Type 1 conduit shall be used in exposed areas, in jacking runs. Type 3 conduit shall be installed in open soil trenches and in pavement trenches whose edges have been sawcut, except in the vicinity of pull boxes where it may be bored in pre-drilled, augered or air blown holes. Trenches shall be 102 mm wide. Where trenches occurs within portland cement concrete, a 610 mm wide section of roadbed whose edges have been sawcut shall be removed. Trenching is not permitted through portland cement concrete structures, including but not limited to bus pads, spandrels and cross gutters. Where these are encountered, Type 3 conduit shall be bored. Trenching shall be backfilled to within 152 mm of the adjacent roadbed surface with a sand-portland cement slurry mix corresponding to 520-C2500 with a 101 mm maximum slump. The final 152 mm cap shall be of like material as the adjacent roadbed. A separate No. 8 ground wire and a 6 mm diameter polyethylene pull rope shall be placed in conduits. For Type 1 conduit a 6 mm diameter polyethylene pull rope shall be placed in the Type 1 conduit. Traffic signal conduits shall be separated from street lighting conduits. New conduit runs shall be the same size and material throughout the run. Existing underground conduit incorporated into new systems shall be cleaned with a mandrel or cylindrical wire brush and blown out with compressed air. Cross street traffic signal conduit runs and interconnect conduit runs between intersections, except fiber optic interconnect runs, shall be 78 mm in diameter. Two 78 mm conduits shall install between Type F-332 foundations and the adjacent Type PB-3 pull boxes. Conduit shall be placed to a depth of not less than 750 mm nor more than 1500 mm below the flowline grade, except that conduit placed behind curbs shall not be less than 350 mm nor more than 900 mm below top of curb. When existing conduit runs are modified or extended, the nominal material and size of new conduit shall be the same as existing conduit. Cross street traffic signal conduit runs and interconnect conduit runs shall be installed 762 mm below roadway grade. Traffic signal conduit under sidewalks shall be 457 mm below grade. After removing existing wires from street lighting conduit to be abandoned, conduit ends that are within 305 mm of the surface shall be cut and removed. Ends of remaining abandoned street lighting conduits shall be crimped. ### 10-3.15 COMMUNICATION CONDUIT Communication conduit shall conform to the provisions in "Conduit" of these special provisions and these special provisions. Excavation and slurry cement backfill shall conform to Section 19-3, "Structure Excavation and Backfill," of the Standard Specifications. Slurry cement backfill shall reach initial set prior to placing reinforced concrete for approach slabs. Conduit shall enter splice vaults and communication pull boxes through knockouts. Conduits entering ends of communication pull boxes shall be vertically and horizontally aligned with conduits at the opposite end of communication pull boxes. Conduit ends shall not extend beyond interior walls of splice vaults and communication pull boxes. Space around conduits through end walls of splice vaults and communication pull boxes shall be filled with portland cement mortar conforming to the provisions in Section 51-1.135, "Mortar," of the Standard Specifications. Conduit bodies or communication pull boxes shall not be used in lieu of specified bends to change the direction of communication conduit runs, except where specified. No bends shall be placed in sections of conduit in excess of those indicated in the plans without the approval of the Engineer. The total degrees of bending in a section of conduit between splice vaults and communication pull boxes shall not exceed a total of 180 degrees, except where specified otherwise. Changes in indicated conduit bends may be made to suit field conditions if the change reduces the degree of bend or increases the radius of bend. The angle of the bend shall not be increased without the approval of the Engineer. Minimum bending radius for size 53 and size 103 communication conduits shall be 610 mm and 1220 mm, respectively. Bends greater than 22 degrees shall be factory bends and bends greater than 45 degrees shall galvanized rigid steel with necessary adapters. Deflections from indicated communication conduit routing to avoid obstructions shall not exceed 83.3 mm/m. Conduit from typical trench sections shall not deflect by more than 83.3 mm/m from the alignment preceding or following communication pull boxes and splice vaults. Where edge drains are in the path of conduit routing, the Contractor shall first locate edge drains, then install conduit maintaining a minimum depth of 460 mm. If an edge drain is damaged by the Contractor's work, repairs shall be at the Contractor's expense. Conduit adjacent to overcrossings or bridge foundations shall be trenched and installed in shoulders as close as possible to the edge of traveled way so that a minimum of 1.5 m from the outside face of footing or pile cap is maintained, if possible. ## WARNING TAPE Warning tape shall be furnished and installed in trenches over new conduits to receive reinstalled or new fiber optic cables, as shown on the plans. Warning tape shall consist of 100-mm wide bright orange pigmented polyolefin film with a bold printed message of 19-mm black characters on one side. The message shall be: "CAUTION: BURIED FIBER OPTIC CABLE - CALTRANS (213) 897-0340," repeated at 910 mm intervals. Warning tape shall not delaminate nor shall the message smear when wet. Tape and printed message shall be resistant to insects and shall not degrade when exposed to alkalis, acids and corrosive elements commonly found in soil. Tape shall have a minimum of 356 N tensile strength and a minimum of 700 percent elongation before breakage. Warning tape shall be Condux International, Inc.; Allen System, Inc.; Reef Industries, Inc. or equal. Full compensation for warning tape shall be considered as included in the contract lump sum price paid for modify communication system routing and no additional compensation will be allowed therefor. # COLORED CEMENT BACKFILL Slurry cement backfill for installation of communication conduits that will
contain fiber optic cables shall be a medium to dark, red or orange color to distinguish the concrete backfill from other concrete and soil. Concrete shall be pigmented by addition of commercial quality cement pigments to concrete mixes. Red or orange concrete pigment shall be LM Scofield Company; Orange Chromix Colorant; Davis Colors; or equal. For trenches in payement areas, the top 100-mm of slurry cement backfill shall be pigmented concrete. Full compensation for furnishing and incorporating cement pigments shall be considered as included in the contract lump sum price paid for modify communication system routing and no additional compensation will be allowed therefor. ## FIBER UNDERGROUND WARNING SIGN Communication conduits installed in soil where conduit cannot be seen from above ground for more than 30 m shall have warning signs placed within 5 m of conduit at minimum 60-m intervals. Signs shall contain the message, "FIBER UNDERGROUND CALL (213) 897-4698 CALTRANS ITS DEPT." Dimensions of signs shall be a minimum of 130 mm x 170 mm x 2 mm, made of galvanized sheet metal or aluminum sheet. Sign colors shall be white lettering with black background. Signs shall be bolted to right of way fence at a height of 1.5 m. If the right of way fence is not within 5 m of conduit, signs shall be installed on metal posts in conformance with Standard Plan A73B. Full compensation for furnishing fiber underground warning sign shall be considered as included in the contract lump sum price paid for modify communication system routing and no additional compensation will be allowed therefor. ## 0.5-MM PLASTIC SHEET 0.5-mm plastic sheets shall be furnished and installed in trenches within roadway pavement, 3 cm over new communication conduits, as shown on the plans and as directed by the Engineer. Plastic sheets shall be manufactured from high-density polyethylene (HDPE) virgin compounds or polyvinyl chloride (PVC) virgin compounds. Full compensation for 0.5-mm plastic sheets shall be considered as included in contract lump sum price paid for communication system routing and no additional compensation will be allowed therefor. ## **SIZE 32 INNERDUCTS** Innerduct shall be installed to provide protection for fiber optic cables. Separate innerducts shall be installed for each fiber optic cable along communication mainlines as shown on the plans. Innerducts shall be 32 mm, smooth, ribbed or corrugated high tensile polyethylene duct with the following characteristics: - A. Inner diameter greater than or equal to 32 mm, nominal. - B. Environmental stress crack resistance in excess of 2000 hours at -100°C, no failures. - C. Cold impact resistance to -76°C not brittle until -100°C. - D. Minimum tensile strength of 2670 N for finished product. - E. Minimum crush strength of 2900 N. - F. Coefficient of friction less than 0.4 unlubricated on nonmetallic conduit and with common polyethylene cable jackets. Different innerducts within the same conduit shall be different colors, and shall be consistent throughout the project. Yellow shall be used for the 24SMFO fiber optic cables used for video/data and contrasting colors approved by the Engineer for the 12SMFO for video distribution. Exteriors of innerducts shall be marked with sequential measurement markings each meter. Innerduct shall be installed using manufacturer's recommended practices. Innerducts shall be installed using cable pulling lubricants recommended by the innerduct manufacturer and non-abrasive pull tapes conforming to the requirements in "Conduit" of these special provisions. If innerduct is installed with adjacent cables in the same conduit, innerducts and cables shall be installed together in one operation. Innerducts shall be installed in continuous runs between communication pull boxes and splice vaults without splices or joints. Ends shall be smooth to prevent scraping of cables. Dynamometers shall be used to record installation tensions and tension limiting devices shall be used to prevent exceeding maximum pulling tensions during installation. Breakaway devices shall be used to limit pulling tensions. One device shall be placed in series with every element rated for less than maximum pulling tensions of that element. Innerducts shall not be stressed beyond the minimum-bending radius allowed by the innerduct or fiber optic cable manufacturer. Tension shall be set to the manufacturer's maximum limit. Maximum pulling tension shall be recorded for each innerduct run. Immediately prior to installing cables, innerducts shall be blown out with compressed air until all foreign material is removed. After cables have been installed, ends of innerducts shall be sealed with an approved type of sealing compound. Full compensation for furnishing and installing size 32 innerducts shall be considered as included in contract lump sum price paid for modify communication system routing and no additional compensation will be allowed therefor. ## **10-3.16 PULL BOXES** Grout shall not be placed in the bottom of pull boxes. Additional pull boxes for communication system routing shall not be installed without the Engineer's written approval. Communication pull boxes shall be installed in the unpaved area immediately adjacent to paved shoulder or behind guardrail or as determined by the Engineer. Communication conduit shall be directed from shoulder to boxes with 15-degree (maximum) sweeps. Dikes shall be replaced in kind, as necessary. Full compensation for furnishing and installing or removing pull boxes of various sizes and types, including replacing dikes, shall be considered as included in the contract lump sum price paid for the items of work involved and no separate payment will be made therefor. ### TRAFFIC SIGNAL City of Los Angeles traffic signals and lighting pull boxes shall be Type PB-2 and Type PB-3 and shall conform to the requirements in the City of Los Angeles, Department of Transportation (LADOT) Standard Drawing No. S-78.5.1 as shown on the plans. Tops of pull boxes installed in sidewalk areas shall be flush with the surrounding grade or top of adjacent curb. Where practical, pull boxes adjacent to standards shall be placed 1 m from the side of foundations. Pull boxes shall not be placed in curb ramp area or driveways. Pull boxes shall be located beyond door opening paths of traffic signal controllers. Unless physically impractical, pull boxes shall be installed at least 150 mm from substructure or back of curb. ## STREET LIGHTING Street lighting pull boxes shall be Type 2 and shall conform to the requirements in LADOT Standard Drawing No. L-201-0 as shown on the plans. ## 10-3.17 COMMUNICATION PULL BOXES Communication pull boxes shall conform to provisions in Section 86-2.07, "Traffic Pull Boxes," of the Standard Specifications and these special provision. Communication pull box steel covers shall have "CALTRANS COMMUNICATION" markings. Concrete placed around and under communication pull boxes shall contain a minimum of 325 kg of cement per cubic meter. After installation of communication pull boxes, steel covers shall be installed and kept bolted down during periods when work is not actively in progress at pull boxes. When placing steel covers for the final time, covers and the Z-bar frames shall be cleaned of debris and securely tightened down. Communication pull boxes shown on the plans in shoulders are shown for general location. Exact locations shall be outside of paved shoulders and will be determined by the Engineer. Additional communication pull boxes shall not be installed without the Engineer's written approval. ## SPLICE VAULT Splice vaults shall be 1520 mm (L) x 760 mm (W) x 760 mm (D) nominal inside dimensions and shall conform to Section 86-2.06, "Pull Boxes," of the Standard Specifications and these special provisions. Covers shall be in one or 2 sections. Hold down bolts or cap screws and nuts shall be brass, stainless steel or other non-corroding metal. Each cover portion shall have inset lifting pull slots. Cover markings shall be "CALTRANS COMMUNICATION" on each cover section. Enclosures, covers and extensions shall be concrete gray color. Vault and covers may be constructed of reinforced portland cement concrete or of non-PCC material. Non-PCC vault and covers shall be of sufficient rigidity that when a 445 N concentrated force is applied perpendicularly to the midpoint of one of the long sides at the top, while the opposite long side is supported by a rigid surface, it shall be possible to remove the cover without the use of tools. When a vertical force of 6675 N is applied, through a 13-mm by 75-mm by 150-mm steel plate, to a non-PCC cover in place on a splice vault, the cover shall not fail and shall not deflect more than 6 mm. Splice vaults shall be installed as detailed and where shown on the plans. Splice vaults and covers shall have an AASHTO HS 20-44 rating where shown on the plans, except in areas protected from vehicular traffic, may be rated for AASHTO H5 loads (25 percent of HS 20-44). Splice vaults shall be installed 24 mm above grade in unpaved areas. Splice vaults shown on the plans in shoulders are shown for general location. Exact locations will be determined by the Engineer. Metallic or non-metallic cable racks shall be installed on the interior of both sides of splice vaults. Racks shall be capable of supporting a load of 445 N, minimum, per rack arm. Racks shall be supplied in lengths appropriate to boxes in which they will be placed. Rack arms shall not be less than 150 mm in length. Metallic cable racks shall be fabricated from ASTM Designation: A36 steel plate and shall be hot-dip galvanized after fabrication. Steel plate, hardware, and galvanizing shall conform to the requirements in Section 75, "Miscellaneous Metal," of the Standard Specifications. Metallic cable racks shall be bonded and grounded. Full compensation for furnishing and installing splice vaults shall be considered as included in the contract lump sum price
paid for communication system routing (modify) and no separate payment will be made therefor. ### 10-3.18 CONDUCTORS AND WIRING Splices shall be insulated by "Method B". The minimum insulation thickness, at any point, for Type USE, RHH or RHW wire shall be 1.0 mm for conductor sizes No. 14 to No. 10, inclusive, and 1.3 mm for No. 8 to No. 2, inclusive. The minimum insulation thickness, at any point, for Type THW and TW wires shall be 0.69 mm for conductor sizes No. 14 to No. 10, inclusive, 1.02 mm for No. 8, and 1.37 mm for No. 6 to No. 2, inclusive. ## SIGNAL INTERCONNECT CABLE. Twisted pair and fiber optic cables are provided elsewhere in these special provisions. Full compensation for power cables of the sizes shown on plans shall be considered as included in the contract price paid for the items involved and no additional compensation will be allowed therefor. ## CITY CONDUCTORS AND WIRING Conductors shall be run in conduit, except temporary installations above 3 m in height and conductors run inside standards. Temporary overhead circuit runs shall be 28-conductor cable. Temporary 28-conductor cable shall be mounted at least 6 m above ground over roadways and shall be mounted at least 3 m above ground over sidewalks and roadside areas not open to vehicular traffic. Cables shall be identified in controller cabinets by plastic tags 13 mm by 51 mm in size, stamped with cable run identification characters in 6 mm letters and secured to cables with 2 nylon tie-wrap devices. Conductors shall have clear, distinctive and permanent markings for identification and shall conform to the latest edition of Standard Specifications. ## **SERIES CIRCUIT** Series circuit wire shall be No. 8 AWG solid copper conductor, insulated with 2.8 mm approved polyethylene compound rated for 5000 V operation. Two or more turns of self-adhesive colored tape with a minimum width of 12.7 mm shall be applied to cables in series circuits where work is being done and where 2 or more circuits exist in common pull boxes post bases. Tape shall be applied on cables between splices and conduits, using one color for each circuit. White, gray, green, and orange shall not be used. Contractor shall give the City of Los Angeles Bureau of Street Lighting Yard (phone 323-913-4743) 2 working days notice prior to working on an existing circuit. # **MULTIPLE CIRCUIT** Multiple circuits shall be No. 6 AWG stranded copper conductor, Type THWN or THHN insulation, UL approved for 600 V operation. Three wires (color code: 1-Red, 1-Black, 1-White) shall be installed in all multiple circuit conduits. Red and white wires shall be connected to even number electroliers, black and white wires shall be connected to odd number electroliers. The Contractor shall request a burn test by notifying the Engineer first and the City of Los Angeles, Department of Water and Power, Bureau of Contract Administration Project Inspector a minimum of 7 working days in advance of the date on which a burn test is desired. The Contractor shall removed existing wires in existing street lighting conduit that is to be abandoned. ## 10-3.19 TWISTED PAIR CABLE Twisted pair cable shall be supplied in the configurations shown on the plans and specified in these special provisions. Twisted pair cables shall meet the requirements of RUS Specification PE-39 and the following: - A. Conductors shall consist of a solid wire of plain annealed high conductivity copper, smoothly drawn, circular in section, uniform in quality, free from defects and having a conductor size number 22 AWG. Conductors shall be insulated with a colored, high density polyethylene jacket. - B. Insulated conductors shall be uniformly twisted to form pairs. The twisted length of pairs shall vary to minimize cross talk. Non-hygroscopic dielectric tape shall be wrapped around insulated pairs. A laid up core shall be Contract No. 07-195904 wrapped with aluminum tape and bonded with an overlap to provide 100 percent shielding. Black, high molecular weight, medium or low density, polyethylene jackets shall be extruded over shields. Filling compound materials used in cables shall not support galvanic action. Cables shall be color-coded using REA standard color codes. ## Packing Cables shall be supplied on reels. Reels shall be transported using cable reel trailers and shall have the following information labeled: - A. Customer. - B. Customer order number. - C. Reel number. - D. Destination. - E. Ship date. - F. Manufactured date. - G. Manufacturer's name. - H. Cable code. - I. Length of cable. - J. Manufacturers Test Data The Contractor shall replace cable damaged before, during or after installation by scraping, denting or other means, at the Contractor's expense. ## Installation Cables shall be installed in conduits. Conduit ends shall have rough edges smoothed to prevent scraping cables. A manufacturer recommended lubricant shall be applied to cables to reduce friction between cables and conduits. Mechanical aids and pulling cables or ropes shall be used as required. Personnel shall be stationed at cabinets, splice vaults and pull boxes through which cables are pulled to observe and lubricate cables. Exposed cable ends shall be protected from moisture ingress. Cables shall not be stressed beyond the manufacturer's minimum bending radius. Dynamometers shall be used to measure installation tension and tension-limiting devices shall be used to prevent exceeding the manufacturer's maximum pulling tension specification. Tension limits shall be set at or below the manufacturer's maximum limit. Maximum measured pulling tension shall be recorded for each run of cable. A single loop of cable with a minimum length of 3.0 m, shall be provided at each pull box. Cables shall be trained to splice vault walls opposite power cables, tied with nylon ties and labeled with vinyl marking bands. A minimum of 12 m of slack shall be provided for unspliced cables at splice vaults. Following installation of cables in conduits, conduit entrances at pull boxes, vaults and cabinets shall be sealed with conduit sealing compound to prevent ingress of moisture, foreign materials and rodents. Cables shall be spliced, maintaining the pair count and REA color code. Cable markers shall be used to identify cables and pair counts. Field splices shall be made in twisted pair splice closures located in splice vaults. Cables shall be securely fastened in place within pull boxes, vaults and cabinets. ## **Testing** The Contractor shall provide testing and documentation required to establish approval and acceptance of cables, installation and operation during the system integration testing. Cables shall be tested at the factory to ensure the cable complies with the manufacturer's specifications. The Contractor shall record reel numbers from which cables came, identification of pairs measured, and results of continuity and insulation tests. Half of twisted wire pairs in cable reels shall be tested for insulation breakdown and continuity prior to installation in conduits. The Contractor shall measure continuity and insulation resistance of cable pairs in each length of cable after installation and record and submit the results to the Engineer. System integration testing shall be performed to ensure that twisted-pair cables perform as specified when used in operation with installed equipment. # TWISTED PAIR SPLICE CLOSURE Twisted pair splice closures shall be furnished in 305 mm and 610 mm sizes. Closures shall be installed inside communications pull boxes or splice vaults for drops from twisted-pair trunk cables to equipment locations and at mid-span splices as shown on the plans. Twisted-pair splice closures shall consist of neoprene sleeves secured with hose clamps. Twisted-pair splice closures shall have external dimensions not exceeding 610 mm in length by 76 mm in diameter. Length shall be 305 mm maximum in pull boxes. Closures shall protect cable splices from water and mechanical damage and shall be resistant to salt corrosion. Materials shall be non-reactive and completed assemblies shall not support galvanic cell action. Twisted-pair splice closures shall be waterproof, encapsulated with re-enterable material and shall be sealed with gaskets. Wire connections shall be insulation displacement type with water blocking gel, (3 M Scotchlocks, AMP Pica-bonds or equivalent). The manufacturer's instructions shall be followed during installation of twisted-pair splice closures. Closures shall be mounted securely inside communications pull boxes or vaults and shall be properly grounded and cable sheaths bonded using bonding clamps. Trunk cables shall be identified as "IN" or "OUT" depending upon their location relative to splices (toward communications nodes or away from communications nodes). Tape collars shall be placed around the 2 trunk cables and drop cables at locations required by splice closures. Splice closures shall be fitted to splices and hose clamps tightened over cables. Pairs of drop cables shall be spliced to designated pairs in trunk cables as indicated in twisted-pair splice tables. Splice conductors shall be crimped onto wires using manufacturer approved installation tools. Splice kits shall contain hardware items, including, but is not limited to, closures, vinyl tape, bonding clamps, splice connectors, No. 14 AWG, insulated wire, spacer tapes and terminal lugs. Continuity shall be tested and confirmed prior to final assembly of splice closures. After installing, splicing, and terminating the twisted-pair communication cables, the Contractor shall test cables for grounds, shorts, splits and opens. The Contractor shall measure and record loop resistances from adjacent data nodes for pairs at terminal locations. Resistance shall not exceed 34 Ω per 305 m. The Contractor shall record data for review by the Engineer and shall correct problems per manufacturer's instructions. Full compensation for twisted pair splice closures shall be considered as
included in the contract lump sum price paid for the items of work involved and no additional compensation will be allowed therefor. ## 10-3.20 FIBER OPTIC CABLE Fiber optic cable shall conform to the details shown on the plans and these special provisions. ## **DEFINITIONS** The following definitions shall apply to fiber optics: - A. Active Component Link Loss Budget The difference between average transmitter launch power (in dBm) and receiver maximum sensitivity (in dBm). - B. Backbone Fiber cable that provides connections between the Transportation Management Center (TMC) and hubs, as well as between equipment rooms or buildings, and between hubs. The term is used interchangeably with "trunk" cable. - C. Connector A mechanical device used to align and join fibers together to provide a means for attaching to and decoupling from a transmitter, receiver, or another fiber (patch panel). - D. Connectorized The termination point of a fiber after connectors have been affixed. - E. Connector Module Housing (CMH) A patch panel used to terminate singlemode fibers with most common connector types. It may include a jumper storage shelf and a hinged door. - F. Couplers Devices which mate fiber optic connectors to facilitate transition of optical light signals from one connector into another. They are normally located within FDUs, mounted in panels. They may also be used unmounted, to join 2 simplex fiber runs. - G. Distribution Cable Fiber cable that provides connections between hubs. Drop cables are typically spliced into distribution cables. - H. Drop Cable Fiber cable that provides connections between distribution cables to field elements. Typically these run from splice vaults to splice trays within field cabinets. Drop cables are usually short in length (less than 20 m) and are of the same construction as outside plant cable. "Breakout cable" is used interchangeably with drop cable. - I. End-to-End Loss The maximum permissible end-to-end system attenuation is the total loss in a given link. This loss could be actual measured loss or calculated using typical (or specified) values. This number will determine the amount of optical power (in dB) needed to meet the System Performance Margin. - J. Fan Out Termination Permits branching of fibers contained in optical cables into individual cables and can be done at field locations, allowing cables to be connectorized or terminated per system requirements. A kit provides pullout protection for individual bare fibers to support termination. It provides 3 layers of protection consisting of a Teflon inner tube, a dielectric strength member, and an outer protective PVC jacket. Fan out terminations shall not be used for more than 6 fibers. Use of a patch panel would be appropriate. - K. Fiber Distribution Frame (FDF) A rack mounted system usually installed in hubs or the TMC, that may consist of a standard equipment rack, fiber routing guides, horizontal jumper troughs and Fiber Distribution Units (FDU). FDFs serve as terminations and interconnections of passive fiber optic components for connection by jumpers from cable breakouts to equipment. - L. Fiber Distribution Unit (FDU) An enclosure or rack mountable unit containing a patch panel with couplers and splice trays. The units patch panel and splice trays may be integrated or separated by a partition. - M. F/O Fiber optic. - N. FOIP Fiber optic inside plant cable. - O. FOOP Fiber optic outside plant cable. - P. FOTP Fiber optic test procedures as defined by TIA/EIA standards. - Q. Jumper A short cable, typically one meter or less, with connectors on each end, used to join 2 CMH couplers or a CMH to active electronic components. - R. Light Source Portable fiber optic test equipment used to perform end-to-end attenuation testing when coupled with a power meter. It contains a stabilized light source operating at the wavelength of the system under test. - S. Link A passive section of the system with connectorized ends. A link may include splices and couplers. For example, a video link may be from a F/O transmitter to a video multiplexer (VMX). - T. Loose Tube Cable Type of cable construction in which fibers are placed in buffer tubes to isolate them from outside forces (stress). A flooding compound or material is applied to the interstitial cable core to prevent water migration and penetration. This type of cable is primarily for outdoor applications. - U. Mid-span Access Method A procedure in which fibers from a single buffer tube are accessed and spliced to an adjoining cable without cutting unused fibers in buffer tubes, or disturbing remaining buffer tubes in cables. - V. MMFO Multimode Fiber Optic Cable. - W. Optical Time Domain Reflectometer (OTDR) Fiber optic test equipment used to measure total power loss in a F/O cable between 2 points that provides a visual and printed display of losses associated with system components such as fiber, splices, and connectors. - X. Optical Attenuator An optical element that reduces the intensity of a signal passing through it. - Y. Patchcord A term used interchangeably with "jumper". - Z. Patch Panel A precision drilled metal frame containing couplers used to mate 2 fiber optic connectors. - AA. Pigtail A short optical fiber permanently attached to a source, detector, or other fiber optic device. - AB. Power Meter Portable fiber optic test equipment used to perform end-to-end attenuation testing when coupled with a light source. It contains a detector sensitive to light at the designed wavelength of the system under test. Its display indicates the amount of optical power being received at the end of the link. - AC. Riser Cable NEC approved cable installed in a riser (a vertical shaft in a building connecting floors). - AD. Segment A section of F/O cable not connected to a device and may or may not have splices. - AE. SMFO Singlemode Fiber Optic Cable. - AF. Splice The permanent joining of 2 fiber ends using a fusion splicer. - AG. Splice Closure An environmentally sealed container used to organize and protect splice trays. The container allows splitting or routing of fiber cables from multiple locations. Normally installed in a splice vault. - AH. Splice Module Housing (SMH) A unit that stores splice trays, pigtails and short cable lengths. The unit allows splitting or routing of fiber cables to or from multiple locations. - AI. Splice Tray A container used to organize and protect spliced fibers. - AJ. Splice Vault An underground container used to house excess cable or splice closures. - AK. System Performance Margin A calculation of the overall "End to End" permissible attenuation from the fiber optic transmitter (source) to the fiber optic receiver (detector). The system performance margin should be at least 6 dB. This includes the difference between the active component link loss budget, the passive cable attenuation (total fiber loss), and the total connector/splice loss. - AL. Tight Buffered, Non-Breakout Cable (Tight Buffer Cable) Type of cable construction where glass fiber is tightly buffered (directly coated) with a protective thermoplastic coating to 900 μ m (compared to 250 μ m for loose tube fibers). ## FIBER OPTIC OUTSIDE PLANT CABLE # General Fiber optic outside plant cable (FOOP) shall be dielectric, gel filled or water-blocking material, duct type, with loose buffer tubes. Cables with singlemode fibers shall contain singlemode (SM) dual-window (1310 nm and 1550 nm) fibers. Optical fibers shall be contained within loose buffer tubes. Loose buffer tubes shall be stranded around a dielectric central member. Aramid yarn or fiberglass shall be used as a primary strength member, and a polyethylene outside jacket shall provide protection. Fiber optic (F/O) cable shall be from the same manufacturer who is regularly engaged in the production of fiber optic cables. Cables shall be compliant with RUS Federal Rule 7NTR1755.900. | CABLE TYPE | DESCRIPTION | |------------|-------------| | A | 2SMFO | | В | 4SMFO | | С | 6SMFO | | E | 12SMFO | | F | 24SMFO | | Н | 48SMFO | ## Fiber Characteristics Optical fiber shall be glass and consist of a doped silica core surrounded by concentric silica cladding. Fibers in buffer tubes shall be usable fibers, and shall be sufficiently free of surface imperfections and occlusions to meet optical, mechanical, and environmental requirements of these specifications. Required fiber grade shall reflect the maximum individual fiber attenuation to guarantee required performance of fiber in cables. Coating shall be dual layered, UV cured acrylate, mechanically or chemically strippable without damaging fibers. Cable shall comply with optical and mechanical requirements over an operating temperature range of -40°C to +70°C. Cable shall be tested in accordance with EIA-455-3A (FOTP-3), "Procedure to Measure Temperature Cycling Effects on Optical Fiber, Optical Cable, and Other Passive Fiber Optic Components." Change in attenuation at extreme operational temperatures (-40°C to +70°C) for singlemode fiber shall not be greater than 0.20 dB/km, with 80 percent of measured values no greater than 0.10 dB/km. Singlemode fiber measurement shall be made at 1550 nm. The attenuation specification for fibers shall be a maximum attenuation for each fiber over the entire operating temperature range of the cable. Singlemode fibers within finished cables shall meet the following requirements: | Fiber Characteristics Table | | | | | |--------------------------------------|---------------------------|------------------------------------|--|--| | Parameters | Multimode | Singlemode | | | | Type | Graded index | Step Index | | | | Core diameter | $50 \mu m \pm 3.0 \mu m$ | 8.3 µm (nominal) | | | | Cladding diameter | $125 \mu m \pm 2.0 \mu m$ | 125 μm ±1.0 μm | | | | Core to Cladding Offset | < 3.0 μm | ≤0.8 μm | | | | Coating Diameter | $250 \mu m \pm 15 \mu m$ | 250 μm ±15 μm | | | | Cladding Non-circularity defined as: | < 2.0% | ≤1.0% | | | | [1-(min. cladding dia
÷max. cladding | | | | | | dia.)] x 100 | | | | | | Proof/Tensile Test | 345 Mpa, min. | 345 Mpa, min. | | | | Attenuation: (-40°C to +70°C) | | | | | | @850 nm | < 3.75 dB/km | N/A | | | | @1300 nm (MM)/1310 nm (SM) | < 1.0 dB/km | ≤0.4 dB/km | | | | @1550 nm | N/A | ≤0.3 dB/km | | | | Attenuation at the Water Peak | N/A | ≤2.1 dB/km @ 1383 ±3 nm | | | | Bandwidth: | | | | | | @ 850 nm | > 300 MHz x km | N/A | | | | @1,300 nm (MM)/1310 nm (SM) | >1,000 MHz x km | N/A | | | | Chromatic Dispersion: | | | | | | Zero Dispersion Wavelength | N/A | 1301.5 to 1321.5 nm | | | | Zero Dispersion Slope | N/A | ≤0.092 ps/(nm2*km) | | | | Maximum Dispersion: | N/A | ≤3.3 ps/(nm*km) for 1285 – 1330 nm | | | | | | <18 ps/(nm*km) for 1550 nm | | | | Cut-Off Wavelength | N/A | <1260 nm | | | | Numerical Aperture (measured in | 0.20 ± 0.02 | N/A | | | | Accordance with EIA-455-47) | | | | | | Mode Field Diameter | N/A | $9.3 \pm 0.5 \mu m$ at 1310 nm | | | | (Petermann II) | | 10.5 ±1.0 μm at 1550 nm | | | ## **Color Coding** In buffer tubes containing multiple fibers, each fiber shall be distinguishable from others in the same tube by means of color-coding according to the following: | 1. Blue (BL) | 7. Red (RD) | |----------------|-----------------| | 2. Orange (OR) | 8. Black (BK) | | 3. Green (GR) | 9. Yellow (YL) | | 4. Brown (BR) | 10. Violet (VL) | | 5. Slate (SL) | 11. Rose (RS) | | 6. White (WT) | 12. Aqua (AQ) | Buffer tubes containing fibers shall be color-coded with distinct and recognizable colors according to the table listed above for fibers. Colors shall be in accordance with the Munsell color shades and shall meet EIA/TIA-598 "Color Coding of Fiber Optic Cables." Color formulations shall be compatible with fiber coatings and buffer tube filling compounds, and be heat stable. Colors shall not fade or smear or be susceptible to migration and shall not affect transmission characteristics of optical fibers and shall not cause fibers to stick together. # **Cable Construction** Fiber optic cable shall consist of, but not limited to, the following components: - 1. Buffer tubes - 2. Central member - 3. Filler rods - 4. Stranding - 5. Core and cable flooding - 6. Tensile strength member - 7. Ripcord - 8. Outer jacket ### 1. Buffer Tubes Clearance shall be provided in loose buffer tubes between fibers and insides of tubes to allow for expansion without constraining fibers. Fibers shall be loose or suspended within tubes and shall not adhere to insides of buffer tubes. Buffer tube shall contain a maximum of 12 fibers. Loose buffer tubes shall be extruded from material having a coefficient of friction sufficiently low to allow free movement of fibers. The material shall be tough and abrasion resistant to provide mechanical and environmental protection of fibers, yet permit safe intentional "scoring" and breakout without damaging or degrading internal fibers. Buffer tube filling compound shall be a homogeneous hydrocarbon-based gel with anti-oxidant additives and used to prevent water intrusion and migration. Filling compound shall be non-toxic and dermatologically safe to exposed skin. It shall be chemically and mechanically compatible with cable components, non-nutritive to fungus, non-hygroscopic and electrically non-conductive. Filling compound shall be free from dirt and foreign matter and shall be readily removable with conventional nontoxic solvents. Buffer tubes shall be stranded around a central member by a method, such as the reverse oscillation stranding process, that will prevent stress on fibers when the cable jacket is placed under strain. ## 2. Central Member The central member functions as an anti-buckling element and shall be a glass reinforced plastic rod with similar expansion and contraction characteristics as the optical fibers and buffer tubes. A symmetrical linear overcoat of polyethylene may be applied to central members to achieve optimum diameter to ensure proper spacing between buffer tubes during stranding. ## 3. Filler Rods Fillers may be included in cables to maintain symmetry of cable cross-sections. Filler rods shall be solid medium or high-density polyethylene. The diameter of filler rods shall be the same as the outer diameter of buffer tubes. ## 4. Stranding Completed buffer tubes shall be stranded around the overcoated central member using stranding methods, lay lengths and positioning so cables meet mechanical, environmental and performance specifications. A polyester binding shall be applied over stranded buffer tubes to hold them in place. Binders shall be applied with sufficient tension to secure buffer tubes to central members without crushing buffer tubes. Binders shall be non-hygroscopic, non-wicking (or rendered so by the flooding compound) and dielectric with low shrinkage. # 5. Core and Cable Flooding Cable core interstices shall contain a water blocking material to prevent water ingress and migration. Water blocking material shall be a polyolefin based compound which fills the cable core interstices or an absorbent polymer which fills voids and swells to block ingress of water. Flooding compound or material shall be homogeneous, non-hygroscopic, electrically non-conductive, non-nutritive to fungus, nontoxic, dermatologically safe, and compatible with other cable components. ## 6. Tensile Strength Member Tensile strength shall be provided by high tensile strength Aramid yarns or fiberglass helically stranded evenly around cable cores and shall not adhere to other cable components. ## 7. Ripcord Cables shall contain at least one ripcord under the jacket for easy sheath removal. ## 8. Outer Jacket Jackets shall be free of holes, splits, and blisters and shall be medium or high-density polyethylene (PE), or medium density cross-linked polyethylene with minimum nominal jacket thickness of 1 mm \pm 0.076 mm. Jacketing material shall be applied directly over tensile strength members and water blocking materials and shall not adhere to Aramid strength materials. Polyethylene shall contain carbon black to provide ultraviolet light protection and shall not promote fungus growth. Jackets or sheaths shall be marked with the manufacturer's name, the words "Optical Cable", the number of fibers, "SM", or "MM" as applicable, year of manufacture, and sequential measurement markings every meter. Actual cable lengths shall be within -0/+1 percent of length markings. Markings shall be a contrasting color to cable jackets. Heights of markings shall be 2.5 mm ± 0.2 mm. ## **General Cable Performance Specifications** F/O cable shall withstand water penetration when tested with one meter static head or equivalent continuous pressure applied at one end of a one meter length of filled cable for one hour. No water shall leak through open cable ends. Testing shall be done in accordance with EIA-455-82 (FOTP-82), "Fluid Penetration Test for Fluid-Blocked Fiber Optic Cable." A representative sample of cable shall be tested in accordance with EIA/TIA-455-81 (FOTP-81), "Compound Flow (Drip) Test for Filled Fiber Optic Cable". No preconditioning period shall be conducted. Cables shall exhibit no flow (drip or leak) at 70°C as defined in the test method. Crush resistance of finished F/O cables shall be 220 N/cm applied uniformly over the length of cables without showing evidence of cracking or splitting when tested in accordance with EIA-455-41 (FOTP-41), "Compressive Loading Resistance of Fiber Optic Cables". The average increase in attenuation for fibers shall be \leq 0.10 dB at 1550 nm (singlemode) for a cable subjected to this load. Cables shall not exhibit measurable increase in attenuation after removal of load. Testing shall be in accordance with EIA-455-41 (FOTP-41), except that loads shall be applied at the rate of 3 mm to 20 mm per minute and maintained for 10 minutes. Cables shall withstand 25 cycles of mechanical flexing at a rate of 30 ± 1 cycles/minute. The average increase in attenuation for fibers shall be ≤ 0.20 dB at 1550 nm (singlemode) at the completion of testing. Outer cable jacket cracking or splitting observed under 10x magnification shall constitute failure. Testing shall be conducted in accordance with EIA-455-104 (FOTP-104), "Fiber Optic Cable Cyclic Flexing Test," with sheave diameters a maximum of 20 times the outside diameter of cables. Cables shall be tested in accordance with Test Conditions I and II of (FOTP-104). Cables shall withstand 20 impact cycles, with a total impact energy of 5.9 N·m. Impact testing shall be conducted in accordance with TIA/EIA-455-25B (FOTP-25) "Impact Testing of Fiber Optic Cables and Cable Assemblies." The average increase in attenuation for fibers shall be <0.20 dB at 1550 nm for singlemode fiber. Cables shall not exhibit evidence of cracking or splitting. Finished cable shall withstand a tensile load of 2700 N without exhibiting an average increase in attenuation of greater than 0.20 dB (singlemode) and 0.40 dB (multimode). Testing shall be conducted in accordance with EIA-455-33 (FOTP-33), "Fiber Optic Cable Tensile Loading and Bending Test." The load shall be applied for one-half hour in Test Condition II of the EIA-455-33 (FOTP-33) procedure. ## **Packaging and Shipping Requirements** Documentation of compliance to specifications shall be provided to the Engineer prior to ordering materials. Attention is directed to "Fiber Optic Testing," of these special provisions. Completed cables shall be packaged for shipment on reels. Cables shall be wrapped in weather and temperature resistant covering. Both ends of cables shall be sealed to prevent ingress of moisture. Ends of cables shall be securely fastened to reels to prevent cables from coming loose during transit. Four meters of cable on ends of cables shall be accessible for testing. Cable reels shall have durable, weatherproof labels or tags showing the manufacturer's name, cable type, the actual length of cable on reels, the Contractor's name, the contract number, and the
reel number. A shipping record shall be included in a weatherproof envelope showing the above information, including the date of manufacture, cable characteristics (size, attenuation, bandwidth, etc.), factory test results, cable identification number and other pertinent information. Minimum hub diameter of reels shall be at least 30 times the diameter of the cable. F/O cable shall be in one continuous length per reel with no factory splices in fibers. Reels shall be marked to indicate the direction reels should be rolled to prevent loosening of cables. Installation procedures and technical support information shall be furnished at the time of delivery. ## **LABELING** ## General The Contractor shall label fiber optic cabling in a permanent consistent manner. Tags shall be of a material designed for long term permanent labeling of fiber optic cables. Metal tags shall be stainless steel with embossed lettering. Non-metal label materials shall be approved by the Engineer and marked with permanent ink. Labels shall be affixed to cables per the manufacturer's recommendations and shall not be affixed in a manner which will cause damage to fibers. Handwritten labels will not be allowed. # **Label Identification** # 1. Labeling of Cables Labeling of backbones, distribution and drop fiber optic cables shall conform to the following unique identification code elements: | UNIQUE IDENTIFICATION CODE ELEMENTS For Backbone, Distribution or Drop Cables | | | | | |---|---|-------------------------|--|--| | DESCRIPTION | CODE | NUMBER OF
CHARACTERS | | | | District | District number | 2 | | | | Cable Type | | 1 | | | | | Fiber: | | | | | | S: Singlemode | | | | | | M: Multimode | | | | | | T: 18 AWG, U: 19 AWG, | | | | | | V: 20 AWG, W: 22 AWG | | | | | | X: 24 AWG | | | | | Cable fiber (or copper pairs) Count | Number of fibers or conductor pairs | 3 | | | | | (Examples: 144 fibers; or 100 TWP) | | | | | Route Number | Hwy. Rte (Example: 005) | 3 | | | | Begin Function | T: TMC; H: HUB; V: Video Node; | 1 | | | | | D: Data Node; C: Cable Node; | | | | | | M: CCTV Camera; N: CMS; | | | | | | P: Traffic Signal; Z: Ramp Meter; | | | | | | U: Traffic Monitoring/Count Station/Vehicle | | | | | | Count Station (VDS, TOS); | | | | | | S: Splice Vault | | | | | Begin Function Number | Unique ID number corresponds to Begin | 2 | | | | | Function (Example: H02 [Hub 02]) | | | | | End Function | T: TMC; H: HUB; V: Video Node; | 1 | | | | | D: Data Node; C: Cable Node; | | | | | | M: CCTV Camera; N: CMS; | | | | | | P: Traffic Signal; Z: Ramp Meter; | | | | | | U: Traffic Monitoring/Count Station; | | | | | | S: Splice Vault | | | | | End Function Number | Unique ID number corresponds to Begin | 2 | | | | | Function (Example: H03 [Hub 03]) | | | | | Unique Identifier | XX: If two or more cables of the same count | 2 | | | | | are in the same run | | | | | TOTAL | | 17 | | | Cables shall display one unique identification, regardless of where the cable is viewed. The begin function and end function correspond to end points of cables. The order of the begin and end functions follow the hierarchy listed below, where the lowest number corresponding to the begin/end function is listed first. | | List of Hierarchy | | | | | | | | | | |-----|-------------------|-----------------------|----------------------|---------------|----------------|-----|-------------------|---------------|--|-----------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | TMC | HUB | Video
Node
(VN) | Data
Node
(DN) | Cable
Node | CCTV
Camera | CMS | Traffic
Signal | Ramp
Meter | Traffic
Monitoring/
Count
Station | Splice
Vault | A cable between the TMC and a HUB will have the TMC listed as the start function and the HUB as the end function. Between a CMS and a Splice Vault, the start function will be listed as the CMS, and so on. If a cable is connected between HUBs, the lowest number, will be listed as the start function. A cable labeled 07S060010H02H0302 would contain the following information: | District | Mode | # of fibers | Route | Begin | End | Unique ID | |----------|------|-------------|-------|-------|-----|-----------| | 07 | S | 060 | 010 | H02 | H03 | 02 | Example: 07S060010H02H0302 This cable is located in District 7, identified as a singlemode fiber optic cable containing 60 fibers, installed along highway Route 10, beginning in Hub 2, and ending in Hub 3, with unique ID of number 2. The implication for the unique ID is that there may be another 60 fiber optic cable between those hubs. This is an example for a backbone cable. # 2. Labeling Jumpers and Pigtails Labeling jumpers and pigtails shall conform to the following unique identification code elements: | UNIQUE IDENTIFICATION CODE ELEMENTS for JUMPERS (active component to FDU) and PIGTAILS (to connector # on patch panel) | | | | | |--|--|-------------------------|--|--| | DESCRIPTION | CODE | NUMBER OF
CHARACTERS | | | | Hub Identifier | Hub, TMC, VN or DN ID
Numbers or Alphanumeric or both | 2 | | | | From (Source) Device | MU: Multiplexer
FD: FDU (Fiber Distribution Unit)
RP: Repeater | 2 | | | | From (Source) Device Identifier | Numbers or Alphanumeric or both | 2 | | | | Transmitter or Receiver | T or R | 1 | | | | To (Destination) Device | MU: Multiplexer
FD: FDU (Fiber Distribution Unit)
RP: Repeater | 2 | | | | To (Destination) Device Identifier | Numbers or Alphanumeric or both | 2 | | | | Connector Identifier | Connector ID | 2 | | | | TOTAL | | 13 | | | A pigtail labeled 01MU01TFD0203 would contain the following information: | Hub | Multiplexer | Transmitting to | To Patch Panel Position (Connector) | |-----|-------------|-----------------|-------------------------------------| | 01 | MU01 | TFD02 | 03 | Example: 01MU01TFD0203. This pigtail is located in Hub 1, from multiplexer 01, transmitting to FDU 02 to patch panel position (connector) 03. # **Label Placement** #### 1. Cables Cables shall be labeled with the unique identification code element method at terminations, even if no connections or splices are made, and at splice vault entrances and exits. # 2. Cable to Cable Splices Cable jackets entering splice closures shall be labeled in accordance with the identification method. # 3. Cable to Fiber Distribution Units Cable jackets shall be labeled at entries to FDUs in accordance with the unique identification code element method. Fibers shall be labeled with Fiber IDs and pigtails shall be labeled at connectors with Fiber IDs. FDUs shall be labeled with Cable IDs on faces of FDUs. If multiple cables are connected to FDUs, each block of connectors relating to individual cables shall be identified by a single label with Cable IDs. Individual connections shall be marked on the face of FDUs in the designated area with Fiber IDs. #### 4. Fiber Fiber labels shall be placed next to connectors of individual fibers. # 5. Patch Panels Cable jackets shall be labeled at entries to Patch Panels in accordance with the unique identification code element method. Fibers shall be labeled with Fiber IDs and pigtails shall be labeled at connectors with Fiber IDs. Patch panels shall be labeled with Cable IDs on faces of Panels. If multiple cables are connected to Patch Panels, each block of connectors relating to individual cables shall be identified by a single label with the Cable ID. Individual connections shall be marked on faces of Panels in the designated area with Fiber IDs. #### 6. Jumpers Equipment to FDU jumpers shall be labeled as to equipment type connected and shall be labeled at both ends. FDU to FDU jumpers shall be labeled at each end in accordance with the unique identification code element method. # 7. Pigtails Pigtails shall be labeled at the connector in accordance with the unique identification code element method described elsewhere in these special provisions. # 8. Copper Cable Labels Twisted-pair communications cables shall be labeled in accordance with the unique identification code element method. #### **CABLE INSTALLATION** Cable installation shall be in conformance with the procedures specified by the cable manufacturer. The Contractor shall submit the manufacturer's recommended procedures for pulling fiber optic cable at least 20 working days prior to installing cable. Mechanical aids may be used provided that a tension measuring device, and break-away swivel are placed in tension to the end of cables. Tension in cables shall not exceed 2225 N or the manufacturer's recommended pulling tension, whichever is less. During cable installation, the bend radius shall be a minimum of 20 times the outside diameter. Cable grips for installing fiber optic cables shall have a ball bearing swivel to prevent cables from twisting during installation. F/O cable shall be installed using a cable pulling lubricant recommended by the F/O cable or innerduct manufacturer and a pull tape conforming to the provisions in "Conduit" of these special provisions. Personnel shall be stationed at splice vaults and pull boxes through which cables are pulled to lubricate and prevent kinking or other damage. F/O cable shall be installed without splices except where allowed on the plans and shall be limited to one cable splice every 6 km if splice locations are not shown on the plans. Midspan access splices or FDU terminations shall involve fibers being spliced as shown on the plans. Cable splices shall be located in splice closures installed in splice vaults. A minimum of 20 m of slack shall be provided for F/O cables at splice vaults. Slack shall be divided equally on each side of F/O splice closures. F/O
cable shall be installed in each innerduct unless shown on the plans. Pulling separate F/O cables into spare ducts to replace damaged fiber will not be allowed. Fiber may be installed using the air blown method. If integral innerduct is used, duct splice points or temporary splices of innerduct used for installation shall withstand static air pressure of 758 kPa. Fiber installation equipment shall incorporate a mechanical drive unit or pusher, which feeds cable into pressurized innerduct to provide a sufficient push force on cables, which is coupled with drag force created by the high-speed airflow. Units shall be equipped with controls to regulate flow rates of compressed air entering ducts and hydraulic or pneumatic pressure applied to cables. Installation equipment shall accommodate longitudinally ribbed, or smooth wall ducts from nominal 16 mm to 51 mm inner diameter. Mid assist or cascading of equipment shall be used for installation of long cable runs. Installation equipment shall be equipped with safety shutoff valves to disable the system in the event of sudden changes in pneumatic or hydraulic pressure. Installation equipment shall not require the use of pistons or other air capturing devices to impose a pulling force at the front end of cables which significantly restricts free flow of air through inner ducts. Installation equipment shall use a counting device to determine the speed of cables during installation and lengths of cable installed. # **SPLICING** Field splices shall be done in splice vaults or cabinets, in splice trays housed in splice closures. Splices in cabinets shall be done in splice trays housed in FDU's. Fiber splices shall be fusion type unless otherwise specified. Mean splice loss shall not exceed 0.07 dB per splice and shall be obtained by measuring loss through splices in both directions and averaging the resultant values. Splices shall be protected with a metal reinforced thermal shrink sleeve. The mid-span access method shall be used to access individual fibers in cables for splicing to other cables. Cable manufacturers recommended procedures and approved tools shall be used for mid-span access. Only fibers to be spliced shall be cut. Buffer tubes and individual fibers not being used in mid-span access shall not be modified or damaged. Individual fibers shall be looped one full turn within splice trays to avoid micro bending. A 45 mm minimum bend radius shall be maintained during installation and after final assembly in optical fiber splice trays. Bare fibers shall be individually restrained in splice trays. Optical fibers in buffer tubes and placement of bare optical fibers in splice trays shall not produce tensile force on optical fibers. The Contractor will be allowed to splice 12 percent of fibers to repair damage done during mid-span access splicing without penalty. The Engineer will assess a fine of \$300.00 for each additional and unplanned splice. A single fiber may not have more than 3 unplanned splices. If a fiber requires more than 3 unplanned splices, the entire length of F/O cable shall be replaced at the Contractor's expense. #### SPLICE CLOSURES F/O field splices shall be enclosed in splice closures, complete with splice organizer trays, brackets, clips, cable ties, seals and sealant, as needed. Splice closures shall be suitable for direct burial or pull box applications. Manufacturer's installation instructions shall be supplied to the Engineer prior to installation of splice closures. Location of splice closures shall be where a splice is required as shown on the plans, where designated by the Engineer, or described in these special provisions. Splice closures shall conform to the following specifications: - A. Non-filled thermoplastic case - B. Rodent proof, water proof, re-enterable and moisture proof - C. Expandable from 2 cables per end to 8 cables per end by using adapter plates - D. Cable entry ports shall accommodate 10-mm to 25-mm diameter cables - E. Multiple grounding straps - F. Accommodate up to 8 splice trays - G. Suitable for "butt" or "through" cable entry configurations - H. Place no stress on finished splices within splice trays Splice closures shall be bolted to side walls of splice vaults. The Contractor shall verify the quality of splices prior to sealing splice closures. Splice closures shall not be sealed until link testing is performed and is approved by the Engineer. # SPLICE TRAYS Splice trays shall accommodate a minimum of 12 fusion splices and shall allow a minimum bend radius of 45 mm. Individual fibers shall be looped one full turn within splice trays to allow for future splicing. Stress shall not be applied on fibers when located in final position. Buffer tubes shall be secured near entrances of splice trays. Splice tray covers may be transparent. Splice trays shall conform to the following: - A. Accommodate up to 24 fusion splices - B. Place no stress on completed splices within the tray - C. Stackable with a snap-on hinge cover - D. Buffer tubes securable with channel straps - E. Accommodate a fusion splice with the addition of an alternative splice holder - F. Be labeled after splicing is completed. Only one splice tray may be secured by a bolt through the center of the tray in fiber termination units. Multiple trays shall be securely held in place per the manufacturer's recommendation. #### PASSIVE CABLE ASSEMBLIES AND COMPONENTS F/O cable assemblies and components shall be compatible components, manufactured by a company regularly engaged in the production of material for the fiber optic industry. Components or assemblies shall be best quality, non-corroding, with a minimum design life of 20 years. The cable assemblies and components manufacturer shall be ISO 9001 registered. #### FIBER OPTIC CABLE TERMINATIONS #### General Fiber optic outside plant (FOOP) cable entering buildings shall be routed as described in these special provisions and as shown on the plans. Cables shall continue within conduit to the designated cable termination point. Components shall be the size and type required for the specified fiber. #### **Cable Termination** Once the fiber optic cable arrives within hubs, it shall be routed within conduit to a wall mounted fiber splice closure as shown on the plans. Fiber Optic Inside Plant (FOIP) cable shall be spliced to incoming cable. At the FDU, the cable jacket of the FOIP, or outside plant cable, shall be removed exposing the Aramid yarn, filler rods, and buffer tubes. The exposed length of buffer tubes shall be at least the length recommended by the FDU manufacturer which allows the tubes to be secured to the splice trays. Buffer tubes shall be secured to splice trays in which they are to be spliced. The remainder of the tubes shall be removed to expose sufficient length of fibers to properly install on splice trays, conforming to the requirements in "Splicing," of these special provisions Cable shall be spliced and secured with tie wraps and routed to appropriate fiber distribution frames/units (FDF/U) as shown on the plans. When applicable, moisture-blocking gel shall be removed from exposed buffer tubes and fibers. The transition from the buffer tube to the bundle of jacketed fibers shall be treated by an accepted procedure for sleeve tubing, shrink tube and silicone blocking of the transition to prevent future gel leak. Manufacturer directions shall be followed to ensure gel will not flow from ends of buffer tubes throughout the specified temperature range. Individual fibers shall be stripped and prepared for splicing. Factory terminated pigtails shall be spliced and placed in splice trays. Fibers inside fiber optic cables entering Fiber Distribution Units (FDU) shall be terminated and labeled. Attention is directed to "Fiber Distribution Unit" of these special provisions. A transition shall be made with flexible tubing to isolate fibers and protect individual coated fibers. The final transition from bundle to individual fiber tube shall be secured with an adhesive heat shrink sleeve. Attention is directed to Fan-Out Termination, of these special provisions. #### **Distribution Interconnect Package** Distribution involves connecting fibers to locations shown on the plans. The distribution interconnect package consists of FDFs and FDUs with connector panels, couplers, splice trays, fiber optic pigtails and cable assemblies with connectors. The distribution interconnect package shall be assembled and tested by a company regularly engaged in the assembly of these packages. Attention is directed to "Fiber Optic Testing" of these special provisions. Distribution components shall be products of same manufacturers, regularly engaged in the production of these components with quality assurance programs. # Fiber Optic Cable Assemblies and Pigtails #### 1. General Cables for cable assemblies shall be made of fiber meeting the performance requirements of these special provisions for the F/O cable being connected. # 2. Pigtails Pigtails shall be of simplex (one fiber) construction, in 900-µm tight buffer form, surrounded by Aramid yarn for strength, with a PVC jacket with manufacturer's identification information, and a nominal outer jacket diameter of 3 mm. Singlemode simplex cable jackets shall be yellow in color. Pigtails shall be factory terminated and tested and at least one meter in length. #### 3. Jumpers Jumpers may be of simplex or duplex design. Duplex jumpers shall be duplex round cable construction and shall not have zipcord (Siamese) construction. Jumpers shall be at least 2 m in length. Outer jackets of duplex jumpers shall be yellow. The 2 inner simplex jackets shall be contrasting colors to provide easy visual identification for polarity. #### 4. Connectors Connectors shall be ceramic ferrule ST type for SMFO. Indoor ST connector body housings shall be nickel-plated zinc or glass reinforced polymer construction. Outdoor ST connector body housings shall be glass reinforced polymer. Associated
couplers shall be the same material as connector housings. F/O connectors shall be the 2.5 mm connector ferrule type with Zirconia Ceramic material with a PC (Physical Contact) pre-radiused tip. The ST connector operating temperature range shall be -40°C to +70°C. Insertion loss shall not exceed 0.4 dB for singlemode and return reflection loss on singlemode connectors shall be at least -35 dB. Connection durability shall be less than a 0.2 dB change per 500 mating cycles per EIA-455-21A (FOTP-21). Terminations shall provide a minimum 222 N pull out strength. Factory test results shall be documented and submitted to the Engineer prior to installing connectors. Singlemode connectors shall have a yellow color on the body and boot that renders them easily identifiable. Field terminations shall be limited to splicing of adjoining cable ends and cables to ST pigtails. Connectors shall be factory-installed and tested. Unmated connectors shall have protective caps installed. #### **Fiber Distribution Unit** The Contractor shall furnish and install components to terminate incoming fiber optic communication cables. | FDU Type | Accommodates Termination of | |----------|-----------------------------| | A | 6 SMFO fibers | | В | 12 SMFO fibers | | С | 36 SMFO fibers | | D | 48 SMFO fibers | Fiber distribution units (FDU) shall include the following: - 1. A patch panel to terminate the appropriate number of singlemode fibers with ST type connectors feed through couplers. - 2. Splice trays. - 3. Storage for splice trays. - 4. A slide out metal drawer for storage of spare jumpers. Strain relief shall be provided for incoming fiber optic cables. Cable accesses shall have rubber grommets or similar material to prevent cables from contacting bare metal. Fibers shall be terminated and individually identified in FDUs and on patch panels. Patch panels shall be hinged or have coupler plates to provide easy access and maintenance. Brackets shall be provided to spool incoming fibers a minimum of 2 turns. Turns shall not be less than 300 mm before separating out individual fibers to splice travs. FDUs shall be 482 mm rack mountable. FDUs shall not exceed 250 mm in height and 380 mm in depth. Termination and distribution cable trays shall accommodate 12 and 48 singlemode fiber optic cables and shall have sufficient tray areas for excess optical fiber storage with provisions to assure that optical fibers do not exceed a 51-mm bend radius. Termination and distribution cable trays shall include a designation strip for identification of 12 and 48 singlemode optical fibers. Splice drawers shall include 2 splice trays with each splice tray capable of accommodating 12 and 48 fusion type splices. Splice drawers shall allow storage of excess lengths of optical fibers of fiber optic cables. Fiber distribution units shall be provided with cable clamps to secure fiber optic cables to the chassis. #### Installation The Contractor shall install sufficient quantity of fiber distribution units to terminate fibers in the largest cable. Fiber distribution shall be mounted in equipment racks as shown on the plans. At fiber distribution units, the Contractor shall terminate optical fibers of fiber optic cable. Optical fibers shall be fusion spliced to singlemode optical fiber cables assemblies within splice trays. Optical fibers shall be of appropriate lengths to allow future splicing with splice drawers and shall be appropriately identified. Splices shall be fusion type and shall be arranged within splice trays of fiber distribution units in accordance with the organizational design of splice trays. Appropriate protective coatings shall be applied to fusion splices. # **Payment** Full compensation for fiber distribution unit shall be considered as included in the contract prices paid for the item requiring fiber distribution unit and no separate payment will be made therefor. #### **Fan-Out Termination** Fan out terminations shall be required as shown on the plans, as designated by the Engineer or described in these special provisions. Fan out terminations may be used to terminate incoming fiber optic cable for fiber counts of less than 6 fibers. Connector return loss shall be no greater than -40 dB. Fan out terminations shall consist of splice connector and the appropriate number of fiber optic pigtails, which will be fusion spliced to incoming fibers. Pigtails shall be contained in housings that provide strain relief between incoming fiber optic cable plant jackets, buffer tubes, fibers and pigtail jacket material. Fibers shall be spliced to pigtails with a factory installed and polished ST connector, as specified in these special provisions. Splices shall be encapsulated in weatherproof housings. Connectors shall have weatherproof caps. Pigtails shall be simplex (one fiber) construction, in a 900-µm tight buffer form, surrounded by Aramid yarn. Buffers shall have PVC jackets with manufacturer identification information, and a nominal outer jacket diameter of 3 mm. Singlemode simplex cable jackets shall be yellow in color. Pigtails shall be at least 2 meters in length. Pigtails shall be labeled, as specified in these special provisions, and secured onto cables using clear heat shrink tubing. # FIBER OPTIC TESTING #### General Testing shall include tests on elements of passive fiber optic components: (1) at the factory, (2) after delivery to the project site but prior to installation, (3) after installation but prior to connection to other portions of the systems. The Contractor shall provide personnel, equipment, instrumentation, and materials necessary to perform testing. The Engineer shall be notified 2 working days prior to field tests. Notification shall include the exact location or portion of system to be tested. Documentation of test results shall be provided to the Engineer within 2 working days after testing. A minimum of 15 working days prior to arrival of cable at the site, the Contractor shall provide detailed test procedures for field testing for the Engineer's review and approval. Procedures shall include tests involved and how tests are to be conducted. Test procedures shall include the model, manufacturer, configuration, calibration, and alignment procedures for proposed test equipment. #### **Factory Testing** Documentation of compliance with fiber specifications as listed in the Fiber Characteristics Table shall be supplied by the original equipment manufacturer. Before shipment, but while on shipping reels, 100 percent of fibers shall be tested for attenuation. Copies of the results shall be (1) maintained on file by the manufacturer with a file identification number for a minimum of 7 years, (2) attached to cable reels in waterproof pouches, and (3) submitted to the Contractor and to the Engineer. #### **Arrival On Site** Cables and reels shall be physically inspected on delivery and 100 percent of fibers shall be attenuation tested to confirm that cable meets requirements. Failure of a fiber in the cable shall be cause for rejection of the entire reel. Test results shall be recorded, dated, compared and filed with copies accompanying shipping reels in a weatherproof envelopes. Attenuation deviations from shipping records of greater than 5 percent shall be brought to the attention of the Engineer. Cables shall not be installed until completion of testing and written approval of the Engineer. Copies of traces and test results shall be submitted to the Engineer. If test results are unsatisfactory, the reel of F/O cable shall be considered unacceptable and records corresponding to that reel of cable shall be marked accordingly. Unsatisfactory reels of cable shall be replaced with new reels of cable at the Contractor's expense. New reels of cable shall be tested to demonstrate acceptability. Copies of test results shall be submitted to the Engineer. #### **After Cable Installation** Index matching gel will not be allowed in connectors during testing. After fiber optic cable has been pulled, but before breakout and termination, 100 percent of fibers shall be tested with an OTDR for attenuation. Test results shall be recorded, dated, compared, and filed with previous copies of these tests. Copies of traces and test results shall be submitted to the Engineer. If OTDR test results are unsatisfactory, the F/O cable segment of cable will be rejected. Unsatisfactory segments of cable shall be replaced with new segments, without additional splices, at the Contractor's expense. New cable segments shall be tested to demonstrate acceptability. Copies of test results shall be submitted to the Engineer. # **System Cable Verification At Completion** # 1. Power Meter and Light Source At the conclusion of OTDR testing, 100 percent of fiber links shall be tested end-to-end with a power meter and light source, in accordance with EIA Optical Test Procedure 171 and in the same wavelengths specified for OTDR tests. Tests shall be conducted in one direction. As shown in Appendix A, the Insertion Loss (1C) shall be calculated. Test results shall be recorded, compared, and filed with the other recordings of the same links. Test results shall be submitted to the Engineer. These values shall be recorded in the Cable Verification Worksheet in Appendix A. # 2. OTDR Testing Once passive cabling systems have been installed and are ready for activation, 100 percent of fibers shall be tested with OTDR for attenuation at wavelengths of 1310 nm and 1550 nm. OTDR testing shall be performed in both directions (bi-directional) on fibers. Test results shall be generated from software of test equipment, recorded, dated, compared and filed with previous copies. A hard copy printout and an electronic copy on a DOS based 89-mm diskette of traces and test results shall be submitted to the Engineer. The average of the 2 losses shall be calculated and recorded in the Cable Verification Worksheet in Appendix A. The OTDR shall be capable of recording and displaying anomalies of at
least 0.02 dB. Connector losses shall be displayed on OTDR traces. # 3. Cable Verification Worksheet The Cable Verification Worksheet shown in Appendix A shall be completed for links in fiber optic systems using data gathered during cable verification. The completed worksheets shall be included as part of system documentation. # 4. Test Failures If link loss, measured from the power meter and light source, exceeds the calculated link loss, or the actual location of fiber ends does not agree with the expected location of fiber ends, fiber optic links will not be accepted. Unsatisfactory segments of cable or splices shall be replaced with new segments of cables or splices at the Contractor's expense. OTDR testing, power meter and light source testing and Cable Verification Worksheet shall be completed for repaired links to determine acceptability. Copies of test results shall be submitted to the Engineer. Removal and replacement of segments of cable shall be considered as removal and replacement of a single contiguous length of cable connecting 2 splices and 2 connectors. Removal of a section containing the failure will not be allowed. #### **Passive Component Package Testing and Documentation** Components in the passive component package (FDUs, pigtails, jumpers, couplers, and splice trays) shall be from a manufacturer who is ISO 9001 registered. Pigtails or jumpers shall be tested for insertion attenuation loss using an optical power meter and light source. Singlemode terminations shall be tested for return reflection loss. Values shall meet loss requirements specified and shall be recorded on tags attached to the pigtail or jumper. Once an assembly is complete, the manufacturer shall visually verify that tagging of loss values is complete. The manufacturer shall do an "end-to-end" optical power meter/light source test from pigtail ends to end of terminating points assuring continuity and overall attenuation loss values are acceptable. Final test results shall be recorded, along with previous individual component values, on a special form assigned to each FDU. The completed form shall be dated and signed by the Manufacturer's Quality Control supervisor. One copy of the form shall be attached in a plastic envelope to the assembled FDU unit. Copies shall be provided separately to the Contractor and the Engineer, and shall be maintained on file by the manufacturer or supplier. Assembled and completed FDU units shall be protectively packaged for shipment to the Contractor for installation. #### Fiber Optic System Performance Margin Design Criteria Installed system performance margin shall be at least 6 dB for links. If the design system performance margin is less than 6 dB, the Engineer shall be notified of the Contractor's plan to meet that requirement. # **Active Component Testing** Transmitters and receivers shall be tested with a power meter and light source to record transmitter average output power (dBm) and receiver sensitivity (dBm). Values shall be recorded in the Fiber System Performance Margin Calculations Worksheet in Appendix B, section C, number 6. # APPENDIX A # **Cable Verification Worksheet** End-to-End Attenuation (Power Meter and Light Source) Testing and OTDR Testing | Contract No. | Con | tractor: | | | | | |--|-------------|-----------|-----|---|------------------|------------------------| | Operator: | Date | e: | | | | | | Link Number: | Fibe | r Number: | | | | | | Test Wavelength (Circle one) | : 1310 nm | 1550 nm | | | | | | Expected Location of fiber er | nds: End 1: | End | 12: | - | | | | Power Meter and Light Source
Power In:
Output Power:
Insertion Loss [1A - 1B] | | | | | dBm
dBm
dB | 1 <i>A</i>
1E
1C | | OTDR Test Results: Forward Loss: Reverse Loss: Average Loss [(2A + 2B |)/2]: | | | | dB
dB
dB | 2A
2E
2C | | To Be Completed by Caltrans Resident Engineer's Signature Cable Link Accepted: | S: | | | | | | # APPENDIX B Fiber System Performance Margin Calculations Worksheet # A. Calculate the Passive Cable Attenuation | Calculate Fiber Loss at Operating Wavelength: nm | Cable Distance (times) Individual Fiber Loss (equal) @ 1310 nm (0.4 dB/km) @ 1550 nm (0.3 dB/km) | km xdB/km= | |--|--|------------| | | Total Fiber Loss: | dB | # **B.** Calculate the Total Connector/Splice Loss | 2. Calculate Connectors/couplers | Individual Connector Loss (times) | | | |----------------------------------|-------------------------------------|-----------|----| | Loss: | Number of Connector Pairs | 0.4 dB x= | | | (exclude Tx and Rx connectors) | (equal) | | | | | Total Connector Loss: | | dB | | 3. Calculate Splice Loss: | Individual Splice Loss (times) | | | | | Number of Splices (equal) | 0.1 dB x= | | | | Total Splice Loss: | | dB | | 4. Calculate Other Components | | | | | Loss: | Total Components: | | dB | | 5. Calculate Total Losses: | Total Connector Loss (plus) | + dB | | | | Total Splice Loss (plus) | + dB | | | | Total Components (equal) | + dB = | | | | Total Connector/Splice Loss: | | dB | # C. Calculate Active Component Link Loss Budget | System Wavelength: | | nm | | |--|--|-----|------------| | Fiber Type: | | | singlemode | | Average Transmitter Output (Launch | Power): | | dBm | | Receiver MAX Sensitivity (10 ⁹ BER) | Receiver MAX Sensitivity (10 ⁹ BER) (minus) | | | | Receiver MIN Sensitivity (equal) | dBm | = | | | | | dB | | | 6. Calculate Active Component | Average Transmitter Output | | | | Link Loss Budget: | (Launch Power) (minus) | dBm | | | | dBm | = | | | Activ | | dB | | # D. Verify Performance | 7. Calculate System Performance | Active Component Link Loss | | | |----------------------------------|---------------------------------|------|-----| | Margin to Verify Adequate Power: | Budget [C] (minus) | dB | | | | Passive Cable Attenuation [A] | | | | | (minus) | dB | | | | Total Connector/Splice Lost [B] | | | | | (equal) | dB = | | | | System Performance Margin: | | _dB | #### 10-3.21 BONDING AND GROUNDING Bonding and grounding shall conform to the provisions in Section 86-2.10, "Bonding and Grounding," of the Standard Specifications and these special provisions. Bonding jumpers in standards with handholes and traffic pull box lid covers shall be attached by a UL listed lug using 4.5-mm diameter or larger brass or bronze bolts and shall run to the conduit or bonding wire in the adjacent pull box. The grounding jumper shall be visible after the standard has been installed and the mortar pad and cap have been placed on the foundation. Standards without handholes shall have bonding accomplished by jumpers attached to UL listed ground clamps on each anchor bolt. For slip base standards or slip base inserts, bonding shall be accomplished by jumpers attached to UL listed ground clamps on each anchor bolt, or a UL listed lug attached to the bottom slip base plate with a 4.5-mm diameter or larger brass or bronze bolt. Equipment bonding and grounding conductors are required in conduits, except when the conduits contain combinations of loop lead-in cable, fiber optic cable, or signal interconnect cable. A No. 8 minimum, bare copper wire shall run continuously in circuits, except for series lighting circuits, where No. 6 bare copper wire shall run continuously. The bonding wire size shall be increased to match the circuit breaker size in conformance with the Code, or shall be as shown on the plans. Conduits to be installed for future conductors, may omit the copper wire. Bonding of metallic conduits in metal pull boxes shall be by means of bonding bushings and bonding jumpers connected to the bonding wire running in the conduit system. #### **10-3.22 SERVICE** # **ELECTRIC SERVICE (IRRIGATION)** Electric service (irrigation) shall be from the service point to the irrigation controllers (IC) and to the spaces provided in the irrigation controller enclosure cabinet (CEC) for irrigation controller as shown on the plans. Electric service (irrigation) shall include a metered 120/240 V(ac), single-phase service in existing Type III BF service equipment enclosures. A single-pole, 20A circuit breaker for each irrigation controller shall be installed in existing Type III-BF service equipment enclosures, as shown on the plans. The contract lump sum price paid for electric service (irrigation) at various locations shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing electric service (irrigation) for irrigation controllers at various locations, complete in place, including conductors, conduit and pull boxes to the pull box adjacent to irrigation controller enclosure cabinets and irrigation controllers, as shown on the plans, as specified in these special provisions, and as directed by the Engineer. # 10-3.23 NUMBERING ELECTRICAL EQUIPMENT The placement of numbers on electrical equipment will be done by the Contractor. The numbers and edge sealer shall be placed on the equipment as directed by the Engineer. Where new numbers are to be placed on existing or relocated equipment, the existing numbers shall be removed. Retroreflective numbers shall be applied to a clean surface. Only the edges of the numbers shall be treated with edge sealer. Five digit, self-adhesive equipment numbers shall be placed for all electroliers and sign lighting. On electroliers, the numbers shall be placed 3.0 m from the base of electrolier, as shown on the Standard plans. Numbers for illuminated signs mounted on overcrossings shall be placed on the nearest adjacent bent or abutment at approximately the same station as the sign. Where no bent or
abutment exists near the sign, the number shall be placed on the underside of the structure adjacent to the sign. Arrangement of numbers shall be the same as those used for electroliers. Numbers for overhead sign bridges shall be placed on both posts. Numbers for wood poles shall be 75-mm embossed aluminum fastened to the pole with 30-mm aluminum nails. Numbers for wood poles shall be furnished by the Contractor. # 10-3.24 STATE-FURNISHED CONTROLLER ASSEMBLIES The Model 170 controller assemblies, including controller unit, completely wired Type 334 controller cabinet and inductive loop detector sensor units, but without anchor bolts, will be State-furnished as provided under "Materials" of these special provisions. The Contractor shall construct the controller cabinet foundation as shown on the plans for Model 334 cabinets (including furnishing and installing anchor bolts), shall install the controller cabinet on the foundation, and shall make field wiring connections to the terminal blocks in the controller cabinet. A listing of field conductor terminations, in the State-furnished controller cabinet, will be furnished free of charge to the Contractor at the site of the work. State forces will maintain the controller assemblies. The Contractor's responsibility for controller assemblies shall be limited to conforming to the provisions in Section 6-1.02, "State-Furnished Materials," of the Standard Specifications. Foundation for Type 1 housing shall conform to the foundation details on Standard Plan ES-3C. Full compensation for installing Type 334 controller cabinet, including foundation, shall be considered as included in the contract lump sum price paid for the items involved and no additional compensation will be allowed therefor. #### 10-3.25 IRRIGATION CONTROLLER ENCLOSURE CABINET Irrigation controller enclosure cabinets (CEC) shall be constructed and the equipment within the cabinets shall be installed in conformance with the details shown on the plans, the provisions in the Standard Specifications, and these special provisions. Irrigation controller enclosure cabinets shall have the following features: - A. Closed cell neoprene gasket around doors. - B. Stainless steel full length door hinges. - C. Welded construction fabricated from 12-guage Type 304 stainless steel. - D. Louver ventilation. - E. Padlock shields. - F. Size shall be 890 mm (H) x584 mm (W) x 280 mm (D) for single enclosures and 890 mm (H) x 889 mm (W) x 280 mm (D) for double enclosures. - G. Controller enclosure cabinets shall be bolted to the concrete foundation as recommended by the manufacturer. Irrigation controller enclosure cabinets shall be fabricated of cold rolled steel, stainless steel or aluminum. Padlocks with removable core mortise cam cylinders shall be installed with lock cores for irrigation controller enclosure cabinets. Cam cylinders shall be capable of receiving a "Best" No. 21B72 construction core. Keys shall be removable from locks only in the locked position. Two keys for each door lock shall be delivered to the Engineer. Padlock shackles shall be 19-mm in height, 8-mm in diameter, and shall have a 7-pin housing. Padlocks shall be corrosion resistant and have dust covers. Inside of the doors shall have provisions for storage of the irrigation plans. Duplex convenience receptacles shall have ground-fault circuit interruption as defined by the Code. Circuit interruption shall occur on 6 mA of ground-fault current and shall not occur on less than 4 mA. Receptacles shall be installed in a weatherproof housing with rainproof lift covers. Solid-state automatic shut-off rain sensor units shall be installed for the irrigation controller enclosure cabinets. Rain sensor units shall automatically interrupt the master remote control valves when approximately 3 mm of rain has fallen. The irrigation system shall automatically be enabled again when the accumulated rainfall evaporates from the rain sensor unit collection cup. Rain sensor units shall be rated 24 V(ac) to 30 V(ac). Static charge protection shall be included to protect against lightning damage. Equipment, except for field wiring, shall be installed in the irrigation controller enclosures cabinet in a shop prior to field installation. Irrigation controller enclosure cabinets will be measured by the unit as determined from actual count in place. The contract unit price paid for irrigation controller enclosure cabinet shall include full compensation for furnishing all labor, materials, tools, equipment (including rain sensor units), and incidentals, and for doing all the work involved in fabricating and installing irrigation controller enclosure cabinets, complete in place, including constructing foundations, pull boxes, pads and conduits to pull box adjacent to cabinets, and installing equipment within the cabinets, except controllers, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. #### 10-3.26 VEHICLE SIGNAL FACES AND SIGNAL HEADS Light Emitting Diode (LED) signal modules for vehicular traffic signal units will be Contractor-furnished. #### 10-3.27 PEDESTRIAN SIGNALS Light Emitting Diode (LED) pedestrian signal face modules for Type A pedestrian signals will be Contractor-furnished. Type SP-1-T pedestrian signal mountings shall have upper and lower mounting bracket attached to pedestrian signal housings in the same manner shown on the plans for Type SP-2-T mounting. # **10-3.28 DETECTORS** Loop detector lead-in cable shall be Type B. Inductive loop detectors shall be Type E. For Type E detector loops, sides of the slot shall be vertical and the minimum radius of the slot entering and leaving the circular part of the loop shall be 40 mm. Slot width shall be a maximum of 20 mm. Loop wire for circular loops shall be Type 2. Depth of slots of circular loops shall be filled with hot melt rubberized asphalt sealant, not to exceed the depth of pavement. The depth of loop sealant above the top of the uppermost loop wire in the sawed slots shall be as shown on standard plans. #### CITY OF LOS ANGELES TRAFFIC SIGNAL LOOP DETECTORS Detector loops shall be Type E. Loop detector lead in cable shall have four 2 pairs No. 18 conductors. Loop installations shall be round, 1.8 m diameter core drilled. Lead-ins shall enter pull boxes and shall be numbered and identified. Locations of loops shall be marked on the pavement with crayon or spray paint. The Contractor shall obtain approval from the Engineer prior to cutting loops. Jagged edges and protrusions shall be removed. Water shall be used as a lubricant and coolant for saw blades. # PREFORMED INDUCTIVE LOOPS Preformed inductive loops shall be the type shown on the plans. The loop shall be 1.8 m square unless otherwise shown. The loop shall consist of 4 turns of No. 16, or larger, wire with Type THWN or TFFN insulation. The loop wires from the preformed loop to the adjacent pull box shall be twisted together into a pair (at least 7 turns per meter) and encased in Schedule 40 or Schedule 80 PVC or polypropylene conduit between the preformed loop and the adjacent pull box or detector handhole. The lead-in conduit shall be sealed to prevent the entrance of water at the pull box or handhole end. In new reinforced concrete structure decks, the preformed loops shall be secured to the top of the uppermost layer of reinforcing steel using nylon wire ties. The loop shall be held parallel to the structure deck by using PVC or polypropylene spacers where necessary. Conduit for lead-in conductors shall be placed between the uppermost 2 layers of reinforcing steel. In existing pavement, preformed loop installation shall conform to the following: - A. Preformed loops and lead-in conduits shall be placed in slots, 32 mm, minimum width, cut into the existing pavement. The top of the conduit shall be 50 mm, minimum, below the top of pavement. - B. Slots in asphalt concrete pavement shall be filled with hot-melt rubberized asphalt sealant. - C. Slots in asphalt concrete pavement shall be filled with asphaltic concrete sealant as follows: - 1. After conductors are installed in the slots cut in the pavement, a paint binder shall be applied to all vertical surfaces of slots in conformance with the provisions in Section 39-4.02, "Prime Coat and Paint Binder," of the Standard Specifications. - 2. Temperature of the sealant material during installation shall be above 21°C. Air temperature during installation shall be above 10°C. Sealant placed in the slots shall be compacted by the use of a 200-mm diameter by 3-mm thick steel hand roller or other tool approved by the Engineer. Compacted sealant shall be flush with the pavement surface. Minimum conductor coverage shall be 25 mm. Excess sealant remaining after rolling shall not be reused. On completion of rolling, traffic will be permitted to travel over the sealant. # 10-3.29 PEDESTRIAN PUSH BUTTONS Pedestrian push button housing shall be mounted with the actuator button 1.0 m above the adjacent finished grade. Pedestrian push button housings shall be the metal type. # 10-3.30 LUMINAIRES Ballasts shall be the lag regulator type. #### 10-3.31 INDUCTION SIGN LIGHTING (ISL) Induction sign lighting shall conform to the provisions for mercury sign lighting fixtures in Section 86-6.05, "Sign Lighting Fixtures-Mercury," of the Standard Specifications. Induction sign lighting shall consist of a housing with door, a reflector, refractor or a lens, a lamp, a power coupler, a high frequency generator and a fuse block. Retrofit kits shall be installed as shown on the plans. The system lifetime shall be rated at of 60 000 hours with a failure rate of less than 10 percent. The system shall be rated at a nominal wattage of 87 W, 120/240 V(ac). The power factor of systems shall be greater than 90 percent and total harmonic distortion (THD) shall be less than 10 percent. The system shall be Underwriter's Laboratories (UL) approved for wet
locations and be Federal Communications Commission (FCC) Class A listed. The overall mass of induction sign lighting shall not exceed 20 kg. The manufacturer's brand name, trademark, model number, serial number and date of manufacture shall be located on the packaged assembly and permanently marked on the outside and inside of housings. #### **MATERIALS** #### **Mounting Assembly** Mounting assemblies may be cast aluminum, hot-dip galvanized steel plate or galvanized steel plate finished with a polymeric coating system or the same finish used for housings. #### Housing Housings shall have doors designed to hold a refractor or lens. Housing doors shall be designed to open without the use of tools. Housings and doors shall have a gray powder coat or polyester paint finish resembling unfinished fabricated aluminum. #### Reflector Reflectors shall be designed to be removed as a unit that includes the lamp and power coupler. #### Refractor Refractors (or lenses, if used) shall have smooth exteriors. Lenses shall be flat or convex. Convex lenses shall be made from heat resistant, high-impact resistant, tempered glass. Convex lenses shall be designed or shielded so no fixture luminance is visible when induction sign lighting is approached directly from the rear and the viewing level is the bottom of the induction sign lighting. Shield shall be an integral part of door castings. #### Lamp Induction sign lighting shall be furnished with a85-W induction lamp. Interior lamp walls shall be fluorescent phosphor coated. Lamp light output shall be at least 70 percent at 60 000 hours. Lamps shall have a minimum color-rendering index of 80. Lamps shall be rated at a color temperature of 4 000°C. Lamps shall be removable without the use of tools. #### Power Coupler Power couplers shall consist of a construction base with antenna, heat sink and electrical connection cable. Power couplers shall be designed so they can be removed with common hand tools. #### **High Frequency Generator** High frequency (HF) generators shall start and operate lamps at an ambient temperature of -25°C or greater for the rated life of the lamp. Generator output frequency shall be 2.65 MHz +/- 10 percent. Generator radio frequency interference shall meet the requirements of Title 47, Part 18 of the FCC regulations concerning harmful interference. High frequency (HF) generators shall operate continuously at ambient air temperatures from -25°C to 25°C without reduction in generator life. High frequency (HF) generators shall have a design life of at least 100 000 hours at 55°C. High frequency generators shall be capable of being replaced with common hand tools. Conductor terminals shall be identified as to the component terminal to which they connect. High frequency generators shall be mounted to use the fixture upon which they are mounted as a heat sink. A manufacturer's Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications, and a copy of the high frequency generator test methods and results shall be submitted by the Contractor with each lot of induction sign lighting. The certificate shall state that high frequency generators meet the requirements of this section and the generator specifications of the lamp manufacturer. # Retrofit Kit Induction sign lighting retrofit kit shall consist of a reflector, a lamp, a power coupler and a high frequency generator. Retrofit kit components shall conform to the requirements of this section. The installation of the retrofit kit shall not require modification of existing housing and door. # 10-3.32 PHOTOELECTRIC CONTROLS Contactors shall be the mechanical armature type. Photoelectric controls may be obtained from the City of Los Angeles, Department of Water and Power (DWP), Street Lighting Maintenance Headquarters, 611 North Hoover Street, at no cost to the Contractor. A minimum of 15 days advance notice is required to be given to the Engineer first and the DWP Street Lighting Superintendent at 213-481-4366 or 213-367-9966. The Contractor shall keep photoelectric controls issued by DWP in operating condition until satisfactory completion of the burn test. Installed photoelectric controls shall be oriented northerly. # 10-3.33 COMMUNICATION SYSTEM ROUTING CUT-OVER Communication system routing cut-over shall consist of disconnection of existing communication system routing, and connection, reconnection, activation and integration testing of modified communication system routing. Integration testing shall begin at existing or relocated field element locations. The Contractor shall provide a detailed communication system routing cut-over plan as part of the installation and test plan, conforming to the requirements in these special provisions, to the Engineer for approval, and shall coordinate communication system routing cut-over activity with the Engineer. Integration testing shall begin after the following tasks have been performed: - A. Pre-installation testing on new material and equipment recommended by the manufacturer. - B. Installation and testing the project cable plant. - C. Video and data link testing from nearest existing Hub buildings to field element locations, such as closed circuit television (CCTV) cameras and traffic monitoring stations that are connected to new trunk line fiber optic cables. Full compensation for communication system routing cut-over shall be considered as included in the contract lump sum price paid for modify communication system routing and no separate payment will be made therefor. # 10-3.34 SYSTEM TESTING AND DOCUMENTATION System testing and documentation shall cover pre-installation testing, sub-system testing, fiber optic cable testing, video link testing, data link testing, acceptance testing and system documentation that is required to validate the operational performance of the communications system and described elsewhere in these special provisions. # **SYSTEM TESTING** #### Test Plan The Contractor shall develop and submit, 20 days after the contract has been approved, an installation and test plan which details methods of modification, relocation and installation and testing for material, equipment, and cable and the associated schedule of activities, based on these special provisions, the plans, the manufacturer's recommended test procedures, and industry standard practices to the Engineer within 20 working days for approval. Three copies of the test plan shall be submitted. The Engineer will review then approve or disapprove the plan within 10 working days. If the Engineer rejects the test plan, the Contractor shall submit a revised test plan within 15 working days for review and approval by the Engineer. No testing shall be performed until the Contractor's test plan has been approved by the Engineer. Tests shall demonstrate that design and production of material and equipment meet the requirements of these special provisions and plans. Test results, including results of failed tests or re-tests, shall be submitted and delivered to the Engineer and a copy placed with the equipment at the site. Test equipment shall be supplied by the Contractor. The Contractor shall notify the Engineer of functional and sub-system testing 48 hours prior to commencement of testing. Full environmental conditions shall be tested as part of the functional tests for field equipment. Sub-system testing and inspections shall include visual inspection for damaged in correct installation, adjustments and alignment, and measurement of parameters and operating conditions. # **Pre-Installation Testing** Pre-installation testing shall include testing of material, equipment and cable in a laboratory environment prior to delivery to the site. Use of laboratory facilities, including an environmental simulation chamber, shall be arranged by the Contractor. Tests shall be conducted at the equipment manufacturer's premises or at a laboratory arranged by the Contractor. Material, except test equipment and special tools, shall be bench tested in accordance with the following requirements, including items described elsewhere requiring pre-installation testing for individual items where applicable. Active equipment shall be connected to normal operating power, energized and subjected to normal operating conditions for a continuous period of time in the laboratory of not less than 48 hours. Functional testing shall be performed by the manufacturer on material prior to delivery to the site. Functional tests shall be performed in accordance with an approved test plan. Material or equipment which fails to meet requirements shall be repaired or replaced and tests shall be repeated until satisfactory. Functional test results, including results of failed tests or retests, shall be submitted and delivered with material and equipment delivered to the site. Full performance tests shall be performed by the manufacturer or the Contractor on not less than 5 percent or at least one unit of material selected at random from the normal production run. Full performance tests shall be performed in accordance with a test plan developed by the Contractor and approved by the Engineer. #### **Sub-system Testing** Sub-system testing shall encompass testing of material, equipment and cable after installation, but prior to acceptance testing. Equipment and hardware shall be installed in accordance with the plans and special provisions. Sub-system testing and inspections shall include visual inspection for damaged or incorrect installation, adjustments and alignment, and measurement of parameters and operating conditions. The Contractor shall notify the Engineer of sub-system testing 48 hours prior to commencement testing. The Contractor shall test sub-system functions to demonstrate that circuits (video, data, and voice), cameras, camera control and equipment satisfies the functional requirements of the specifications. The Contractor shall document
functional test results. If a functional test fails, are determined by the Engineer, the Contractor all cease testing and determine the cause of the failure and make repairs to the satisfaction of the Engineer. Installation documentation and test results shall be provided for material, equipment and cable prior to commencement of acceptance tests. Installation documentation shall be in accordance with these special provisions and shall include the following as appropriate: Model, part number and serial number for all material and equipment. Test equipment model number, serial number, settings, and date of last calibration. All strap and switch settings. Record of all adjustments and levels. Alignment measurements. Identification of interconnections. All factory, laboratory and site test results. # **Fiber Optic Cable Testing** Attention is directed to "Fiber Optic Testing" of these special provisions. # Video Link Testing Video link testing shall be conducted after the Contractor submits a test plan and receives approval from the Engineer. Measurements shall be made from the baseband into baseband-out connections. Video communication links shall include video transmitters, video receivers, interconnecting optical fiber, connectors and power supplies. Video links provide point-to-point transmission and reception of a full motion NTSC baseband video signal using an optical fiber as the transmission medium. Video system performance tests for video links shall be performed after the associated camera has been relocated and tested. Video links in communications systems shall be tested with a video test signal at the video transmitter input. The Contractor shall perform level adjustments and alignments required on video links in order for video links to operate in accordance with these special provisions. # **Data Link Testing** Data link testing shall be conducted after the Contractor submits a test plan and receives approval from the Engineer. Data link testing shall test alignment of data systems, including verification of data circuits in low speed data links, high speed data ring networks and in the integrated data system. The Contractor shall adjust levels required for data systems to operate. # **Acceptance Testing** Acceptance testing shall be conducted in accordance with the approved test plan. Acceptance testing shall include subsequent retests and documentation of test results. Final acceptance tests shall be conducted after site and sub-system test results have been reviewed and accepted by the Engineer. These tests include the complete system in normal operations. The test plan shall address full testing requirements of the specifications, shall detail tests to be performed, test results which are expected and the test schedule. The acceptance test plan shall include the following major test and acceptance categories: Physical inspection. Functional tests. Performance tests. The Contractor shall test communication system routing according to the approved acceptance test plan and shall provide test equipment, labor and ancillary items required to perform testing. Test equipment shall be certified to be calibrated to the manufacturer's specifications. Model and part numbers and dates of last calibration of test equipment shall be included with test results Acceptance testing shall not commence until material required by these special provisions and plans are delivered, installed, and aligned and production test and site test documentation and results have been approved by the Engineer. Acceptance test results shall be fully documented and documentation provided as a condition of acceptance. #### SYSTEM DOCUMENTATION The Contractor shall submit a draft copy of documentation for review and approval prior to production of documentation. The Engineer will review and approve or reject draft documentation within 20 working days of receipt. The Contractor shall modify documentation if required and submit provisional documentation. The Engineer will approve or reject the provisional documentation within 15 working days of receipt. The Contractor shall arrange for re-submission in a timely manner to meet the schedule if documents are rejected. Draft documentation shall be submitted 40 working days prior to the start of installation. Draft documentation shall show the general approach in preparing final manuals. Upon approval of draft documentation, provisional documentation shall be supplied 15 working days prior to the start of site testing. Provisional documentation shall be the same format as final manuals, but with temporary insertion of items which cannot be finalized until the system is completed tested and accepted. Final documentation shall be submitted no later than 20 working days after completion of acceptance tests and shall incorporate comments made during approval stages. The Contractor shall be responsible for delay caused by non-compliance to the specified requirements. Final documentation shall be approved prior to production. Ten copies of final documents shall be delivered. Copies shall be 215 mm x 279 mm paper bound in 3-ring hard-covered binders with dividers. System documentation shall be arranged in an operation and maintenance (O & M) manual format providing information necessary to operate, maintain and repair equipment and cable to the lowest module or component level. # 10-3.35 REMOVING, DISPOSING, RELOCATING, OR REINSTALLING ELECTRICAL EQUIPMENT The Contractor shall provide the equipment and materials, as necessary, to clean, to safely load and unload to and stockpile the material. A minimum of 7 working days' notice shall be given to the Engineer, the Traffic Management Center (TMC) at (213) 897-0329 and the Electrical Maintenance Supervisor at (213) 746-3181 prior to removal and delivery. Full compensation for removing, disposing or salvaging electrical equipment shall be considered as included in the contract lump sum price paid for modify lighting and sign illumination and no separate payment will be made. # 10-3.36 DISPOSING OF ELECTRICAL EQUIPMENT Ballasts and transformers and fluorescent and mercury lamps shall be disposed of in conformance with California Department of Health Services Regulations set forth in Title 22, Division 4, Chapter 30, of the California Code of Regulations. Ballasts and transformers that contain polychlorinated biphenyl (PCB) are designated as extremely hazardous wastes and fluorescent tubing and mercury lamps are designated as hazardous wastes under Title 22, Chapter 30, Article 9, Section 66680, of the California Code of Regulations. The following electrical materials on the project are known to contain polychlorinated biphenyl (PCB): - A. Fluorescent lamps and ballasts - B. Mercury lamps and ballasts - C. Series lighting transformers When 25 or more fluorescent lamps and mercury lamps, in combination, are to be disposed of, the lamps shall be treated as recyclable hazardous waste and shall be recycled within the State of California in conformance with Title 22, Chapter 30, Article 12, of the California Code of Regulations by a currently certified recycler such as, but not limited to, the following: - A. Exceltrans Inc., P.O. Box 866, Benicia, CA 94510, Telephone (707) 745-8907. - B. Roberts Enterprises, 2021 South Myrtle Avenue, Monrovia, CA 91016, Telephone (818) 303-2053. The recyclable hazardous waste shall be packaged and then shipped via a currently certified hauler in conformance with Title 22, Chapter 30, Article 12, of the California Code of Regulations and other applicable local, State, and Federal regulations. The State assumes generator responsibility for these wastes. The Engineer will prepare the Hazardous Waste Manifest for Shipment. Full compensation for removing fluorescent tubing, mercury lamps, ballasts and transformers shall be considered as included in the contract lump sum price paid for modify lighting and sign illumination and no additional compensation will be allowed therefor After removal, handling and disposing of electrical material containing polychlorinated biphenyl (PCB) will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. # **10-3.37 PAYMENT** Other roadway lighting on the project shall be considered as included in the contract lump sum price paid for lighting (City). The contract lump sum price paid for modify signal and lighting (City) at various locations shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in modify signal and lighting (city) at various locations, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract lump sum price paid for signal and lighting (temporary-city) shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in signal and lighting (temporary-city), complete in place, as shown on the plan, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract lump sum price paid for modify traffic monitoring station shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in modifying traffic monitoring stations at various locations, including installation of conduits, conductors, pull boxes, inductive loop detectors, telephone cable, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract lump sum price paid for modify lighting (City) shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in modify lighting (city), complete in place, as shown on the plan, as
specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract lump sum price paid for lighting (City) shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in lighting (city), complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract lump sum price paid for relocate extinguishable message sign shall include full compensation for furnishing all labor, materials, tools, equipment, wiring and incidentals, and for doing all the work involved in relocating extinguishable message sign, complete in place, including ancillary or incidental items required to provide a fully functional site at the new location, as shown on the plan, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract lump sum price paid for modify traffic monitoring station at various locations shall include full compensation for furnishing all labor, materials, tools, equipment, wiring and incidentals, and for doing all the work involved in modifying traffic monitoring station, complete in place, including ancillary or incidental items required to provide a fully functional site at the new location, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Full compensation for technical support from the various equipment manufacturers and for arranging for a qualified technician employed by these manufacturers, or their representatives, for the purpose of system turn-on, shall be considered as included in the contract price paid for the items involved and no additional compensation will be allowed therefor. The contract lump sum price paid for communication system routing (modify) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in communication system routing (modify), complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract lump sum price paid for traffic monitoring station shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in installing traffic monitoring station 2421, located at KP 47.92, complete in place, including furnishing and installing Type 334 cabinet, Model 170 controller assembly, loop detectors, cables and conductors, conduits and pull boxes, providing electrical service, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract lump sum price paid for relocate closed circuit television (CCTV) camera at various locations shall include full compensation for furnishing all labor, materials, tools, equipment, wiring and incidentals, and for doing all the work involved in relocating closed circuit television (CCTV) cameras, complete in place, including new poles, new foundations, ancillary or incidental items required to provide a fully functional site at the new location, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract lump sum price paid for relocate changeable message sign No. 32, shall include full compensation for furnishing all labor, materials, tools, equipment, wiring and incidentals, and for doing all the work involved in relocating changeable message sign No.32, complete in place, including ancillary or incidental items required to provide a fully functional site at the new location, as shown on the plan, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract lump sum price paid for modify video node shall include full compensation for furnishing all labor, materials, tools, equipment, wiring and incidentals, and for doing all the work involved in modifying video node, complete in place, including ancillary or incidental items required to provide a fully functional site, as shown on the plan, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract lump sum price paid for modify data node shall include full compensation for furnishing all labor, materials, tools, equipment, wiring and incidentals, and for doing all work involved in modifying data node, complete in place, including ancillary or incidental items required to provide a fully functional site, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. The contract lump sum price paid for system testing and documentation shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals, and for doing all the work involved in system testing and documentation, as specified in the Standard Specification, and these special provisions, and as directed by the Engineer. Removing, relocating, repairing and replacing the existing communication system routing elements, including post-construction testing, and further repairs required thereafter, except as otherwise provided under "Existing Highway Facilities" of these special provisions, shall be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. # SECTION 11. MODIFIED STANDARD SPECIFICATION SECTIONS # SECTION 11-1. QUALITY CONTROL / QUALITY ASSURANCE Asphalt concrete shall conform to the provisions in this Section 11-1, "Quality Control / Quality Assurance," and the section entitled "Asphalt Concrete" in Section 10-1, "General," of these special provisions. Section 39, "Asphalt Concrete," of the Standard Specifications shall not apply to Type A and Type B asphalt concrete. #### **SECTION 39: ASPHALT CONCRETE** # 39-1 GENERAL #### 39-1.01 DESCRIPTION This work shall consist of furnishing and mixing aggregate and asphalt binder at a central mixing plant, transporting, spreading and compacting the mixture, and furnishing and placing pavement reinforcing fabric, in conformance with this Section 11-1, "Quality Control / Quality Assurance," and with "Asphalt Concrete" in Section 10-1, "General," of these special provisions. The Contractor shall be responsible for controlling the quality of the asphalt concrete product entering the work, including aggregate, asphalt binder, additives, and asphalt concrete mixture; for controlling the quality of the work performed, including mix design, and mixing, transporting, spreading, and compacting the asphalt concrete; for controlling the quality of the finished roadway surface; and for developing, implementing, and maintaining a quality control program. The Contractor shall be responsible for the inspection, sampling, and testing required to control the quality of the asphalt concrete and the work performed. The inspection, sampling, and testing required to control the quality of the workmanship and the asphalt concrete shall conform to this Section 11-1. Sampling shall be in conformance with the requirements of this Section 11-1 and with California Test 125. Testing shall be performed using California Tests unless otherwise directed by the Engineer or this Section 11-1. Asphalt concrete is designated as Type A or Type B. The type of asphalt concrete will be shown on the plans or specified in "Asphalt Concrete" in Section 10-1, "General," of these special provisions. #### 39-2 MATERIALS # **39-2.01 ASPHALTS** Asphalt binder to be mixed with aggregate shall be steam-refined paving asphalt conforming to the provisions in Section 92, "Asphalts," of the Standard Specifications. Asphalt binder shall be Grade AR-4000 unless the grade is designated in "Asphalt Concrete" in Section 10-1, "General," of these special provisions. Liquid asphalt for prime coat shall conform to the provisions in Section 93, "Liquid Asphalts," of the Standard Specifications and shall be the grade designated by the contract item or conform to the provisions in "Asphalt Concrete," in Section 10-1, "General," of these special provisions. Asphalt emulsion for paint binder (tack coat) shall conform to the provisions in Section 94, "Asphaltic Emulsions," of the Standard Specifications for the rapid-setting or slow-setting type and grade approved by the Engineer. Paving asphalt to be used as a binder for pavement reinforcing fabric shall be a steam-refined paving asphalt conforming to the provisions in Section 92, "Asphalts," of the Standard Specifications, and shall be Grade AR-4000, unless otherwise ordered by the Engineer or designated in "Asphalt Concrete" in Section 10-1, "General," of these special provisions. #### 39-2.02 AGGREGATE Aggregate and combined aggregate shall conform to the quality and gradation provisions in this Section 11-1, "Quality Control / Quality Assurance," for the asphalt concrete types and sizes conforming to the provisions in "Asphalt Concrete" in Section 10-1, "General," of these special provisions. Aggregates shall be clean and free from decomposed or organic materials and other deleterious substances. Coarse aggregate is material retained on the 4.75-mm sieve, fine aggregate is material passing the 4.75-mm sieve, and supplemental fine aggregate is added fine material passing the 600-µm sieve, including, but not limited to, cement and stored fines from dust collectors. The target value for the percent passing each designated sieve size for the aggregate blend used in the proposed asphalt concrete mix design shall fall within the "Target Value Limits" of the following table: Table 39-1 - AGGREGATE GRADATION Type A and Type B Asphalt Concrete Percentage Passing | 19-mm N | Maximum, Coarse | 19-mm Maximum,
Medium | | | |-------------|---------------------|-----------------------|---------------------|--| | Sieve Sizes | Target Value Limits | Sieve Sizes | Target Value Limits | | | 25-mm | 100 | 25-mm | 100 | | | 19-mm | 90-100 | 19-mm | 90-100 | | | 9.5-mm | 60-75 | 9.5-mm | 65-80 | | | 4.75-mm | 45-50 | 4.75-mm | 49-54 | | | 2.36-mm | 32-36 | 2.36-mm | 36-40 | | | 600-μm | 15-18 | 600-μm | 18-21 | | | 75-μm | 3-7 | 75-μm | 3-8 | | | 12.5-mm Maximum, Coarse | | 12.5-mm Maximum, Medium | | |-------------------------|---------------------|-------------------------|---------------------| | Sieve Sizes | Target Value Limits | Sieve Sizes | Target Value Limits | | 19-mm | 100 | 19-mm | 100 | | 12.5-mm | 95-100 | 12.5-mm | 95-100 | | 9.5-mm | 75-90 | 9.5-mm | 80-95 | | 4.75-mm | 55-61 | 4.75-mm | 59-66 | | 2.36-mm | 40-45 | 2.36-mm | 43-49 | | 600-μm | 20-25 | 600-μm | 22-27 | | 75-μm | 3-7 | 75-µm | 3-8 | During asphalt concrete production, aggregate gradation shall be within the limits specified in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1. Conformance with the grading requirements shall be determined by California Test 202, modified by California Test 105, when there is a difference in specific gravity of 0.2 or more between the coarse and fine portions of the aggregate or between the blends of the different aggregates. The percent passing the 75-µm sieve shall be reported to the first decimal place (tenths). The combined aggregate shall conform to the following quality requirements prior to the addition of the asphalt binder: Table 39-2 - AGGREGATE QUALITY REQUIREMENTS | | California | Asphalt Concrete | | |--|------------|------------------|--------| | Quality | Test | Type A | Туре В | | Percent of Crushed Particles | 205 | | | | Coarse Aggregate (Min.) | | 90% | 25% | | Fine Aggregate (Passing 4.75-mm, Retained on 2.36-mm) (Min.) | | 70% | 20% | | Los Angeles Rattler | 211 | | | | Loss at 100 Rev. (Max.) | | 12% | | | Loss at 500 Rev. (Max.) | | 45% | 50% | | Sand Equivalent (Min.) ¹ | 217 | 47 | 42 | | Kc Factor (Max.) | 303 | 1.7 | 1.7 | | Kf Factor (Max.) | 303 | 1.7 | 1.7 | #### Note: 1. Reported value shall be the average of 3 tests split from a single sample. #### 39-2.03 ASPHALT CONCRETE MIXTURE The asphalt concrete mixture, composed of the proposed aggregate blend and the proposed asphalt binder content as determined by California Test 367, shall conform to the following requirements: Asphalt Concrete Type and Location Desert California Coast and Valley (per Engineer) **Design Parameters** Test Type A Type B Type A Type B $367^{\overline{1,2}}$ Hveem Stabilometer Value 37 35 37 35 $3-5^{3}$ $3-5^{3}$ 367^{1} 4-6⁴ $4-6^4$ Percent air voids (Mix Design) (Start-Up Production Evaluation) Design Value ±1.0 Swell ⁵ (mm) (Max) 305 0.76 0.76 0.76 0.76 Table 39-3 - ASPHALT CONCRETE MIXTURE REQUIREMENTS #### Notes: - 1. Reported value shall be the average of 3 tests from a single split sample. - If the range of stability for the 3 briquettes is more than 12 points, the briquettes shall be discarded and new samples shall be fabricated. - Modify California Test 367, paragraph C5, to "most nearly 4%." - Modify California Test 367, paragraph C5, to "most nearly 5%." - 5. Measured at Mix Design only. During production and placement, the asphalt concrete mixture shall conform to the requirements of Table 39-4, "Minimum Process Control Requirements," and Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1. Changes in cold feed or hot bin proportions to conform to the aggregate grading requirements shall not be considered changes in the mix design. Whenever asphalt concrete production has been suspended for longer than 30 days, the Contractor, on the first day of resumption of production, shall sample and test the asphalt concrete to demonstrate conformance with the requirements of Table 39-3, "Asphalt Concrete Mixture Requirements," Table 39-4, "Minimum Process Control Requirements," and Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1. The target value for asphalt content may be changed by as much as ± 0.2 percent during the production start-up evaluation specified in Section 39-10.02A, "Production Start-Up Evaluation," of this Section 11-1 or after production start-up evaluation and before the first day of regular production with the Engineer's approval. The Contractor shall demonstrate that asphalt concrete that has been produced through the plant using the modified target value for asphalt content is in conformance with this Section 11-1 by submitting test results for samples obtained from the first 500 tonnes of production. Stability and percent air voids shall be determined using 3 briquettes constructed from a single sample taken from 4 locations across the mat in conformance with the requirements of California Test 125. Changes from one mix design to another shall not be made during the progress of the work, unless approved by the Engineer. Changes in asphalt content, other than those allowed during the start-up evaluation process, or in aggregate grading target values shall be considered to be a change in the asphalt concrete mixture and shall require a new mix design proposal. Changes in the asphalt content or aggregate grading target values approved by the Engineer will not be applied retroactively for acceptance or payment. #### 39-2.04 PAVEMENT REINFORCING FABRIC Pavement reinforcing fabric shall conform to the provisions in Section 88, "Engineering Fabrics," of the Standard Specifications and these special provisions. #### 39-3 ASPHALT CONCRETE MIX DESIGN PROPOSAL AND REVIEW #### 39-3.01 CONTRACTOR MIX DESIGN PROPOSAL The Contractor shall submit for the Engineer's review a proposed asphalt concrete mix design for each asphalt concrete mixture to be used at least 14 days prior to production of that asphalt concrete mixture. The asphalt concrete mix design shall be prepared by a laboratory (or laboratories) whose proficiency has been reviewed and qualified in conformance with the Department's Quality Assurance Program. Aggregate quality and asphalt concrete mix design test results shall be no more than one year old when production of the asphalt concrete mixture starts. For projects of more than one year's duration, asphalt concrete may be produced using the asphalt concrete mix design that was reviewed and accepted at the start of the project provided the asphalt concrete mixture continues to conform to the provisions of this Section 11-1, "Quality Control / Quality Assurance." The Contractor shall submit a mix design letter that indicates the target values proposed for gradation, asphalt content, and percent air voids. This submittal shall include test results for aggregate and asphalt mixture quality; plots of the combined gradings showing the production tolerances; plots of unit weight, stability, and percent air voids versus asphalt content for the asphalt contents considered in the design process. In addition, this submittal shall include test results for stability, percent air voids, and swell for 3 briquettes constructed using the submitted aggregate and asphalt blended at the proposed target values for each asphalt concrete mixture to be used. The Contractor shall submit the following for each asphalt concrete mixture proposed: # A. Aggregate and mineral filler: - 1. Target values for percent passing each sieve size for the aggregate blend; - 2. Results of tests for aggregate quality requirements; - 3. Source of each aggregate to be used including producer, location, and California Mine Identification number; - 4. Percentage of each aggregate stockpile, cold feed or hot bin to be used; - 5. Gradation of each aggregate stockpile, cold feed or hot bin to be used; and - 6. Samples that are representative of the aggregate to be used. Minimum sample sizes shall be as follows: | 60 kg of each coarse aggregate; | |---| | 40 kg of each fine aggregate; and | | 5 kg of each supplemental fine aggregate. | # B. Asphalt binder: - 1. Asphalt binder source and target value; - 2. Four one-liter samples of the asphalt binder; - 3. Results of the asphalt binder quality tests conforming to the provisions in Section 92, "Asphalts," of the Standard Specifications; and - 4. Material Safety Data Sheets. # C. Antistrip additives, when applicable: - 1. A 5-kg sample of the dry additive or a one-liter sample of the liquid antistrip additive, including name of product, manufacturer, manufacturer's designation and proposed rate, location, and method of addition; and - 2. Material Safety Data Sheets. The proposed asphalt concrete mix design submittal will be considered complete only when the mix design letter, test results, plots, and samples have been received by the Engineer. # 39-3.02 ENGINEER REVIEW OF ASPHALT CONCRETE MIX DESIGN The Engineer will review the proposed aggregate and asphalt concrete mixture for conformance with this Section 11-1, "Quality Control / Quality Assurance." The proposed asphalt concrete mixture will be reviewed at the proposed target values for aggregate grading and asphalt content. The Engineer will have 14 days to review each submittal of a proposed mix design. Production of asphalt concrete shall not begin until written notification has been received from the Engineer that the aggregates and proposed mix design meet the quality requirements of this Section 11-1. The Engineer will reject a proposed asphalt concrete mixture that, during review, fails to meet the quality requirements of Table 39-2, "Aggregate Quality Requirements," and Table 39-3, "Asphalt Concrete Mixture Requirements," of this Section 11-1. The Contractor shall resubmit a mix design letter providing new test results, plots, and material samples. Disagreements in mix design review shall be resolved in conformance with Section 39-6, "Dispute
Resolution," of this Section 11-1. The Contractor shall use a mix design on the project only after the Engineer concurs that the aggregate and asphalt concrete represented by the proposed mix design conforms to the provisions of this Section 11-1. The Engineer will review one proposed asphalt concrete mix design for each asphalt concrete type and aggregate size from each plant proposed for use on this project at the State's expense. Costs for additional reviews due to failure to conform to the quality requirements of this Section 11-1 and for reviewing other proposed asphalt concrete mix designs will be deducted from moneys due or to become due the Contractor. The cost for each review will be \$1,500. Costs for reviewing changes in a mix design that are initiated by the Engineer will be waived. Contractor's retesting due to errors in the Engineer's testing will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. Costs for reviewing mix designs not used in this project will be deducted from moneys due or to become due the Contractor. # 39-4 CONTRACTOR QUALITY CONTROL # **39-4.01 GENERAL** The Contractor shall be responsible for the quality of the asphalt concrete entering into the work and of the work performed. In addition, the Contractor shall be responsible for the quality of asphalt concrete or ingredients procured from subcontractors or vendors. A quality control system shall be established, maintained, and modified, if needed, that will provide assurance that materials and completed work conform to contract requirements. At least 14 days prior to the start of production of asphalt concrete, the Contractor shall submit a written Quality Control Plan. At the request of the Engineer or the Contractor, the Contractor shall discuss the Quality Control Plan with the Engineer. # 39-4.02 QUALITY CONTROL PLAN The Quality Control Plan shall describe the organization and procedures that will be used to administer the quality control system including the procedures used to control the production process, the procedures used to determine when changes to the production process are needed, and the procedures proposed to be used to implement the required changes. The Quality Control Plan shall meet the minimum standards set forth in the Department's "Manual for Quality Control and Quality Assurance for Asphalt Concrete," available as specified in "Asphalt Concrete" in Section 10-1, "General," of these special provisions. Asphalt concrete production and placement shall not begin until the Quality Control Plan has been approved by the Engineer. Approval of the Quality Control Plan does not imply a warranty by the Engineer that adherence to the plan will result in production of asphalt concrete that complies with this Section 11-1. It shall remain the responsibility of the Contractor to demonstrate such compliance. The Quality Control Plan shall include the name and qualifications of a Quality Control Manager. The Quality Control Manager shall be responsible for the administration of the Quality Control Plan, including compliance with the plan and plan modifications. The Quality Control Manager shall be responsible to the Contractor, shall have the authority to make decisions concerning quality of the work or product, and shall be available to the project within less than 3 hours during paving. Except in cases of emergency and with the approval of the Engineer, the Quality Control Manager cannot be a foreman, member of the production or paving crew, an inspector or tester on this project during pavement production and placement. The Quality Control Plan shall identify personnel, equipment and documentation required for a complete inspection, sampling and testing program. The Quality Control Plan shall include, but not be limited to, a list of inspectors, samplers and testers, their duties, their certifications if required, and their experience if no certification is required. It shall also list the name and location of laboratories that shall be providing information to the Engineer, the testers who conducted the tests and their certifications and the name of the Laboratory Quality Control Manager responsible for oversight of the testing program. It shall also show examples of the test result forms (if different from those in the Department's "Manual for Quality Control and Quality Assurance for Asphalt Concrete"), the roadway and plant inspection forms, the Quality Control Manager's daily summary form, and the compliance charts. It shall include the method by which random sampling shall be determined, a list of the testing and sampling equipment to be used and the current calibration dates and calibration charts, and copies of nuclear gauge licenses. The Quality Control Plan shall include the name and certification of a testing consultant to be an Independent Third Party in dispute resolution. By mutual agreement during dispute resolution, the Independent Third Party may be a District Independent Assurance Sampler and Tester, the testing consultant or both. The proficiency of the testing consultant shall be reviewed and certified in conformance with the requirements of the Department's Quality Assurance Program before the test consultant participates in dispute resolution. Attention is directed to Section 39-6, "Dispute Resolution," of this Section 11-1. The Quality Control Plan may be modified as work progresses. A supplement shall be submitted whenever there are changes to quality control procedures or personnel. Asphalt concrete production and placement shall not resume or continue until revisions to the Quality Control Plan or quality control personnel have been approved by the Engineer. # 39-4.03 CONTRACTOR QUALITY CONTROL INSPECTION, SAMPLING, AND TESTING The Contractor shall perform process and quality control sampling and testing, provide inspection, and exercise management control to ensure that asphalt concrete production and placement conforms to the provisions of this Section 11-1. Staffing for process and quality control shall meet the minimum requirements outlined in the Department's "Manual for Quality Control and Quality Assurance for Asphalt Concrete." Process and quality control, sampling, testing, and inspection shall be provided during the asphalt concrete work. Sampling, testing, and inspection shall be performed at a rate sufficient to ensure that asphalt concrete conforms to the provisions of this Section 11-1. A roadway inspector shall be provided while asphalt concrete paving operations are in progress. The roadway inspector shall ensure that asphalt concrete placement conforms to industry standards and to the spreading, compacting, and finishing requirements of this Section 11-1, "Quality Control / Quality Assurance." Plant inspection shall be performed as necessary to maintain control of the asphalt concrete production. Minimum sampling and testing requirements for process and quality control are specified in Table 39-4, "Minimum Process Control Requirements," and Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1. Sampling shall be statistically based and random. During production start-up evaluation, the Contractor shall sample and test in conformance with the provisions in Section 39-10.02A, "Production Start-Up Evaluation," of this Section 11-1. A testing laboratory and personnel shall be provided for the performance of process and quality control testing. The Engineer shall have unrestricted access to mix design, sampling, and testing. The proficiency of testing laboratories and sampling and testing personnel shall be reviewed, qualified, and certified by the Department's Independent Assurance Sampler and Tester before providing services to the project. Inspectors shall meet the standards set forth in the Department's "Manual for Quality Control and Quality Assurance for Asphalt Concrete." # 39-4.04 CONTRACTOR PROCESS CONTROL Process control sampling and testing shall be performed and control shall be exercised to ensure that asphalt concrete production conforms with this Section 11-1. Minimum process control sampling and testing shall be performed in compliance with the following: Table 39-4 - MINIMUM PROCESS CONTROL REQUIREMENTS | Quality
Characteristic | Action
Limit | California
Test | Minimum
Sampling and
Testing | Point of Sampling ‡ | Reporting
Time
Allowance | |-----------------------------|----------------------------|---|---|---|--------------------------------| | Sand
Equivalent
(Min) | 47 (Type A)
42 (Type B) | 217 (Reported value | One sample per 2500 tonnes Not less than | Batch plant -
from hot bins.
Drum plant - | 24 hours | | (IVIIII) | | shall be the average of 3) ¹ | one sample per
2 days | from cold feed. | | | Stability | 37 (Type A)
35 (Type B) | 366^{2} | See Note 4 | Mat behind paver | 48 hours | | | | (Reported value shall be the average of 3) ^{1,3,5} | Not less than
one sample per
5 days | | | #### Notes: - ‡ In conformance with the requirements of California Test 125. - 1. Samples used for the 3 tests to be averaged shall be from a single split sample. - 2. Reheat for sample preparation shall be 2 hours maximum. Do not place sample or briquette in oven for 15-hour cure. - 3. Briquettes shall be fabricated from a single, combined sample obtained from at least 4 locations across the mat behind the paver in conformance with the requirements of California Test 125. If the range of stability for the three briquettes is more than 12 points, the samples shall be discarded and new samples shall be obtained before the end of the following shift of paving and tested in conformance with the requirements of Table 39-3, "Asphalt Concrete Mixture Requirements." - 4. Asphalt concrete will be sampled and tested each of the first
5 days of production and may be decreased to one for each 5 days thereafter unless stability falls below the action limit. When stability falls below the action limit, sampling will be increased to one sample for each of the first 5 days of production and may be decreased to one for each 5 days thereafter. The sequence of the first 5 test results shall not be broken by more than 7 days of suspended operations. - During production start-up evaluation, a correlation factor for cured vs. uncured specimens shall be established in conformance with the requirements of Section 39-10.02A, "Production Start-Up Evaluation." The process control test results shall be plotted on specification compliance charts indicating the action limits for the quality characteristic. When one test result falls below the action limit for an individual measurement, the Contractor shall notify the Engineer, take corrective action, and sample and test within the next 500 tonnes of production. When 2 consecutive test results for an individual characteristic fall below the action limit, the asphalt concrete represented by the 2 tests shall be considered not in compliance. When 2 consecutive test results for an individual characteristic fall below the action limit, the Contractor shall suspend production, notify the Engineer, and take corrective action. With the approval of the Engineer, up to 1000 tonnes of asphalt concrete may be placed to demonstrate that the asphalt concrete is once again in compliance with the provisions of this Section 11-1. Production shall begin only after the Engineer has received test results confirming compliance. Asphalt concrete that has 2 consecutive stability test results less than or equal to 26 for Type A asphalt concrete or less than or equal to 24 for Type B asphalt concrete shall be removed at the Contractor's expense. Asphalt concrete placed to demonstrate compliance that does not meet the provisions of this Section 11-1 shall be removed at the Contractor's expense. # 39-4.05 CONTRACTOR QUALITY CONTROL Quality control, sampling, testing, and inspection shall be provided during asphalt concrete work. Sampling, testing, and inspection shall be performed at a rate sufficient to ensure that the asphalt concrete product conforms to the requirements in this Section 11-1. Sampling for testing to be reported to the Engineer shall be performed at the minimum frequency specified in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1, "Quality Control / Quality Assurance." Quality control samples of aggregates and asphalt concrete mixture shall be obtained and split. One split portion of each sample shall be used for quality control testing and the other portion shall be reserved for possible retest during dispute resolution, in conformance with Section 39-6, "Dispute Resolution," of this Section 11-1. Quality control samples shall be stored in a location listed in the Quality Control Plan until disposal has been approved by the Engineer. The Contractor shall obtain a one-liter sample of the asphalt binder in conformance with Section 39-7.01C, "Asphalt Binder Storage," of this Section 11-1 for each day of asphalt concrete production. The sample containers shall be labeled as shown in the "Manual for Quality Control and Quality Assurance for Asphalt Concrete" and shall be sent by the Contractor to the Transportation Laboratory on a weekly basis, except for modified asphalts that shall be shipped daily. A copy of the transmittal form shall be attached to the daily report of inspection. When test results for a single quality characteristic deviate beyond the limits specified in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1 the Contractor shall take corrective action and shall bring the asphalt concrete within the specification limits. The corrective action taken shall be documented in the records of inspection in conformance with Section 39-4.06B, "Records of Inspection and Testing," of this Section 11-1. When a single quality characteristic deviates 3 consecutive times beyond the limits specified in Table 39-9, "Minimum Quality Control Test Requirements," of this Section 11-1, the Contractor shall suspend production, shall notify the Engineer, and shall take corrective action. With the approval of the Engineer, up to 1000 tonnes of asphalt concrete may be placed and the requirements of Section 39-10.02A, "Production Start-Up Evaluation," of this Section 11-1 shall be used to demonstrate that the asphalt concrete is once again in compliance with this Section 11-1. Production of asphalt concrete shall start only after the Engineer has received test results confirming compliance. When an individual quality characteristic deviates 3 consecutive times beyond the specification limits and production of asphalt concrete has been suspended, the lot shall be terminated. If an ignition oven is used for asphalt content in conformance with the requirements of California Test 382, gradations of the remaining aggregates shall be provided for each 5000 tonnes of production. Testing of the aggregates shall be in conformance with the requirements of California Test 202, Sections F and G, "Sieve Analysis of Fine and Coarse Aggregates." Test results from these gradings shall be provided prior to completion of the project. Gradings from the aggregates recovered from the ignition oven will not be used in the statistical analysis for quality or for pay. Payment for these gradings will be made as extra work as provided in Section 4-1.03D of the Standard Specifications at the rate of \$150 per test result for the cost of the additional testing. # 39-4.06 CHARTS AND RECORDS The Contractor shall record sampling and testing results for both process control and for quality control on forms as provided in the Department's "Manual for Quality Control and Quality Assurance for Asphalt Concrete" or on forms approved by the Engineer. Complete testing records shall be maintained and posted in the Contractor's laboratory. Models of forms that are different from those in the Department's "Manual for Quality Control and Quality Assurance for Asphalt Concrete," locations of postings, and times and means of submissions shall be provided in the Quality Control Plan. For every 5000 tonnes of asphalt concrete produced, the Contractor shall provide an electronic copy of the process and quality control test results using the Department's statistical evaluation program "ACPay" available as specified in "Asphalt Concrete" in Section 10-1, "General." of these special provisions. Compliance charts and inspection and testing records, except stability test results used for process control, shall be submitted within 24 hours after completion of that shift of asphalt concrete production. If the record is incomplete or in error, a copy of the record will be returned with the deficiencies noted by the Engineer. The Contractor shall correct deficiencies and return the updated record by the start of the following working day. When errors or omissions in the inspection or testing records repeatedly occur, asphalt concrete production and placement shall be suspended and the procedures by which the records are produced shall be corrected before production and placement will be restarted. # 39-4.06A Compliance Charts The Contractor shall develop and maintain time linear specification compliance charts. The compliance charts shall identify the project, test number, test parameter, applicable upper and lower specification limits, and test results. Compliance charts shall be kept current and shall be posted at a location designated in the Quality Control Plan. Compliance charts shall be updated each day of asphalt concrete production, and up-to-date copies shall be included in the submittals to the Engineer of each day's test results. #### 39-4.06B Records of Inspection and Testing For each day of asphalt concrete production, the Contractor shall prepare an "Asphalt Concrete Construction Daily Record of Inspection," on forms provided in the Department's "Manual for Quality Control and Quality Assurance for Asphalt Concrete." A form shall be submitted for inspection at the plant and at the roadway. For each day of asphalt concrete production, the Contractor shall prepare an "Asphalt Concrete Inspection and Testing Summary" on a form provided in the Department's "Manual for Quality Control and Quality Assurance for Asphalt Concrete." Plant and roadway inspection forms documenting the day's plant production and roadway placement shall be completed. Deviations from the specifications or the Contractor's regular practice shall be listed and explained. Individual inspection forms shall be signed by the inspector and initialed by the Quality Control Manager and attached to the summary at submittal. Test forms documenting test results shall be complete, signed by the tester, checked and initialed by the Quality Control Manager, and attached to the summary at submittal. Sampling and testing data and calculations that support a test result shall be made available to the Engineer within 48 hours when requested. The "Asphalt Concrete Inspection and Testing Summary" shall include the following certification signed by the Quality Control Manager: It is hereby certified that the information contained in this record is accurate, and that information, tests or calculations documented herein comply with the requirements of the contract and the standards set forth in the testing procedures. Exceptions to this certification are documented as a part of this record. #### 39-5 ENGINEER QUALITY ASSURANCE #### **39-5.01 GENERAL** The Engineer will assure conformance to contract specifications by review of the Contractor's mix design proposal, by inspection of the Contractor's procedures, by oversight of the Contractor's quality control inspection and records, by splitting and testing samples with the Contractor during evaluation of the plant production
start-up and the nuclear density test strip, and by independent verification sampling and testing of the asphalt concrete and aggregates during asphalt concrete production. The Contractor may witness assurance sampling and testing. However, the Engineer will not be required to notify the Contractor of anticipated sampling schedules or locations and will not delay sampling or testing if the Contractor is unable to attend. The Contractor shall not use samples taken for assurance testing for testing and submittal as a quality control test result. The Engineer will provide the Contractor with copies of the assurance test results not more than 2 working days after receipt of the results. Sampling and testing data and calculations that support a test result shall be made available to the Contractor within 48 hours when requested. The Engineer may test the asphalt, aggregates or asphalt concrete mixture to determine conformance with this Section 11-1, "Quality Control / Quality Assurance," whenever an asphalt concrete mixture or ingredient appears defective or inconsistent or whenever a test result indicates a change in the characteristics of the asphalt concrete mixture or an ingredient. Asphalt, aggregates or asphalt concrete that does not conform with this Section 11-1 will be rejected in conformance with Section 39-11, "Acceptance of Work," of this Section 11-1. The Contractor, when directed by the Engineer, shall obtain representative samples of the asphalt concrete mixture or ingredients that appear defective or inconsistent. The samples shall be split into 4 portions. The Contractor shall retain 1 portion for testing if the Contractor chooses and 3 portions shall be delivered to the Engineer. The asphalt concrete or ingredient need not be sampled if the Contractor elects to remove and replace the asphalt concrete, at the Contractor's expense, or if the Contractor uses a method of correcting the situation that has been approved by the Engineer. Test results from these additional samples shall not be used as a basis for a calculated pay factor. #### 39-5.02 SAMPLING AND TESTING FOR VERIFICATION Independent of the Contractor's quality control testing, the Engineer will obtain random samples of the aggregate and asphalt concrete mixture and test for in-place density. Samples of aggregates and asphalt concrete will be obtained during asphalt concrete production and placement, and will be split into at least 4 portions. One of the split portions will be tested by the Engineer and used to verify quality control test results, one portion will be provided to the Contractor, and 2 portions will be reserved and stored for testing in conformance with the provisions in Section 39-6, "Dispute Resolution," of this Section 11-1. When verifying the relative compaction, the Engineer will obtain a sample of a sample of asphalt concrete from the mat behind the paver, will split the sample and apportion the sample as described above, and will test the sample for test maximum density. The Engineer will test for material quality characteristics specified in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1. Verification tests will be at a frequency of not less than 10 percent of the minimum quality control sampling and testing frequency and will be performed in conformance with the test methods specified in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1. Verification tests will be performed using the same test methods used for quality control testing. During the Engineer's verification of the relative compaction, the Engineer will determine the location of 500 tonnes of asphalt concrete to be tested using a random number, will obtain an asphalt concrete sample from within this location for determination of the test maximum density, and will determine the relative compaction of the in-place asphalt concrete as specified in California Test 375. The Contractor shall obtain one of the split samples of asphalt concrete for determination of test maximum density and shall determine the relative compaction of the 500 tonnes of asphalt tested by the Engineer using the same testing sites determined by the Engineer. The results of this common testing will be compared to the allowable testing difference defined in Table 39-6, "Allowable Testing Differences," of this Section 11-1. If the test maximum density or the relative compaction does not comply with the allowable testing difference, then the Engineer and Contractor will use the first 500 tonnes of the next day's production to re-correlate the nuclear gauges used in testing as defined by California Test 375. During production start-up evaluation, the Engineer will witness the sampling of asphalt concrete and aggregates and will perform tests on the materials in conformance with Section 39-10.02A, "Production Start-Up Evaluation," of this Section 11-1. #### 39-5.03 VERIFICATION The Engineer will determine the acceptability of the quality control test results by using the *t*-test for sample means to test whether or not the means of the quality control test results and verification test results are within an allowable testing difference. Quality control test results and verification test results for each indexed quality characteristic will be used in the verification process. The *t*-value of the group of test data to be verified is computed as follows: $$t = \frac{\overline{|X_c - X_v|}}{S_p \sqrt{\frac{1}{n_c} + \frac{1}{n_v}}}$$ a n d $$S_p^2 = \frac{S_c^2(n_c - 1) + S_v^2(n_v - 1)}{n_c + n_v - 2}$$ where: n_c = Number of Contractor's quality control tests (minimum of 2 required) n_{ν} = Number of Verification tests (minimum of 1 required) X_c = Mean of the Contractor's quality control tests X_{ν} = Mean of the Verification tests S_p = Pooled standard deviation (When $n_v = 1$, $S_p = S_c$) S_c = Standard deviation of the Contractor's quality control tests S_v = Standard deviation of the Verification tests (when $n_v > 1$) The comparison of quality control test results and verification test results will be considered at a level of significance, $\alpha = 0.01$. Compute *t* using the equation above and compare to the critical *t*-value, t_{crit} , from the following table: Table 39-5 - CRITICAL t-VALUE FOR VERIFICATION OF QUALITY CONTROL TESTING | degrees of freedom | t_{crit} | degrees of freedom | t_{crit} | |--------------------|------------------------|--------------------|-------------------------------| | (nc+nv-2) | (for $\alpha = 0.01$) | (nc+nv-2) | $(\text{for } \alpha = 0.01)$ | | 1 | 63.657 | 18 | 2.878 | | 2 | 9.925 | 19 | 2.861 | | 3 | 5.841 | 20 | 2.845 | | 4 | 4.604 | 21 | 2.831 | | 5 | 4.032 | 22 | 2.819 | | 6 | 3.707 | 23 | 2.807 | | 7 | 3.499 | 24 | 2.797 | | 8 | 3.355 | 25 | 2.787 | | 9 | 3.250 | 26 | 2.779 | | 10 | 3.169 | 27 | 2.771 | | 11 | 3.106 | 28 | 2.763 | | 12 | 3.055 | 29 | 2.756 | | 13 | 3.012 | 30 | 2.750 | | 14 | 2.977 | 40 | 2.704 | | 15 | 2.947 | 60 | 2.660 | | 16 | 2.921 | 120 | 2.617 | | 17 | 2.898 | ∞ | 2.576 | Quality control test results are verified if the *t*-value computed is less than or equal to t_{crit} ($t \le t_{crit}$), and the difference between the means of the quality control test results and verification test results are within an allowable testing difference. Quality control test results are not verified if the *t*-value computed is greater than t_{crit} ($t > t_{crit}$), and the difference between the means exceeds the allowable testing difference. The allowable testing difference shall be as follows: Table 39-6 - ALLOWABLE TESTING DIFFERENCE | | California | Allowable | |---------------------------------|------------|--------------------| | Quality | Test | Testing Difference | | Sand Equivalent (min.) | 217 | 8 | | Hveem Stabilometer Value (min.) | 366 | 10 | | Percent Air Voids | 367 | 1.5 | | Asphalt Content | 379 or 382 | 0.3% | | Gradation | 202 | | | 19 or 12.5 mm | | 2 | | 9.5 mm | | 4 | | 4.75 mm | | 3 | | 2.36 mm | | 2 | | 600 μm | | 2 | | 75 μm | | 1.0 | | Relative Compaction | 375 | 0.8% | | Test Maximum Density | | 0.03 g/cc | If quality control test results are not verified, the Contractor will be notified of the difference. The Engineer will sample asphalt concrete production at a more frequent interval. Resolution of the problem shall be in conformance with the provisions in Section 39-6, "Dispute Resolution," of this Section 11-1. # 39-6 DISPUTE RESOLUTION #### **39-6.01 GENERAL** The Contractor and the Engineer shall work together to avoid potential conflicts and to resolve differences that may arise from a disagreement regarding test result comparisons. Should the results of the testing fail to meet the criteria of the stage at which the disagreement arose, production shall be suspended. Production shall not start or resume nor shall asphalt concrete be accepted until the differences have been resolved and the Engineer is assured that the asphalt concrete conforms to this Section 11-1, "Quality Control / Quality Assurance." When the Engineer and the Contractor, together or separately, are unable to determine the source of error, an Independent Third Party shall act as witness and referee. In disagreements, if the Engineer's testing process meets the requirements of this Section 11-1, costs related to the review shall be borne by the Contractor. The Contractor's sampling and testing program shall be modified as necessary. New test results shall be submitted to the Engineer. Test results judged to be in error shall be removed from consideration and the new test results shall be substituted. If split samples are not available and retesting is not possible, that portion of the asphalt concrete produced or placed prior to and during the disagreement will be evaluated based on the results of the Engineer's verification test results. In disagreements, if the Engineer's testing process fails to meet the requirements of this Section
11-1, costs related to the review shall be borne by the State. The Engineer's sampling and testing program will be modified as necessary. Test results judged to be in error shall be removed from consideration and the new test results shall be substituted. Contractor's retesting due to errors in the Engineer's testing will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. If, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of delays or errors in the Engineer's testing, the delay will be considered a right of way delay as provided in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. In disagreements, if both the Contractor's and the Engineer's testing processes have failed to meet the requirements of this Section 11-1 or if the cause cannot be determined, each party will bear the costs related to their own review. When appropriate, the Contractor's and the Engineer's sampling and testing programs shall be modified as necessary, split samples of the Contractor's quality control samples or the Engineer's verification samples shall be retested, and the new quality control test results shall be submitted to the Engineer. Test results judged to be in error shall be removed from consideration and the new test results shall be substituted. If split samples of aggregates or asphalt concrete mixture from the Contractor's testing are not available where retesting is required, that portion of the asphalt concrete produced prior to and during the disagreement will be evaluated based on the results of the Engineer's verification test results. # 39-6.02 DURING THE ASPHALT CONCRETE MIX DESIGN REVIEW During the asphalt concrete mix design review, if the Engineer's review does not confirm that one or more of the aggregate or the asphalt concrete mixture qualities comply with this Section 11-1, "Quality Control / Quality Assurance," both parties will review their sampling, testing, and test results and shall share their findings. Testers and laboratories shall be made available for witnessing. Calculations and test results shall be made available for review. If an error in the Contractor's testing is detected during this review, the Contractor shall, as is appropriate, recalculate or retest. The new test results shall be submitted to the Engineer. If an error in the Engineer's testing is detected, the Engineer will, as is appropriate, recalculate or retest. If the Contractor's and Engineer's review does not reveal the source of conflict, the Contractor's and the Engineer's sampling and testing processes shall be witnessed by the Independent Third Party. Testing to resolve the dispute in results for the mix design shall be performed using samples that were obtained and split while being witnessed by the Independent Third Party. Review of sample preparation and testing will be performed at both the Contractor's and the Engineer's laboratory on a portion of the split material while being witnessed by the Independent Third Party. The resulting mix design shall be used for production. #### 39-6.03 DURING THE PRODUCTION START-UP EVALUATION When the Contractor's and Engineer's test results during production start-up fail to meet the provisions in Section 39-10.02, "Production Start-Up Evaluation and Nuclear Density Test Strips," both parties will review their sampling, testing, and test results, and shall share their findings. Testers and laboratories shall be made available for witnessing. Calculations and test results shall be made available for review. If an error in the Contractor's testing is detected during this review, the Contractor shall, as is appropriate, recalculate or retest. The new test results shall be submitted to the Engineer. If an error in the Engineer's testing is detected, the Engineer will, as is appropriate, recalculate or retest. If the Contractor's and the Engineer's review does not resolve the differences, the Contractor's and the Engineer's testing processes shall be witnessed by the Independent Third Party using the 2 remaining portions of the split samples. If necessary, a 250-tonne to 500-tonne quantity of asphalt concrete shall be placed at a location agreed to by the Engineer to provide asphalt concrete and ingredients for sampling and testing for the Independent Third Party review. If an error in the Contractor's testing is detected by the Independent Third Party, the Contractor shall take corrective action and, as appropriate, recalculate or retest the split portion of the trial quantity of asphalt concrete in question. The new test results shall be submitted to the Engineer. If an error in the Engineer's testing is detected by the Independent Third Party, the Engineer will take corrective action and, as appropriate, recalculate or retest the split portion of the first trial quantity. Production shall not start nor shall asphalt concrete be accepted until the differences have been resolved and the test results meet the provisions in Section 39-10.02, "Production Start-Up Evaluation and Nuclear Density Test Strips," of this Section 11-1. # 39-6.04 DURING PRODUCTION When it is determined that the quality control test results could not be verified, both parties will review their sampling, testing, and test results, and shall share their findings. Testers and laboratories will be made available for witnessing. Calculations and results will be made available for review. If an error in the quality control sampling or testing is detected during the Contractor's or the Engineer's review, the Contractor shall either recalculate or, if appropriate, retest using the reserved split portions of the quality control samples. These new test results shall be submitted to the Engineer. If an error in the verification sampling or testing is detected, the Engineer will recalculate or, if appropriate, retest using a reserved split portion of the verification samples. Using the new test results, the Engineer will repeat the calculation of the *t*-test and will determine if the means of the quality control tests and the verification test results are within the allowable testing difference as specified in Section 39-5.03, "Verification," of this Section 11-1. When the verification test results do not verify the quality control test results 3 consecutive times, both the Contractor's and the Engineer's testers shall be witnessed by the Independent Third Party while sampling, splitting, and testing samples from the production unit or from the mat . The Contractor may produce and place up to 1000 tonnes of asphalt concrete to provide materials and sampling opportunities. Production and placement of asphalt concrete will be suspended until the Independent Third Party has completed the review of the Contractor's and the Engineer's sampling and testing and resolved the differences. If an error in the Contractor's testing is detected by the Independent Third Party, the Contractor shall take corrective action and, as appropriate, recalculate or retest the split portion of the quality control samples. The new test results shall be submitted to the Engineer. If an error in the Engineer's testing is detected by the Independent Third Party, the Engineer will take corrective action and, as appropriate, recalculate or retest a split portion of the verification samples. When the error has been detected and corrected, production shall resume and the services of the Independent Third Party will be discontinued. If a problem is not identified during the Independent Third Party review, the Independent Third Party shall be retained for the duration of the project or until a problem has been identified. Until all asphalt concrete has been produced and placed, the Contractor shall sample and split quality control samples in the presence of the Independent Third Party. One portion of each sample shall be tested by the Contractor in conformance with the intervals specified in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1, and the other portion shall be delivered to the Engineer by the Independent Third Party. The Engineer will test at least one of every 5 of the split samples for verification purposes. A new lot will be designated for asphalt concrete produced since the Independent Third Party was consulted. The pay factor for this lot will be determined in conformance with Section 39-11.02, "Statistical Evaluation and Determination of Pay Factor," of this Section 11-1 with the exception that both the Contractor's quality control test results and the Engineer's verification test results will be combined and will be the basis for acceptance of that portion of the work. The pay factor for the lot of asphalt concrete which brought about the dispute resolution shall be determined in conformance with Section 39-11.02, "Statistical Evaluation and Determination of Pay Factor," of this Section 11-1 with the exception that both the Contractor's quality control test results and the Engineer's verification test results will be combined and will be the basis for acceptance of that portion of the work. # 39-7 STORING, PROPORTIONING AND MIXING MATERIALS #### **39-7.01 STORAGE** The Contractor shall store the aggregate for asphalt concrete so that separately sized aggregates will not be intermingled and shall store asphalt binder so that different grades of asphalt will not be intermingled. Aggregate that has been intermingled with aggregate of another size shall be removed by the Contractor and replaced with aggregate of specified grading. When the Contractor adds supplemental fine aggregate, each supplemental fine aggregate used shall be stored separately and kept thoroughly dry. The measurement and storage provisions of this Section shall not apply to the dust collected in skimmers and expansion chambers (knock-out boxes) or to the dust collected in centrifugal (cyclone) collectors. Dust from these collectors may
be returned to the aggregate without being measured or stored separately, provided the dust is returned uniformly at a point in advance of the sampling device in batch-mixing plants or is returned at or before mixing in continuous mixing plants. Aggregate and asphalt binder shall be stored in conformance with the following requirements. #### 39-7.01A Aggregate Cold Storage Material shall be fed from storage with a mechanical feeder. Before being fed to the drier, aggregate shall be separated into 3 or more sizes and stored separately. #### 39-7.01B Aggregate Hot Storage Aggregate for asphalt concrete to be mixed in batch mixing plants shall be stored, after being dried, in conformance with the following requirements: - 1. Aggregates for asphalt concrete shall be separated into 3 or more sizes. - 2. After the aggregate is separated, each size shall be stored in a separate bin, and shall be recombined in conformance with the provisions in Section 39-7.03A, "Proportioning for Batch Mixing," of this Section 11-1 in order to conform to the gradings specified in Section 39-2, "Materials," of this Section 11-1. Storage bins shall be provided with chutes to prevent overflow into adjacent bins. # 39-7.01C Asphalt Binder Storage Asphalt to be used as a binder for asphalt concrete shall be stored in heated tanks. A suitable sampling device shall be provided in asphalt feed lines connecting plant storage tanks to the asphalt weighing system or spray bar. The sampling device shall consist of a valve with a nominal diameter between 10 mm and 20 mm, constructed in such a manner that a one-liter sample may be slowly withdrawn during plant operations. The valve shall be maintained in good condition and, if the valve fails to function properly, the valve shall be replaced. The sampling device shall be readily accessible and in an area free of dangerous obstructions and shall be between 600 mm and 750 mm above the platform. A drainage receptacle shall be provided for flushing the device prior to sampling. The discharge end of the asphalt binder circulating pipe shall be maintained below the surface of the asphalt binder in the storage tank to prevent discharging hot asphalt binder into open air. A temperature sensing device shall be installed in the asphalt feed line. The device shall measure the temperature of the asphalt and shall be accurate to 5°C increments. An automatic, continuous recording device shall be provided and used to maintain accurate records of the asphalt temperature during production. Where the plant controller has the capability of capturing production data electronically, including ingredient temperatures, and when this data represents the temperature at the time of production and is captured at intervals of not greater than 5 minutes, this process will be considered to be continuous recording. Captured data shall be retained for the duration of the contract and shall be submitted to the Engineer on request. # 39-7.02 DRYING Aggregate shall be fed directly to a drier-drum mixer or to a drier at a uniform rate. Aggregate shall be dried such that, at the time of spreading, the moisture content of the completed asphalt concrete mixture shall not exceed 1.0 percent and the minimum and maximum asphalt concrete mixture temperatures are not exceeded. Moisture content will be determined in conformity with the requirements of California Test 370. The drier or drier-drum mixer shall be provided with a device that senses the temperature of the material leaving the drier or the drier-drum mixer. The temperature-sensing device shall be accurate to the nearest 5°C. The indicator shall be located and maintained at the point where the proportioning operations are controlled. An automatic continuous recording device shall be provided and used to maintain accurate records of the temperatures during production. Where the plant controller has the capability of capturing production data electronically, including ingredient temperatures, and when this data represents the temperature at the time of production and is captured at intervals of not greater than 5 minutes, this process will be considered to be continuous recording. Captured data shall be retained for the duration of the contract and shall be submitted to the Engineer on request. The burner used for heating the aggregate shall achieve complete combustion of the fuel. # 39-7.03 PROPORTIONING Proportioning shall be either by hot-feed control or cold-feed control. Hot-feed control and cold-feed control indicate the location of the measuring devices or controls. The Contractor's mixing equipment shall be equipped with a suitable, safe sampling device that will provide a sample, representative of actual production, of the aggregate being incorporated into the asphalt concrete. The delivery point of samples shall be safe and convenient. When samples are taken from a location above ground level, a means shall be provided for lowering the aggregate samples to the ground. # 39-7.03A Proportioning for Batch Mixing When the Contractor elects to use batch mixing equipment, each aggregate hot storage bin shall be equipped with a sampling device that will provide a sample of the aggregate discharged into the weigh hopper. Fine material collected in dust control systems, other than centrifugal collectors or knock-out boxes, shall be considered to be supplemental fine aggregate. When supplemental fine aggregate is used, it shall be proportioned by mass. A sampling device for supplemental fine aggregate shall be installed in each feed line or surge tank preceding the weigh hopper. # 39-7.03A(1) Batching Tolerances Aggregate and asphalt shall be proportioned by mass as follows: - A. The zero tolerance for aggregate scales shall be 0.5-percent of the total batch mass of the aggregate. The zero tolerance for separate scales for weighing supplemental fine aggregate or asphalt binder shall be 0.05-percent of the total batch mass of the aggregate. - B. Unless otherwise approved by the Engineer, the indicated mass of material drawn from storage shall not vary from the preselected scale setting as defined by target values of the approved mix design by more than the following percentages of the total batch mass of the aggregate: - 1. Aggregate shall be within one percent, except that when supplemental fine aggregate is used and is weighed cumulatively with the aggregate, the draft of aggregate drawn immediately before the supplemental fine aggregate shall be within 0.5-percent. - 2. Supplemental fine aggregate shall be within 0.5-percent. - 3. Asphalt binder shall be within 0.1-percent. The asphalt binder shall be measured by a tank scale. # 39-7.03A(2) Automatic Controls Batch proportioning shall be by an automatic plant controller. The proportioning devices shall be automatic to the extent that the only manual operation required for proportioning materials for one batch shall be a single operation of a switch or starter. Proportioning devices shall be of a type in which materials discharged from the several bins are controlled by gates or by mechanical conveyors. The batching devices shall be so interlocked that no new batch may be started until weigh hoppers are empty, the scales are at zero, and the discharge gates are closed. The means of withdrawal from the bins and of discharge from the weigh box shall be interlocked so that not more than one bin can discharge onto a given scale at one time, and so that the weigh box cannot be tripped until the required quantity from each of the bins has been deposited therein. In addition, automatic proportioning devices shall be interlocked so that the weighing cycle will be interrupted whenever the amount of material drawn from storage varies from the pre-selected amount by more than the tolerances specified in this Section 11-1. Whenever the weighing cycle is interrupted, that specific batch shall not be used in the work unless it can be manually adjusted to meet the specified tolerances based on the total mass of the batch. When partial batches are batched, the interlock tolerances, except the zero tolerance, shall apply to the total mass of aggregate in the partial batch. Proportioning devices shall be operated so that all mass increments required for a batch are preset at the same time. Controls shall be designed so that these settings may be changed without delay and the order of discharge from the several bins can be changed. Proportioning controls shall be equipped with the means for inspection of the interlock tolerance settings. Instructions for performing the inspection shall be available at the point of operation. The necessary means shall be provided to check the mass of various proportioned amounts on a separate vehicle scale located at the plant site. # 39-7.03B Proportioning for Continuous Mixing Asphalt binder shall be introduced into the mixer through a meter conforming to the provisions in Section 9-1.01, "Measurement of Quantities," of the Standard Specifications. The asphalt meter shall automatically compensate for changes in the asphalt temperature, unless the meter is the mass flow, coriolis effect, type. The system shall be capable of varying the rate of delivery of binder proportionate with the delivery of aggregate. During a day's run, the temperature of asphalt binder shall not vary more than 30°C. The meter and lines shall be heated and insulated. The binder storage shall be equipped with a device for automatic plant cut-off when the level of binder is lowered sufficiently to expose the pump suction line. When supplemental fine aggregate is used, it shall be proportioned by a method that uniformly feeds the material within 2 percent of the required amount. Supplemental fine aggregate shall be discharged from the proportioning device directly into the mixer The supplemental fine aggregate proportioning system shall function with a degree of accuracy such that, when operated between 30 percent and 100 percent of maximum
operating capacity, the average difference between the indicated mass of material delivered and the actual mass delivered shall not exceed one percent of the actual mass for three individual 15-minute runs. For the 3 individual 15-minute runs, the indicated mass of material delivered shall not vary from the actual mass delivered by more than 2 percent of the actual mass. The fine material collected in dust control systems may be returned to the aggregate production stream without proportioning if returned at a rate commensurate with overall plant production, and if returned at or before the mixer. A return rate of less than 100 percent of the collection rate shall be metered as specified above for supplemental fine aggregate. The asphalt feeder, each of the aggregate feeders, the supplemental fine aggregate feeder, if used, and the combined aggregate feeder shall be equipped with devices by which the rate of feed can be determined while the plant is in full operation. The combined aggregate shall be weighed using a belt scale. The belt scale shall be of such accuracy that, when the plant is operating between 30 percent and 100 percent of belt capacity, the average difference between the indicated mass of material delivered and the actual mass delivered shall not exceed one percent of the actual mass for three individual 3-minute runs. For the 3 individual 3-minute runs, the indicated mass of material delivered shall not vary from the actual mass delivered by more than 2 percent of the actual mass. The actual mass of material delivered for proportioning device calibrations shall be determined by a vehicle scale located at the plant site conforming to the provisions in Section 9-1.01, "Measurement of Quantities," of the Standard Specifications. The vehicle scale shall be error checked within 24 hours of checking the plant's proportioning devices. The plant shall be equipped so that this accuracy check can be made prior to the first production operation for a project and at other times when requested by the Engineer. The belt scale for the combined aggregate, the proportioning devices for supplemental fine aggregate, if used, and the asphalt proportioning meter shall be interlocked so that the rates of feed of the aggregates and asphalt will be adjusted automatically (at all production rates and production rate changes) to maintain the asphalt ratio (kilograms of asphalt per 100 kg of dry aggregate including supplemental fine aggregate, if used) designated in the mix design in conformance with the provisions in Section 39-2.03, "Asphalt Concrete Mixture," of this Section 11-1. The plant shall not be operated unless this automatic system is functioning and in good working condition. Asphalt meters and aggregate belt scales used for proportioning aggregates and asphalt shall be equipped with rate-of-flow indicators to show the rates of delivery of asphalt and aggregate. Meters and scales shall be equipped with resettable totalizers so that the total amounts of asphalt and aggregate introduced into the asphalt concrete mixture can be determined. Rate-of-flow indicators and totalizers for like materials shall be accurate within one percent when compared directly. The asphalt cement totalizer shall not register when the asphalt metering system is not delivering material to the mixer. The bin or bins containing the fine aggregate and supplemental fine aggregate, if used, shall be equipped with vibrating units or other equipment that will prevent hang-up of material while the plant is operating. Each belt feeder shall be equipped with a device to monitor the depth of aggregate between the troughing rollers. The device for monitoring depth of aggregate shall automatically shut down the plant whenever the depth of aggregate is less than 70 percent of the target depth. To avoid erroneous shut down by normal fluctuations, a delay between sensing less than 70 percent flow and shutdown of the plant will be permitted, as determined by the Engineer, at the time of the initial California Test 109. A second device shall be located either in the stream of aggregate beyond the belt or where it will monitor movement of the belt by detecting revolutions of the tail pulley on the belt feeder. The device for monitoring no-flow or belt movement, as the case may be, shall stop the plant automatically and immediately when there is no flow. The plant shall not be operated unless both low-flow and no-flow monitoring devices are in good working condition and functioning properly. For continuous pugmill mixing plants, an aggregate sampling device that will provide a 25-kg to 40-kg sample of the combined aggregate while the plant is in full operation shall be provided in advance of the point where the aggregate enters the mixer. For drier-drum mixing plants, an aggregate sampling device that will provide a 25-kg to 40-kg sample of the combined aggregate while the plant is in full operation shall be provided in advance of the point where the aggregate enters the drier-drum mixer When supplemental fine aggregate is used, a sampling device shall be installed in each feed line or surge tank preceding the proportioning device for the supplemental fine aggregate. # 39-7.04 (BLANK) #### 39-7.05 MIXING Aggregate, supplemental fine aggregate, and asphalt binder shall be mixed in a batch mixer, continuous mixing pugmill mixer, or continuous mixing drier-drum. The charge in a batch mixer, or the rate of feed to a continuous mixer, shall not exceed that which will permit complete mixing of the material. Dead areas in the mixer, in which the material does not move or is not sufficiently agitated, shall be corrected by a reduction in the volume of material or by other adjustments. Asphalt binder shall be at a temperature of not less than 120°C nor more than 190°C when added to the aggregate. The temperature of the aggregate before adding the binder shall not be more than 165°C. # 39-7.05A Batch Mixing When asphalt concrete is produced by batch mixing, the mixer shall be equipped with a sufficient number of paddles of a type and arrangement so as to produce a properly mixed batch. The binder shall be introduced uniformly into the mixer along the center of the mixer parallel to the mixer shafts, or by pressure spraying. When a pan is used, it shall be equipped with movable vanes in order that the flow of binder may be directed across the width of the pan, as desired. The vanes shall be equipped with a means for quick adjustment, and a positive lock to prevent shifting. The mixer platform shall be of ample size to provide safe and convenient access to the mixer and other equipment. The mixer housing and weighbox housing shall be equipped with gates of ample size to permit ready sampling of the discharge of aggregate from each of the plant bins and from each feed line or surge tank of supplemental fine aggregate, if used. The Contractor shall provide a sampling device capable of delivering a representative sample of sufficient size to permit the required tests. The mixer shall be equipped with a timing device that will indicate by a definite audible or visual signal the expiration of the mixing period. The device shall measure the time of mixing within 2 seconds. The time of mixing a batch shall begin on the charging stroke of the weighhopper dumping mechanism and shall end when discharge is started. Mixing shall continue until a homogeneous asphalt concrete mixture of uniformly distributed and properly coated aggregates of unchanging appearance is produced. The time of mixing shall be not less than 30 seconds. An interval timer shall control the time of mixing. The interval timer shall be interlocked so that the mixer cannot be discharged until the materials have been mixed for the full amount of time specified. # 39-7.05B Continuous Mixing Continuous mixing plants shall utilize pugmill or drier-drum mixers. When asphalt concrete is produced by pugmill mixing, the mixer shall be equipped with paddles of a type and arrangement to provide sufficient mixing action and movement to the asphalt concrete mixture to produce properly mixed asphalt concrete. The combined aggregate shall be fed directly from the drier to the mixer at a uniform and controlled rate. Mixing shall continue until a homogeneous asphalt concrete mixture of thoroughly and uniformly coated aggregates of unchanging appearance is produced at the discharge point from the mixer. The temperature of the completed asphalt concrete mixture shall not exceed 165°C upon discharge from the mixer. The mixer shall discharge into a storage silo with a capacity of not less than that specified in Section 39-7.06, "Asphalt Concrete Storage," of this Section 11-1. The Contractor shall provide a means of diverting the flow of asphalt concrete away from the silo to prevent incompletely mixed portions of the asphalt concrete mixture from entering the silo. #### 39-7.06 ASPHALT CONCRETE STORAGE When asphalt concrete is stored, it shall be stored only in silos. Asphalt concrete shall not be stockpiled. The minimum quantity of asphalt concrete in a silo during mixing shall be 18 tonnes except for the period immediately following a shutdown of the plant of 2 hours or more. A means shall be provided to indicate that storage in each silo is being maintained as required. Storage silos shall be equipped with a surge-batcher sized to hold a minimum of 1800 kg of material. A surge-batcher consists of equipment placed at the top of the storage silo that catches the continuous delivery of the completed asphalt concrete mix and changes it to individual batch delivery to prevent the segregation of product ingredients as the completed asphalt concrete mix is placed into storage. The surge-batcher shall be center loading and shall be constructed to prevent material buildup. Rotary chutes shall not be used as surge-batchers. The surge-batcher shall be independent and distinct from conveyors or chutes used to collect or direct the
completed asphalt concrete mixture being discharged into storage silos and shall be the last device to handle the material before it enters the silo. Multiple storage silos shall be served by an individual surge-batcher for each silo. Material handling shall be free of oblique movement between the highest elevation (conveyor outfall) and subsequent placement in the silo. Discharge gates on surge-batchers shall be automatic in operation and shall discharge only after a minimum of 1800 kg of material has been collected and shall close before the last collected material leaves the device. Discharge gate design shall prevent the deflection of material during the opening and closing operation. Asphalt concrete stored in excess of 18 hours shall not be used in the work. Asphalt concrete mixture containing hardened lumps shall not be used. A storage facility that contained the material with the hardened lumps shall not be used for further storage until the cause of the lumps is corrected. # 39-7.07 ASPHALT CONCRETE PLANTS Plants, including commercial plants, that produce asphalt concrete subject to these specifications shall conform to the provisions in Section 7-1.01F, "Air Pollution Control," of the Standard Specifications, and shall be equipped with a wet-tube dust washer or equal and other devices that will reduce the dust emission to the degree that adjacent property is not damaged. The washer and other equipment shall function efficiently when the plant is in operation. During production, petroleum products such as diesel fuel and kerosene shall not be used as a release agent on belts, conveyors, hoppers, or hauling equipment. Plants shall be equipped with an inspection dock constructed so that a quality control technician or inspector standing on the dock can inspect the completed asphalt concrete mixture and take samples, as necessary, from the hauling vehicle before the vehicle leaves the plant site. This inspection dock shall allow the hauling vehicle to pull alongside and shall meet applicable safety requirements of the California Division of Occupational Safety and Health. Haul vehicle drivers shall be instructed to stop at the dock whenever a quality control technician or inspector is on the dock and to remain there until directed to leave by that individual. # 39-8 SUBGRADE, PRIME COAT, PAINT BINDER (TACK COAT), AND PAVEMENT REINFORCING FABRIC # **39-8.01 SUBGRADE** Immediately prior to applying prime coat or paint binder (tack coat), or immediately prior to placing the asphalt concrete when a prime coat or paint binder (tack coat) is not required, the subgrade to receive asphalt concrete shall conform to the compaction requirement and elevation tolerances specified for the material involved and shall be free of loose or extraneous material. If the asphalt concrete is to be placed on an existing base or pavement that was not constructed as part of the contract, the surface shall be cleaned by sweeping, flushing or other means to remove loose particles of paving, dirt, and other extraneous material immediately before applying the prime coat or paint binder (tack coat). # 39-8.02 PRIME COAT AND PAINT BINDER (TACK COAT) A prime coat of liquid asphalt shall be applied to the areas to be surfaced when there is a contract item for the work or when the work is required in "Asphalt Concrete" in Section 10-1, "General," of these special provisions. Prime coat shall be applied only to those areas designated by the Engineer. Prime coat shall be applied at the approximate total rate of 1.15 L per square meter of surface covered. The exact rate and number of applications will be determined by the Engineer. Prime coat shall be applied at a temperature conforming to the range of temperatures specified in Section 93-1.03, "Mixing and Applying," of the Standard Specifications for distributor application of the grade of liquid asphalt being used. Prime coat or paint binder (tack coat) shall be applied in advance of placing the surfacing only as far as shall be approved by the Engineer. When asphaltic emulsion is used as paint binder (tack coat), asphalt concrete shall not be placed until the applied asphaltic emulsion has completely changed color from brown to black. Immediately in advance of placing asphalt concrete, additional prime coat or paint binder (tack coat) shall be applied as directed by the Engineer to areas where the prime coat or paint binder (tack coat) has been damaged. Loose or extraneous material shall be removed and no additional compensation will be allowed therefor. # 39-8.03 PAVEMENT REINFORCING FABRIC Pavement reinforcing fabric shall be placed on existing pavement to be surfaced or between layers of asphalt concrete when such work is shown on the plans, or specified in "Asphalt Concrete" in Section 10-1, of these special provisions, or ordered by the Engineer. Immediately prior to placing binder, pavement reinforcing fabric, and asphalt concrete surfacing, the pavement shall be cleaned of loose and extraneous materials such as, but not limited to, vegetation, sand, dirt, gravel and water. Before placing the pavement reinforcing fabric, a binder of paving asphalt Grade AR-8000 shall be applied uniformly to the surface to receive the pavement reinforcing fabric at a rate of not less than 1.15 L per square meter of surface covered. Pavement reinforcing fabric shall not be placed in areas of conform tapers when the thickness of the overlying asphalt concrete will be 40 mm or less. When pavement reinforcing fabric is placed in areas of conform tapers the binder shall be spread at the approximate rate of 1.4 L per square meter of surface covered. The exact rate will be determined by the Engineer. The binder shall be applied to a width equal to the width of the fabric mat plus 75 mm on each side. Asphaltic emulsion shall not be substituted for paving asphalt binder for pavement reinforcing fabric. Before applying binder, large cracks, spalls, and depressions in existing pavement shall be repaired as directed by the Engineer and, if not included in the item, the repair work will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. The pavement reinforcing fabric shall be aligned and placed with no wrinkles that lap. The test for lapping shall be made by gathering together the pavement reinforcing fabric in a wrinkle. If the height of the doubled portion of extra fabric is 15 mm or more, the fabric shall be cut to remove the wrinkle, then lapped in the direction of paving. Lap in excess of 50 mm shall be removed. If manual laydown methods are used, the pavement reinforcing fabric shall be unrolled, aligned, and placed in increments of approximately 9 m. Adjacent borders of the pavement reinforcing fabric shall be lapped 50 mm to 100 mm. The preceding roll shall be lapped 50 mm to 100 mm over the following roll in the direction of paving at ends of rolls or at a break. At pavement reinforcing fabric overlays, both the binder and the fabric shall overlap previously placed fabric by the same amount. Seating of the pavement reinforcing fabric with rolling equipment after placing will be permitted. Turning of the paving machine and other vehicles shall be gradual and kept to a minimum to avoid damage to the fabric. A small quantity of asphalt concrete, to be determined by the Engineer, may be spread over the pavement reinforcing fabric immediately in advance of placing asphalt concrete surfacing in order to prevent fabric from being damaged by construction equipment. Pavement reinforcing fabric shall not be exposed to public traffic, Contractor's equipment or elements that will damage the fabric prior to placement of asphalt concrete surfacing, as determined by the Engineer. Public access cross traffic may be allowed to cross the fabric under traffic control after the Contractor has placed a small quantity of asphalt concrete over the fabric. Care shall be taken to avoid tracking binder material onto the pavement reinforcing fabric or distorting the fabric during seating of the fabric with rolling equipment. If necessary to protect the pavement reinforcing fabric, exposed binder material may be covered lightly with sand. # 39-9 SPREADING AND COMPACTING EQUIPMENT # 39-9.01 SPREADING EQUIPMENT Asphalt pavers shall be self-propelled mechanical spreading and finishing equipment provided with a screed or strike-off assembly capable of distributing the material to not less than the full width of a traffic lane unless otherwise approved by the Engineer. Screed action shall include cutting, crowding or other practical action that is effective on the asphalt concrete mixture without tearing, shoving or gouging and that produces a surface texture of uniform appearance. The screed shall be adjustable to the required section and thickness. The screed shall be provided with a suitable full width compacting device. Pavers that leave ridges, indentations or other marks in the surface shall not be used unless the ridges, indentations or marks are eliminated by rolling or prevented by adjustment in the operation. When end dump haul vehicles are used, the asphalt paver shall operate independently of the vehicle being unloaded or shall be capable of propelling the vehicle being unloaded. The load of the haul vehicle shall be limited to that which will insure satisfactory spreading. While being unloaded, the haul vehicle shall be in contact with the machine and the brakes on the haul vehicle shall not be depended upon to maintain contact between the vehicle and the machine. No portion of the mass of hauling or loading equipment, other than the connection, shall be supported by the asphalt paver. No vibrations or other motions of the loader that could have a detrimental effect on the riding quality of the completed pavement shall be transmitted to the paver. When asphalt concrete is placed directly upon asphalt treated permeable base, the asphalt concrete shall be placed in a manner and with
equipment that will not disturb or displace the asphalt treated permeable base. #### 39-9.02 COMPACTING EQUIPMENT A sufficient number of rollers shall be provided to obtain the specified compaction and surface finish required by this Section 11-1. Rollers shall be sized to achieve the required results. Rollers shall be equipped with pads and water systems that prevent sticking of the asphalt concrete mixtures to the pneumatic or steel-tired wheels. A parting agent that will not damage the asphalt concrete mixture may be used to aid in preventing the asphalt concrete mixture from sticking to the wheels. ## 39-10 SPREADING AND COMPACTING ## 39-10.01 GENERAL REQUIREMENTS Asphalt concrete shall be handled, spread, and compacted in a manner which is in conformance with this Section 11-1, "Quality Control / Quality Assurance." Asphalt concrete shall be placed in such a manner that cracking, shoving, and displacement will be avoided. Type A and Type B asphalt concrete shall be placed only when the ambient temperature is above 10°C. Asphalt concrete shall not be placed when the underlying layer or surface is frozen or not dry or when weather conditions will prevent proper handling, finishing or compaction of the mixture. Asphalt concrete shall be spread and compacted in the layers and thicknesses indicated in the following table: Asphalt Concrete Layers and Thickness | | | | | Next Lower Layer | | All Other Lower | | |-------------------|-----------|-----------|-----------|------------------|-------|------------------|------| | Total Thickness | | Top Layer | Thickness | Thic | kness | Layers Thickness | | | Shown on the | Number of | (Millir | neters) | (Millimeters) | | (Millimeters) | | | Plans* | Layers | Min. | Max. | Min. | Max. | Min. | Max. | | 75 mm or less | 1 | | | | | | | | 76 through 89 mm | 2 | 35 | 45 | 35 | 45 | | | | 90 through 135 mm | 2 | 45 | 60 | 45 | 75 | | | | 136 mm or more | ** | 45 | 60 | 45 | 75 | 45 | 120 | Notes: *When pavement reinforcing fabric is shown to be placed between layers of asphalt concrete, the thickness of asphalt concrete above the pavement reinforcing fabric shall be considered to be the "Total Thickness Shown on the Plans" for the purpose of spreading and compacting the asphalt concrete above the pavement reinforcing fabric. **At least 3 layers if total thickness is more than 135 mm and less than 255 mm. At least 4 layers if total thickness is 255 mm or more. A layer shall not be placed over a layer that exceeds 75 mm in compacted thickness until the temperature of the layer being covered is less than 70°C at mid-depth unless approved by the Engineer. Asphalt concrete to be placed on shoulders, and on other areas off the traveled way having a width of 1.50 m or more, shall be spread in the same manner as specified above. The completed mixture shall be deposited on the roadbed at a uniform quantity per linear meter, as necessary to provide the required compacted thickness without resorting to spotting, picking-up or otherwise shifting the mixture. During transporting, spreading and compacting, petroleum products such as diesel fuel and kerosene shall not be used as a release agent on trucks, spreaders or compactors in contact with the asphalt concrete. Segregation shall be avoided. Surfacing shall be free from pockets of coarse or fine material. Asphalt concrete containing hardened lumps shall not be used. Longitudinal joints in the top layer of Type A or Type B asphalt concrete shall correspond with the edges of planned traffic lanes. Longitudinal joints in other layers shall be offset not less than 150 mm alternately each side of the edges of traffic lanes. Unless otherwise provided herein or approved by the Engineer, the top layer of asphalt concrete for shoulders, tapers, transitions, road connections, private drives, curve widenings, chain control lanes, turnouts, left-turn pockets, and other areas shall not be spread before the top layer of asphalt concrete for the adjoining through lane has been spread and compacted. At locations where the number of lanes is changed, the top layer for the through lanes shall be paved first. When existing pavement is to be surfaced and the specified thickness of asphalt concrete to be spread and compacted on the existing pavement is 75 mm or less, the shoulders or other adjoining areas may be spread simultaneously with the through lane provided the completed surfacing conforms to the requirement of this Section 11-1. Tracks or wheels of spreading equipment shall not be operated on the top layer of asphalt concrete until final compaction has been completed. At those locations shown on the plans, as specified in "Asphalt Concrete" in Section 10-1, "General," of these special provisions, or as directed by the Engineer, the asphalt concrete shall be tapered or feathered to conform to existing surfacing or to other highway and non-highway facilities. At locations where the asphalt concrete is to be placed over areas inaccessible to spreading and rolling equipment, the asphalt concrete shall be spread by practical means to obtain the specified results and shall be compacted thoroughly to the required lines, grades, and cross sections by means of pneumatic tampers or by other methods that will produce the same degree of compaction as pneumatic tampers. #### 39-10.02 PRODUCTION START-UP EVALUATION AND NUCLEAR DENSITY TEST STRIPS The Contractor shall demonstrate that the proposed asphalt concrete mixture is being produced and placed on the roadway in conformance with this Section 11-1, "Quality Control / Quality Assurance." The production start-up evaluation shall demonstrate that the aggregates and asphalt concrete mixture conform to the requirements of Table 39-3, "Asphalt Concrete Mixture Requirements," and of Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1 when produced using the plant proposed for this project. The nuclear density test strip serves to provide the Contractor with a location to develop a correlation between cores taken from the test strip and the Contractor's and Engineer's nuclear density gage readings taken from the same locations on the test strip and for the Contractor to demonstrate the ability to achieve a minimum of 96 percent relative compaction. Production start-up evaluation and the nuclear density test strip may be constructed separately or at the same time to serve both purposes. Asphalt concrete used in the nuclear density test strip shall be representative of the asphalt concrete that shall be placed in the project. Should the test results or testing program fail to meet these criteria, production will be suspended and the Contractor shall resolve the problem in conformance with the provisions in Section 39-6, "Dispute Resolution," of this Section 11-1. Attention is directed to longitudinal and transverse construction joint requirements specified in "Asphalt Concrete" in Section 10-1, "General," of these special provisions. Test data used for the production start up evaluation and the nuclear gage test strips shall not be included with the test data used for acceptance of the work in conformance with the provisions in Section 39-11, "Acceptance of Work," of this Section 11-1. A production start-up evaluation and a nuclear density test strip shall be used when production of asphalt concrete has been resumed following a suspension of production due to unsatisfactory material quality as specified in Section 39-4.04, "Contractor Process Control," Section 39-4.05, "Contractor Quality Control," and Section 39-11.02A, "General" of this Section 11-1. #### 39-10.02A Production Start-Up Evaluation Before or on the first day of asphalt concrete production, the Contractor shall produce a trial quantity of between 250 tonnes and 500 tonnes of asphalt concrete to demonstrate that asphalt concrete produced for this project conforms to the quality characteristics of this Section 11-1. The location of the production start-up evaluation shall be approved by the Engineer. Asphalt concrete shall be produced by production procedures intended for the entire project. Production of asphalt concrete shall stop after placement of the trial quantity of asphalt concrete. Asphalt concrete production and placement may resume after the quality characteristics of the asphalt concrete mixture have been tested and found to be in conformance with the quality requirements of this Section 11-1. The Contractor shall randomly obtain 3 aggregate samples from the plant and 3 asphalt concrete mixture samples from the mat behind the paver. Each sample from the plant shall be split into 4 portions; each sample from the mat shall be split into 4 portions. One portion of each sample shall be tested by the Contractor and one portion of each sample shall be provided to the Engineer for testing. The remaining portions shall be delivered to the Engineer and stored for dispute resolution should the test results not conform to this Section 11-1. The Contractor and the Engineer shall evaluate the samples for conformance to the requirements for sand equivalent, stability, percent air voids, and the quality characteristics designated in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1. The percent air voids of the asphalt concrete mixture shall be within \pm 1.0 percent of the percent air voids designated in the Contractor's mix design. The trial quantity of asphalt concrete will be accepted if: - A. Not more than 3 of the test results from the combined 6 test results from the Contractor's and Engineer's samples for quality characteristics indexed 2, 3, 4, and 5 in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1 are outside the specified limits. - B. Not more than one of the test results from the combined 6 test results from the Contractor's and the Engineer's samples for sand equivalent, stability, percent air voids or critical start-up characteristics designated in Table 39-9, "Minimum
Quality Control Requirements," of this Section 11-1 are outside the specified limits. If the test results from the combined 6 test results fail to meet the conditions above, corrective action shall be taken, and a new trial quantity of asphalt concrete shall be placed and evaluated in conformance with the provisions in this section to demonstrate conformance. If the test results from the combined 6 test results fail to meet the requirements above, then the trial quantity of asphalt concrete will be rejected. The testing program will be considered adequate only if the average of the Contractor's test results and the average of the Engineer's test results for sand equivalent, stability, percent air voids, and the quality characteristics designated in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1 are within the allowable testing difference designated in Table 39-6, "Allowable Testing Difference," of this Section 11-1. The Contractor shall not proceed to regular production until the requirements of this Section 39-10.02A, "Production Start-Up Evaluation" have been met. At the request of the Contractor, the Engineer may elect to leave the asphalt concrete which does not meet the requirements of this Section 39-10.02A in place if mitigation at the Contractor's expense can be agreed to. If this quantity of asphalt concrete is left in place, the Contractor will be paid 75 percent of the contract price paid per tonne for asphalt concrete. The Contractor shall establish a correlation factor for stability of cured versus uncured briquettes. From a single split sample of asphalt concrete, 6 briquettes shall be fabricated. Three of the 6 briquettes shall be cured for 15 hours in conformance with the requirements of California Test 366 and 3 briquettes shall not be cured. The difference between the average stability value determined for the cured and the uncured specimens shall be considered the correlation factor, and shall be applied to stability values determined on uncured samples throughout the life of the project. The correlation factor may range from zero to 4. If the correlation factor is less than zero, a factor of zero shall be applied. If the factor is greater than 4, the correlation factor shall be approved by the Engineer. ## 39-10.02B Nuclear Density Test Strip On the first day of placement of each layer of asphalt concrete the Contractor shall place a test strip in conformance with the requirements of California Test 375. The purpose of the test strip is to determine a correlation between cores taken from the test strip and the nuclear density gage readings taken at the core locations and to demonstrate that the asphalt concrete can be placed and compacted to the standards of this Section 11-1, "Quality Control / Quality Assurance." Asphalt concrete used in the nuclear density test strip shall be representative of the asphalt concrete that shall be placed in the project. The location for the nuclear density test strip shall be approved by the Engineer. The Contractor shall place nuclear density test strips until conditions of the test method and this Section 11-1 have been met. The requirements of this section and the test method shall apply for the correlation of each gage that is used to determine relative compaction for this project. Relative compaction results will not be accepted if they have been determined using a nuclear gage that has not been correlated using a test strip. Asphalt concrete in test strips may be left in place under the following conditions: - A. If the relative compaction for the test strip is determined to be 96 percent or greater, the Contractor will be paid at the contract price per tonne of asphalt concrete. - B. If the relative compaction for the test strip is determined to be less than 96 percent but greater than 93 percent, the Contractor will be paid at 75 percent of the contract price per tonne of asphalt concrete. A new test strip will be required, and mitigation measures shall be at Contractor's expense. Asphalt concrete in test strips will be rejected when the relative compaction for the test strip is below 93 percent. Production and placement shall not begin until the Contractor has demonstrated the ability to achieve 96 percent relative compaction in conformance with this Section 11-1. ## **39-10.03 SPREADING** Layers shall be spread with an asphalt paver, unless otherwise specified or approved by the Engineer. Asphalt pavers shall be operated in such a manner as to insure continuous and uniform movement of the paver. In advance of spreading asphalt concrete over an existing base, surfacing or bridge deck, if there is a contract item for asphalt concrete (leveling) or if ordered by the Engineer, asphalt concrete shall be spread by mechanical means that will produce a uniform smoothness and texture. Asphalt concrete (leveling) shall include, but not be limited to, the filling and leveling of irregularities and ruts. Asphalt concrete used to change the cross slope or profile of an existing surface shall not be considered as asphalt concrete (leveling). Paint binder (tack coat) shall be applied to each layer in advance of spreading the next layer. Before placing the top layer adjacent to cold transverse construction joints, the joints shall be trimmed to a vertical face on a neat line. Transverse joints shall be tested with a $3.6\text{-m} \pm 0.06\text{-m}$ straightedge and shall be cut back for surface smoothness as required in conformance with Section 39-10.04, "Compacting," of this Section 11-1. Connections to existing surfacing shall be feathered to conform to the requirements for smoothness. Longitudinal joints shall be trimmed to a vertical face and on a neat line if the edges of the previously laid surfacing are, in the opinion of the Engineer, in such a condition that the quality of the completed joint will be affected. ## 39-10.04 COMPACTING Compacting equipment shall conform to the provisions in Section 39-9.02, "Compacting Equipment," of this Section 11-1, "Quality Control / Quality Assurance." Rolling shall commence at the lower edge and shall progress toward the highest portion. When compacting layers that exceed 75 mm in compacted thickness, rolling shall commence at the center and shall progress outwards. Asphalt concrete shall be compacted to a relative compaction of not less than 96 percent and shall be finished to the lines, grades, and cross sections shown on the plans. In-place density of asphalt concrete will be determined prior to opening the pavement to public traffic. No rolling will be permitted after the asphalt concrete temperature is below 60°C. Asphalt concrete placed in dig outs, as a leveling course, for slope correction, for detours not included in the finished roadway prism, in areas where in the judgment of the Engineer compaction or compaction measurement by conventional methods is impeded or on the uppermost lift of shoulders with rumble strips shall be compacted by a method approved by the Engineer. Relative compaction shall be determined in conformance with the requirements of California Test 375 except that only a nuclear gauge with thin lift capability shall be used for asphalt concrete layer of 30 mm to 59 mm in thickness. Laboratory specimens shall be compacted in conformance with the requirements of California Test 304. Test locations will be established for asphalt concrete areas to be tested, as specified in California Test 375. If the Contractor compacts the asphalt concrete in any form or quantity after sites for testing have been chosen in conformance with the requirements of California Test 375 or after California Test 375 has begun, the quality control tester shall choose a new set of random numbers for locating test sites. Upon completion of rolling operations, if ordered by the Engineer, the asphalt concrete shall be cooled by applying water. Applying water shall conform to the provisions in Section 17, "Watering," of the Standard Specifications. The completed surfacing shall be thoroughly compacted, smooth, and free from ruts, humps, depressions, or irregularities. Ridges, indentations or other objectionable marks left in the surface of the asphalt concrete by blading or other equipment shall be eliminated by rolling or other suitable means. The use of equipment that leaves ridges, indentations or other objectionable marks in the asphalt concrete shall be discontinued. When a straightedge 3.6 m \pm 0.06-m long is laid on the finished surface and parallel with the centerline, the surface shall not vary more than 3-mm from the lower edge of the straightedge. The transverse slope of the finished surface shall be uniform to a degree such that no depressions greater than 6 mm are present when tested with a straightedge 3.6 m \pm 0.06-m long in a direction transverse to the centerline and extending from edge to edge of a 3.6-m traffic lane. Pavement within 15 m of a structure or approach slab shall conform to the smoothness tolerances specified in Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications. ## 39-11 ACCEPTANCE OF WORK #### 39-11.01 GENERAL The Engineer shall select the procedure used to determine the quantities of asphalt concrete for acceptance and payment determination in conformance with the provisions of this Section 11-1, "Quality Control / Quality Assurance." Quality control test results that have been verified shall form the basis for statistical evaluation of the work in conformance with Section 39-11.02, "Statistical Evaluation and Determination of Pay Factor," of this Section 11-1. The quality requirements on which statistical evaluation will be based are specified in Table 39-9, "Minimum Quality Control Requirements." of this Section 11-1. Work determined to be in conformance with the provisions of this Section 11-1 will be accepted and paid for at the contract price per tonne for asphalt concrete and may be subject to compensation adjustment in
conformance with Section 39-11.02C, "Pay Factor Determination and Compensation Adjustment," of this Section 11-1. Work that is not in compliance with the provisions of this Section 11-1 may be rejected by the Engineer and shall be removed and replaced at the Contractor's expense. When there are fewer than 5 verified quality control tests, the work will be accepted or rejected based on whether the individual test results meet the quality requirements specified in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1. Section 39-11.02, "Statistical Evaluation and Pay Factor Determination," of this Section 11-1 shall not apply. Aggregates, asphalt binder, and asphalt concrete mixtures that do not conform to this Section 11-1 shall not be used. The Engineer may reject a quantity of material that is determined to be defective based on visual inspection or noncompliance with the provisions of this Section 11-1. #### 39-11.02 STATISTICAL EVALUATION AND DETERMINATION OF PAY FACTOR Statistical evaluation of the work shall be used to verify the Contractor's quality control test results to determine compliance with this Section 11-1, "Quality Control / Quality Assurance." #### 39-11.02A General The quality characteristics to be evaluated and the specification limits are specified in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1. Asphalt content, aggregate gradation (600-μm and 75-μm sieves), and relative compaction shall be considered for purposes of this Section 11-1 to be critical quality characteristics. A lot represents the total quantity of asphalt concrete placed. More than one lot will occur if changes in the target values, material sources or mix design are requested by the Contractor and made in conformance with this Section 11-1 or if production of asphalt concrete is suspended due to unsatisfactory performance. However, asphalt concrete placed in dig outs, as a leveling course, for slope correction, for detours not to be included in the finished roadway prism, in areas where in the judgment of the Engineer compaction or compaction measurement by conventional methods is impeded or on the uppermost lift of shoulders with rumble strips shall be considered as a separate lot from other asphalt concrete. In addition, a new lot may be designated by the Engineer if the production and placement have been suspended for longer than 30 days due to seasonal suspension of phases of work. A minimum of 5 samples shall be required to perform a statistical evaluation. The maximum obtainable pay factor with the 5 samples shall be 1.01. A minimum of 8 samples shall be required to obtain a pay factor of 1.05. If the sampling frequencies and quantity of work would otherwise result in fewer than 8 samples, the Contractor may submit a written request to increase the sampling frequency to provide a minimum of 8 samples. The request shall be included in the Quality Control Plan. The lot will be accepted and a final pay factor determined when the Contractor's sampling, inspection, and test results are completed, have been submitted and evaluated, and the Engineer has visually inspected the pavement. Quality control test results shall be verified using the *t*-test in conformance with the provisions of Section 39-5.03, "Verification," of this Section 11-1 before the results will be used in considering the acceptance of asphalt concrete. If the current composite pay factor of a lot is greater than 0.90, the lot will be accepted, provided the lowest single pay factor is not within the reject portion of Table 39-8, "Pay Factors," of this Section 11-1. If the lowest single pay factor is within the reject portion of Table 39-8, "Pay Factors," of this Section 11-1, the lot will be rejected. Rejected asphalt concrete shall be removed from the project site at the Contractor's expense. If the current composite pay factor of a lot is less than 0.90, production of asphalt concrete shall be terminated and corrective action taken. Upon approval of the Engineer, up to 1000 tonnes of asphalt concrete may be placed to demonstrate that the asphalt concrete is once again in conformance with this Section 11-1. Production of asphalt concrete shall not start until the Engineer has received test results confirming conformance with this Section 11-1. A new lot will be established when production resumes. If a pay factor for a critical quality characteristic designated in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1 is less than 0.90 for the lot or is within the rejection range for the last 5 tests, production of asphalt concrete shall be terminated and corrective action taken. Upon approval of the Engineer, up to 1000 tonnes of asphalt concrete may be placed to demonstrate that the asphalt concrete is once again in conformance with this Section 11-1. Production of asphalt concrete shall not start until the Engineer has received test results confirming conformance with this Section 11-1. A new lot will be established when production resumes. Defective asphalt concrete may be voluntarily removed and replaced with new asphalt concrete to avoid a low pay factor. New material will be sampled, tested, and evaluated in conformance with this Section 11-1. #### 39-11.02B Statistical Evaluation The Variability-Unknown/Standard Deviation Method will be used to determine the estimated percentage of the lot that is outside specification limits. The number of significant figures used in the calculations will be in conformance with the requirements of AASHTO Designation R-11, Absolute Method. The estimated percentage of work that is outside of the specification limits for each quality characteristic will be determined as follows: 1. Calculate the arithmetic mean (\overline{X}) of the test values; $$\overline{X} = \frac{\sum x}{n}$$ where: \sum = summation of x = individual test values n = total number of test values 2. Calculate the standard deviation (s); $$_{S}=\sqrt{\frac{n\Sigma\left(x^{2}\right) -\left(\ \Sigma x\right) ^{2}}{n(n-1)}}$$ where: $\sum (x^2)$ = summation of the squares of individual test values $(\sum x)^2$ = summation of the individual test values squared n = total number of test values 3. Calculate the upper quality index (Q_u) ; $$Q_u = \frac{USL - \overline{X}}{s}$$ where: USL = upper specification limit s = standard deviation \overline{X} = arithmetic mean aritimietie mean (Note: The USL is equal to the upper specification limit or the target value plus the production tolerance.) 4. Calculate the lower quality index (Q_L); $$Q_L = \frac{\overline{X} - LSL}{s}$$ where: LSL= lower specification limit or target value minus production tolerance $\frac{1}{X}$ = standard deviation arithmetic mean 5. From Table 39-7, "Estimated Percent of Work Outside Specification Limits," of this Section 11-1, determine Pu; where: P_U = the estimated percentage of work outside the USL. (P_U = 0, when USL is not specified.) 6. From Table 39-7, "Estimated Percent of Work Outside Specification Limits," of this Section 11-1, determine P_L; where: P_L = the estimated percentage of work outside the LSL. $$(P_L = 0, \text{ when LSL is not specified.})$$ 7. Calculate the total estimated percentage of work outside the USL and LSL, Percent Defective; Percent Defective = $P_U + P_L$ where: P_U = the estimated percentage of work outside the USL P_L = the estimated percentage of work outside the LSL 8. Repeat Steps 1 through 7 for each quality characteristic listed for acceptance. ## 39-11.02C Pay Factor Determination and Compensation Adjustment The pay factor and compensation adjustment for a lot will be determined as follows: - 1. From Table 39-8, "Pay Factors," of this Section 11-1, determine the pay factor for each quality characteristic, (PF_{QC}) , using the total number of test result values and the total estimated percentage outside the specification limits $(P_U + P_L)$ from Step 7 in Section 39-11.02B, "Statistical Evaluation," of this Section 11-1. - 2. The pay factor for the lot is a composite of single pay factors determined for each quality characteristic designated in Table 39-9, "Minimum Quality Control Requirements," of this Section 11-1. The following formula is used: $$PF_C = \sum_{i=1}^{8} w_i PF_{QC_i}$$ where: PF_C = the composite pay factor for the lot, PF_{OC} = the pay factor for the individual quality characteristic, w = the weighting factor listed in Table 39-9, and *i* = the quality characteristic index number in Table 39-9. 3. Payment to the Contractor for the lot of asphalt concrete will be subject to a compensation adjustment. The Compensation Adjustment Factor (CAF) will be determined as follows: $$CAF = PF_C - 1$$ - 4. The amount of the compensation adjustment will be calculated as the product of: - a. the Compensation Adjustment Factor (CAF) - b. the total tonnes represented in the lot, and - c. the contract price paid per tonne for the item of asphalt concrete involved. If the compensation adjustment is a negative value, the compensation adjustment will be deducted from moneys due, or that may become due, the Contractor under the contract. If the compensation adjustment is a positive value, the compensation adjustment will be added to moneys due, or that may become due, the Contractor under the contract. Table 39-7.—ESTIMATED PERCENT OF WORK OUTSIDE SPECIFICATION LIMITS | P_U | Table . | Sample Size (n) | | | | | | | | | | | | |--------|-----------------------|--|------|------|------|-------|-------|-------|-------|-------|-------|-------|------| | and/or | 5 | 6 | 7 | 8 | 9 | 10-11 | 12-14 | 15-17 | 18-22 | 23-29 | 30-42 | 43-66 | >66 | | P_L | | Upper Quality Index Q_U or Lower Quality Index Q_L | | | | | | | | | | | | | 0 | 1.72 | 1.88 | 1.99 | 2.07 | 2.13 | 2.20 | 2.28 | 2.34 | 2.39 | 2.44 | 2.48 | 2.51 | 2.56 | | 1 | 1.64 | 1.75 | 1.82 | 1.88 | 1.91 | 1.96 | 2.01 | 2.04 | 2.07 |
2.09 | 2.12 | 2.14 | 2.16 | | | 1.58 | 1.66 | 1.72 | 1.75 | 1.78 | 1.81 | 1.84 | 1.87 | 1.89 | 1.91 | 1.93 | 1.94 | 1.95 | | 3 | 1.52 | 1.59 | 1.63 | 1.66 | 1.68 | 1.71 | 1.73 | 1.75 | 1.76 | 1.78 | 1.79 | 1.80 | 1.81 | | 4 | 1.47 | 1.52 | 1.56 | 1.58 | 1.60 | 1.62 | 1.64 | 1.65 | 1.66 | 1.67 | 1.68 | 1.69 | 1.70 | | 5 | 1.42 | 1.47 | 1.49 | 1.51 | 1.52 | 1.54 | 1.55 | 1.56 | 1.57 | 1.58 | 1.59 | 1.59 | 1.60 | | 6 | 1.38 | 1.41 | 1.43 | 1.45 | 1.46 | 1.47 | 1.48 | 1.49 | 1.50 | 1.50 | 1.51 | 1.51 | 1.52 | | 7 | 1.33 | 1.36 | 1.38 | 1.39 | 1.40 | 1.41 | 1.41 | 1.42 | 1.43 | 1.43 | 1.44 | 1.44 | 1.44 | | 8 | 1.29 | 1.31 | 1.33 | 1.33 | 1.34 | 1.35 | 1.35 | 1.36 | 1.36 | 1.37 | 1.37 | 1.37 | 1.38 | | 9 | 1.25 | 1.27 | 1.28 | 1.28 | 1.29 | 1.29 | 1.30 | 1.30 | 1.30 | 1.31 | 1.31 | 1.31 | 1.31 | | 10 | 1.21 | 1.23 | 1.23 | 1.24 | 1.24 | 1.24 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.26 | 1.26 | | 11 | 1.18 | 1.18 | 1.19 | 1.19 | 1.19 | 1.19 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | | 12 | 1.14 | 1.14 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | | 13 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 | | 14 | 1.07 | 1.07 | 1.07 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | | 15 | 1.03 | 1.03 | 1.03 | 1.03 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | | 16 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | 17 | 0.97 | 0.96 | 0.95 | 0.95 | 0.95 | 0.95 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | | 18 | 0.93 | 0.92 | 0.92 | 0.92 | 0.91 | 0.91 | 0.91 | 0.91 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | 19 | 0.90 | 0.89 | 0.88 | 0.88 | 0.88 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | | 20 | 0.87 | 0.86 | 0.85 | 0.85 | 0.84 | 0.84 | 0.84 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | | 21 | 0.84 | 0.82 | 0.82 | 0.81 | 0.81 | 0.81 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.79 | | 22 | 0.81 | 0.79 | 0.79 | 0.78 | 0.78 | 0.77 | 0.77 | 0.77 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | | 23 | 0.77 | 0.76 | 0.75 | 0.75 | 0.74 | 0.74 | 0.74 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | | 24 | 0.74 | 0.73 | 0.72 | 0.72 | 0.71 | 0.71 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | | 25 | 0.71 | 0.70 | 0.69 | 0.69 | 0.68 | 0.68 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.66 | | | Table continues below | | | | | | | | | | | | | Table 39-7 (cont.).—ESTIMATED PERCENT OF WORK OUTSIDE SPECIFICATION LIMITS | P_U | | Sample Size (n) | | | | | | | | | | | | |--------|------|--|------|------|------|-------|-------|-------|-------|-------|-------|-------|------| | and/or | 5 | 6 | 7 | 8 | 9 | 10-11 | 12-14 | 15-17 | 18-22 | 23-29 | 30-42 | 43-66 | >66 | | P_L | | Upper Quality Index Q_U or Lower Quality Index Q_L | | | | | | | | | | | | | 26 | 0.68 | 0.67 | 0.67 | 0.65 | 0.65 | 0.65 | 0.64 | 0.64 | 0.64 | 0.64 | 0.64 | 0.64 | 0.63 | | 27 | 0.65 | 0.64 | 0.63 | 0.62 | 0.62 | 0.62 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.60 | | 28 | 0.62 | 0.61 | 0.60 | 0.59 | 0.59 | 0.59 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.57 | | 29 | 0.59 | 0.58 | 0.57 | 0.57 | 0.56 | 0.56 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.54 | | 30 | 0.56 | 0.55 | 0.54 | 0.54 | 0.53 | 0.53 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | | 31 | 0.53 | 0.52 | 0.51 | 0.51 | 0.50 | 0.50 | 0.50 | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 | | 32 | 0.50 | 0.49 | 0.48 | 0.48 | 0.48 | 0.47 | 0.47 | 0.47 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | | 33 | 0.47 | 0.48 | 0.45 | 0.45 | 0.45 | 0.44 | 0.44 | 0.44 | 0.44 | 0.43 | 0.43 | 0.43 | 0.43 | | 34 | 0.45 | 0.43 | 0.43 | 0.42 | 0.42 | 0.42 | 0.41 | 0.41 | 0.41 | 0.41 | 0.41 | 0.41 | 0.40 | | 35 | 0.42 | 0.40 | 0.40 | 0.39 | 0.39 | 0.39 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | | 36 | 0.39 | 0.38 | 0.37 | 0.37 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | | 37 | 0.36 | 0.35 | 0.34 | 0.34 | 0.34 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.32 | | 38 | 0.33 | 0.32 | 0.32 | 0.31 | 0.31 | 0.31 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | | 39 | 0.30 | 0.30 | 0.29 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | | 40 | 0.28 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | | 41 | 0.25 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | | 42 | 0.23 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | | 43 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | | 44 | 0.16 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | | 45 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | | 46 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | 47 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 48 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | 49 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | | 50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # Notes: - If the value of Q_U or Q_L does not correspond to a value in the table, use the next lower value. If Q_U or Q_L are negative values, P_U or P_L is equal to 100 minus the table value for P_U or P_L. Table 39-8.—PAY FACTOR | | Sample Size (n) | | | | | | | | | | | | | |--|---|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|-------|----------| | Pay | 5 | 6 | 7 | 8 | 9 | 10-11 | 12-14 | 15-17 | 18-22 | 23-29 | 30-42 | 43-66 | >66 | | Factor | Maximum Allowable Percent of Work Outside Specification Limits for A Given Pay Factor $(P_U + P_L)$ | | | | | | | | | $y + P_L$ | | | | | 1.05 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1.04 | | | 0 | 1 | 3 | 5 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | | 1.03 | | 0 | 2 | 4 | 6 | 8 | 7 | 7 | 6 | 5 | 5 | 4 | 4 | | 1.02 | | 1 | 3 | 6 | 9 | 11 | 10 | 9 | 8 | 7 | 7 | 6 | 6 | | 1.01 | 0 | 2 | 5 | 8 | 11 | 13 | 12 | 11 | 10 | 9 | 8 | 8 | 7 | | 1.00 | 22 | 20 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | 0.99 | 24 | 22 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 11 | 10 | 9 | | 0.98 | 26 | 24 | 22 | 21 | 20 | 19 | 18 | 16 | 15 | 14 | 13 | 12 | 10 | | 0.97 | 28 | 26 | 24 | 23 | 22 | 21 | 19 | 18 | 17 | 16 | 14 | 13 | 12 | | 0.96 | 30 | 28 | 26 | 25 | 24 | 22 | 21 | 19 | 18 | 17 | 16 | 14 | 13 | | 0.95 | 32 | 29 | 28 | 26 | 25 | 24 | 22 | 21 | 20 | 18 | 17 | 16 | 14 | | 0.94 | 33 | 31 | 29 | 28 | 27 | 25 | 24 | 22 | 21 | 20 | 18 | 17 | 15 | | 0.93 | 35 | 33 | 31 | 29 | 28 | 27 | 25 | 24 | 22 | 21 | 20 | 18 | 16 | | 0.92 | 37 | 34 | 32 | 31 | 30 | 28 | 27 | 25 | 24 | 22 | 21 | 19 | 18 | | 0.91 | 38 | 36 | 34 | 32 | 31 | 30 | 28 | 26 | 25 | 24 | 22 | 21 | 19 | | 0.90 | 39 | 37 | 35 | 34 | 33 | 31 | 29 | 28 | 26 | 25 | 23 | 22 | 20 | | 0.89 | 41 | 38 | 37 | 35 | 34 | 32 | 31 | 29 | 28 | 26 | 25 | 23 | 21 | | 0.88 | 42 | 40 | 38 | 36 | 35 | 34 | 32 | 30 | 29 | 27 | 26 | 24 | 22 | | 0.87 | 43 | 41 | 39 | 38 | 37 | 35 | 33 | 32 | 30 | 29 | 27 | 25 | 23 | | 0.86 | 45 | 42 | 41 | 39 | 38 | 36 | 34 | 33 | 31 | 30 | 28 | 26 | 24 | | 0.85 | 46 | 44 | 42 | 40 | 39 | 38 | 36 | 34 | 33 | 31 | 29 | 28 | 25 | | 0.84 | 47 | 45 | 43 | 42 | 40 | 39 | 37 | 35 | 34 | 32 | 30 | 29 | 27 | | 0.83 | 49 | 46 | 44 | 43 | 42 | 40 | 38 | 36 | 35 | 33 | 31 | 30 | 28 | | 0.82 | 50 | 47 | 46 | 44 | 43 | 41 | 39 | 38 | 36 | 34 | 33 | 31 | 29 | | 0.81 | 51 | 49 | 47 | 45 | 44 | 42 | 41 | 39 | 37 | 36 | 34 | 32 | 30 | | 0.80
0.79 | 52
54 | 50
51 | 48
49 | 46
48 | 45
46 | 44
45 | 42
43 | 40
41 | 38
39 | 37
38 | 35
36 | 33 | 31
32 | | 0.79 | 54
55 | 52 | 50 | 48
49 | 48 | 45 | 43 | 41 | 41 | 38
39 | 36 | 35 | 33 | | 0.78 | 55
56 | 52
54 | 52 | 50 | 48 | 46 | 44 | 42 | 41 | 39
40 | 38 | 36 | 34 | | 0.77 | 50
57 | 55
55 | 53 | 50
51 | 50 | 48 | 45 | 43 | 42 | 40 | 39 | 37 | 35 | | 0.76 | 58 | 56 | 54 | 52 | 51 | 49 | 47 | 46 | 44 | 42 | 40 | 38 | 36 | | 0.73 | 60 | 57 | 55 | 53 | 52 | 51 | 48 | 47 | 45 | 43 | 41 | 40 | 37 | | | 61 | 58 | 56 | 55
55 | 53 | 52 | 50 | 48 | 46 | 43 | 43 | 41 | 38 | | Reject | 62 | 59 | 57 | 56 | 54 | 53 | 51 | 49 | 47 | 45 | 44 | 42 | 39 | | Roject | 63 | 61 | 58 | 57 | 55 | 54 | 52 | 50 | 48 | 47 | 45 | 43 | 40 | | | 64 | 62 | 60 | 58 | 57 | 55 | 53 | 51 | 49 | 48 | 46 | 44 | 41 | | | 01 | 02 | | | | | | | | 10 | 10 | | | | Reject Values Greater Than Those Shown Above | | | | | | | | | | | | | | Notes: ^{1.} To obtain a pay factor when the estimated percent outside specification limits from Table 39-7, "Estimated Percent of Work Outside Specification Limits," does not correspond to a value in the table, use the next larger value. ^{2.} The maximum obtainable pay factor is 1.05 (with a minimum of 8 test values). Table 39-9.—MINIMUM QUALITY CONTROL REQUIREMENTS | | | | Weighting | | Minimum | | |-------|----------------------------|----------------|-----------|------------------|------------------------|----------------| | Index | Quality | Specification | Factor | California | Sampling and Testing | Point of | | (i) | Characteristic | Limits | (w) | Test | Frequency | Sampling | | 1 | Asphalt | $TV \pm 0.5\%$ | 0.30 | 379 or 382 | One sample per 500 | Mat behind | | | Content ^{2,3} | | | | tonnes or part thereof | paver | | | | | | | Not less than one | | | | | | | | sample per day | | | | Gradation | | | 202 | One sample per 500 | Batch Plant - | | 2 | 19 or 12.5 mm ⁴ | $TV \pm 5$ | 0.01 | | tonnes or part thereof | from hot bins | | 3 | 9.5 mm | $TV \pm 6$ | 0.01 | |
Not less than one | | | 4 | 4.75 mm | $TV \pm 7$ | 0.05 | | sample per day | Drum Plant - | | 5 | 2.36 mm | $TV \pm 5$ | 0.05 | | | from cold feed | | 6 | 600 μm ^{2,3} | $TV \pm 4$ | 0.08 | | | | | 7 | 75 μm ² | $TV \pm 2$ | 0.10 | | | | | 8 | Relative | 96% | 0.40 | 375 ⁵ | One sample per 500 | Finished mat | | | Compaction ² | | | | tonnes or part thereof | after final | | | | | | | Not less than one test | rolling | | | | | | | per day | | | | Test Maximum | | | 375 | Per Test Method | Mat behind | | | Density | | | | | the paver | | 9 | Mix Moisture | ≤1% | | 370 | One sample per 1000 | | | | Content | | | | tonnes or part thereof | | | | | | | | Not less than one | | | | | 1222 | | | sample per day | | | | Asphalt and | 120°C to 190°C | | | Continuous using an | Plant | | | Mix | (Asphalt) | | | automated recording | | | | Temperature | ≤165°C | | | device | | | | | (Mix) | | | | | # Notes: - 1. TV = Target Value from contractor's proposed mix design. - 2. Depending on aggregate gradation specified. - 3. Quality characteristics 1, 6, 7, and 8 are defined as critical quality characteristics in the verification testing process. - 4. Quality characteristics 1, 6, and 7 are defined as critical start-up characteristics in the Production Start-Up Evaluation. - 5. California Test 375, Part 3, Section B, "Testing Frequency," is revised to change 450 tonnes to 500 tonnes and 45 tonnes to 50 tonnes. #### 39-12 MEASUREMENT AND PAYMENT #### 39-12.01 MEASUREMENT Asphalt concrete will be measured by mass. The quantity to be paid for will be the combined mass of the mixture for the various types of asphalt concrete, as designated in the Engineer's Estimate. The mass of the materials will be determined in conformance with the provisions in Section 9-1.01, "Measurement of Quantities," of the Standard Specifications. Quantities of paving asphalt, liquid asphalt, and asphaltic emulsion to be paid for as contract items of work will be determined in conformance with the methods provided in Section 92, "Asphalts," Section 93, "Liquid Asphalts," or Section 94, "Asphaltic Emulsions," of the Standard Specifications, as the case may be. When recorded batch masses are printed automatically, these masses may be used for determining pay quantities provided the following requirements are complied with: - A. Total aggregate and supplemental fine aggregate mass per batch shall be printed. When supplemental fine aggregate is weighed cumulatively with the aggregate, the total batch mass of aggregate shall include the supplemental fine aggregate. - B. The total bitumen mass per batch shall be printed. - C. Zero-tolerance mass shall be printed prior to weighing the first batch and after weighing the last batch of each truckload - D. The time, date, mix number, load number, and truck identification shall be correlated with the load slip. - E. A copy of the recorded batch masses shall be certified by a licensed weighmaster and submitted to the Engineer. Pavement reinforcing fabric will be measured and paid for by the square meter for the actual pavement area covered. #### **39-12.02 PAYMENT** Asphalt concrete placed in the work, unless otherwise specified, will be paid for at the contract price per tonne for asphalt concrete of the types designated in the Engineer's Estimate. Compensation adjustment for asphalt concrete will be in conformance with Section 39-11.02C, "Pay Factor Determination and Compensation Adjustment," of this Section 11-1, "Quality Control / Quality Assurance." When there is a contract item for asphalt concrete (leveling), quantities of asphalt concrete placed for leveling will be paid for at the contract price per tonne for asphalt concrete (leveling). When there is no contract item for asphalt concrete (leveling), and leveling is ordered by the Engineer, asphalt concrete so used will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. For asphalt concrete placed in dig outs, as a leveling course, for slope correction, for detours not included in the finished roadway prism, in areas where in the judgment of the Engineer compaction or compaction measurement by conventional methods is impeded or on the uppermost lift of shoulders with rumble strips the relative compaction provisions of Section 39-11.02, "Statistical Evaluation and Determination of Pay Factor," of this Section 11-1, shall not apply. In the computation of the composite pay factor (PF_C) for the lot composed of this asphalt concrete, an individual pay factor of 1.0 for the relative compaction (PF_{OC8}) shall be used. Full compensation for the Contractor's Quality Control Plan, including furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in developing, implementing, modifying, and fulfilling the requirements of the Quality Control Plan shall be considered as included in the contract price paid per tonne for asphalt concrete of the types designated in the Engineer's Estimate and no additional compensation will be allowed therefor. Full compensation for Contractor sampling, testing, inspection, testing facilities, and preparation and submission of results shall be considered as included in the contract price paid per tonne for asphalt concrete of the types designated in the Engineer's Estimate and no additional compensation will be allowed therefor. Quantities of pavement reinforcing fabric placed and paving asphalt applied as a binder for the pavement reinforcing fabric will be paid for at the contract price per square meter for pavement reinforcing fabric and per tonne for paving asphalt (binder-pavement reinforcing fabric). Full compensation for furnishing and spreading sand to cover exposed binder material, if necessary, shall be considered as included in the contract price paid per tonne for paving asphalt (binder-pavement reinforcing fabric) and no separate payment will be made therefor. Small quantities of asphalt concrete placed on pavement reinforcing fabric to prevent the fabric from being displaced by construction equipment or to allow public traffic to cross over the fabric shall be considered as part of the layer of asphalt concrete to be placed over the fabric and will be measured and paid for by the tonne as asphalt concrete of the types designated in the Engineer's Estimate. When there is a contract item for liquid asphalt (prime coat), the quantity of prime coat will be paid for at the contract price per tonne for the designated grade of liquid asphalt (prime coat). When there is no contract item for liquid asphalt (prime coat) and the special provisions require the application of a prime coat, full compensation for furnishing and applying the prime coat shall be considered as included in the contract price paid per tonne for asphalt concrete of the types designated in the Engineer's Estimate and no separate payment will be made therefor. When there is a contract item for asphaltic emulsion (paint binder), the quantity of asphaltic emulsion or paving asphalt used as paint binder (tack coat) will be paid for at the contract price per tonne for asphaltic emulsion (paint binder). When there is no contract item for asphaltic emulsion (paint binder), full compensation for furnishing and applying paint binder (tack coat) shall be considered as included in the contract price paid per tonne for asphalt concrete of the types designated in the Engineer's Estimate and no separate payment will be made therefor. Fog seal coat will be paid for as provided in Section 37-1, "Seal Coats," of the Standard Specifications. No adjustment of compensation will be made for an increase or decrease in the quantities of paint binder (tack coat) or fog seal coat required, regardless of the reason for such increase or decrease. The provisions in Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications shall not apply to the items of paint binder or fog seal coat. The above contract prices and payments shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in placing asphalt concrete, complete in place, as shown on the plans, as specified in this Section 11-1, "Quality Control / Quality Assurance," and "Asphalt Concrete" in Section 10-1, "General," of these special provisions, and as directed by the Engineer. **SECTION 12. (BLANK)** **SECTION 13. (BLANK)** ## SECTION 14 FEDERAL REQUIREMENTS FOR FEDERAL-AID CONSTRUCTION PROJECTS **GENERAL**.—The work herein proposed will be financed in whole or in part with Federal funds, and therefore all of the statutes, rules and regulations promulgated by the Federal Government and applicable to work financed in whole or in part with Federal funds will apply to such work. The "Required Contract Provisions, Federal-Aid Construction Contracts, "Form FHWA 1273, are included in this Section 14. Whenever in said required contract provisions references are made to "SHA contracting officer," "SHA resident engineer," or "authorized representative of the SHA," such references shall be construed to mean "Engineer" as defined in Section 1-1.18 of the Standard Specifications. PERFORMANCE OF PREVIOUS CONTRACT.—In addition to the provisions in Section II, "Nondiscrimination," and Section VII, "Subletting or Assigning the Contract," of the required contract provisions, the Contractor shall comply with the following: The bidder shall execute the CERTIFICATION WITH REGARD TO THE PERFORMANCE OF PREVIOUS CONTRACTS OR SUBCONTRACTS SUBJECT TO THE EQUAL OPPORTUNITY CLAUSE AND THE FILING OF REQUIRED REPORTS located in the proposal. No request for subletting or assigning any portion of the contract in excess of \$10,000 will be considered under the provisions of Section VII of the required contract provisions unless such request is accompanied by the CERTIFICATION referred to above, executed by the proposed subcontractor. NON-COLLUSION PROVISION.—The
provisions in this section are applicable to all contracts except contracts for Federal Aid Secondary projects. Title 23, United States Code, Section 112, requires as a condition precedent to approval by the Federal Highway Administrator of the contract for this work that each bidder file a sworn statement executed by, or on behalf of, the person, firm, association, or corporation to whom such contract is to be awarded, certifying that such person, firm, association, or corporation has not, either directly or indirectly, entered into any agreement, participated in any collusion, or otherwise taken any action in restraint of free competitive bidding in connection with the submitted bid. A form to make the non-collusion affidavit statement required by Section 112 as a certification under penalty of perjury rather than as a sworn statement as permitted by 28, USC, Sec. 1746, is included in the proposal. PARTICIPATION BY MINORITY BUSINESS ENTERPRISES IN SUBCONTRACTING.—Part 23, Title 49, Code of Federal Regulations applies to this Federal-aid project. Pertinent sections of said Code are incorporated in part or in its entirety within other sections of these special provisions. Schedule B—Information for Determining Joint Venture Eligibility (This form need not be filled in if all joint venture firms are minority owned.) | 1. | | me of joint venture | | | | | | | | |----|--------|--|--|--|--|--|--|--|--| | 2. | Ado | dress of joint venture | | | | | | | | | 3. | Pho | one number of joint venture | | | | | | | | | 4. | Ide | fy the firms which comprise the joint venture. (The MBE partner must complete Schedule A.) | a. | Describe the role of the MBE firm in the joint venture. | | | | | | | | | | b. | Describe very briefly the experience and business qualifications of each non-MBE joint venturer: | | | | | | | | | | υ. | Describe very offerty the experience and business quantications of each non-wide joint venturer. | 5. | Nat | ure of the joint venture's business | 6. | Pro | vide a copy of the joint venture agreement. | | | | | | | | | 7 | 33.71. | at in the entries of management of MDE assessment in 9 | | | | | | | | - 7. What is the claimed percentage of MBE ownership? - 8. Ownership of joint venture: (This need not be filled in if described in the joint venture agreement, provided by question 6.). - Profit and loss sharing. - b. Capital contributions, including equipment. - Other applicable ownership interests. | 9. | title | es) w | of and participation in this contract. Identify by name, race, sex, and "firm" who are responsible for day-to-day management and policy decision making, i with prime responsibility for: | | |--|--|--|---|--| | | | Ei | omaint desirions | | | | a.
b. | Mai | nancial decisionsnagement decisions, such as: | | | | | (1) | Estimating | | | | | (2) | Marketing and sales | | | | | (3) | Estimating | | | | | (4) | Purchasing of major items or supplies | | | | c. | Sup | pervision of field operations | | | this reg | ulatio | on, tł | fter filing this Schedule B and before the completion of the joint venture's workere is any significant change in the information submitted, the joint venture mugh the prime contractor if the joint venture is a subcontractor. | | | | | | Affidavit | | | undertal
regardir
arranger
joint ve
material | king.
ng ao
ment
nture
I mis | Functual s and representations of the second | lain the terms and operation of our joint venture and the intended participation of our joint venture, the undersigned covenant and agree to provide to grantee current, completed joint venture work and the payment therefor and any proposed changes do to permit the audit and examination of the books, records and files of the joil levant to the joint venture, by authorized representatives of the grantee or the F esentation will be grounds for terminating any contract which may be awarded a laws concerning false statements." | ete and accurate information
in any of the joint venture
int venture, or those of each
ederal funding agency. Any | | _ | Naı | ne of | of Firm Name of Firm | | | | Sig | natur | re Signature | _ | | | Naı | ne | Name | | | | Titl | e | Title | _ | | | Dat | e | Date | | | | | | | | | Date | | | |---|--|--| | State of | | | | County of | | | | who, being duly sworn, did execute the forego | , before me appeared (Name)
bing affidavit, and did state that he or she was prop
to execute the affidavit and did so as his or her free | erly authorized by (Name of | | Notary Public | | | | Commission exp | ires | | | | [Seal] | | | | | | | | | | | | | | | | | | | Date | | | | State of | | | | County of | | | | On this day of, 20_ who, being duly sworn, did execute the foregon firm) to exe | , before me appeared (Name)
bing affidavit, and did state that he or she was proported the affidavit and did so as his or her free act a | to me personally known,
perly authorized by (Name of
and deed. | | Notary Public | | | | Commission exp | ires | | | | [Seal] | | ## REQUIRED CONTRACT PROVISIONS FEDERAL-AID CONSTRUCTION CONTRACTS #### I. GENERAL - 1. These contract provisions shall apply to all work performed on the contract by the contractor's own organization and with the assistance of workers under the contractor's immediate superintendence and to all work performed on the contract by piecework, station work, or by subcontract. - 2. Except as otherwise provided for in each section, the contractor shall insert in each subcontract all of the stipulations contained in these Required Contract Provisions, and further require their inclusion in any lower tier subcontract or purchase order that may in turn be made. The Required Contract Provisions shall not be incorporated by reference in any case. The prime contractor shall be responsible for compliance by any subcontractor or lower tier subcontractor with these Required Contract Provisions. - 3. A breach of any of the stipulations contained in these Required Contract Provisions shall be sufficient grounds for termination of the contract. - 4. A breach of the following clauses of the Required Contract Provisions may also be grounds for debarment as provided in 29 CFR 5.12: ``` Section I, paragraph 2; Section IV, paragraphs 1, 2, 3, 4, and 7; Section V, paragraphs 1 and 2a through 2g. ``` - 5. Disputes arising out of the labor standards provisions of Section IV (except paragraph 5) and Section V of these Required Contract Provisions shall not be subject to the general disputes clause of this contract. Such disputes shall be resolved in accordance with the procedures of the U.S. Department of Labor (DOL) as set forth in 29 CFR 5, 6, and 7. Disputes within the meaning
of this clause include disputes between the contractor (or any of its subcontractors) and the contracting agency, the DOL, or the contractor's employees or their representatives. - 6. Selection of Labor During the performance of this contract, the contractor shall not: - a. discriminate against labor from any other State, possession, or territory of the United States (except for employment preference for Appalachian contracts, when applicable, as specified in Attachment A), or - b. employ convict labor for any purpose within the limits of the project unless it is labor performed by convicts who are on parole, supervised release, or probation. # II. NONDISCRIMINATION (Applicable to all Federal-aid construction contracts and to all related subcontracts of \$10,000 or more.) - 1. **Equal Employment Opportunity:** Equal employment opportunity (EEO) requirements not to discriminate and to take affirmative action to assure equal opportunity as set forth under laws, executive orders, rules, regulations (28 CFR 35, 29 CFR 1630, and 41 CFR 60) and orders of the Secretary of Labor as modified by the provisions prescribed herein, and imposed pursuant to 23 U.S.C. 140 shall constitute the EEO and specific affirmative action standards for the contractor's project activities under this contract. The Equal Opportunity Construction Contract Specifications set forth under 41 CFR 60-4.3 and the provisions of the American Disabilities Act of 1990 (42 U.S.C. 12101 et seq.) set forth under 28 CFR 35 and 29 CFR 1630 are incorporated by reference in this contract. In the execution of this contract, the contractor agrees to comply with the following minimum specific requirement activities of EEO: - a. The contractor will work with the State highway agency (SHA) and the Federal Government in carrying out EEO obligations and in their review of his/her activities under the contract. - b. The contractor will accept as his operating policy the following statement: "It is the policy of this Company to assure that applicants are employed, and that employees are treated during employment, without regard to their race, religion, sex, color, national origin, age or disability. Such action shall include: employment, upgrading, demotion, or transfer; recruitment or recruitment advertising; layoff or termination; rates of pay or other forms of compensation; and selection for training, including apprenticeship, preapprenticeship, and/or on-the-job training." - 2. **EEO Officer:** The contractor will designate and make known to the SHA contracting officers an EEO Officer who will have the responsibility for and must be capable of effectively administering and promoting an active contractor program of EEO and who must be assigned adequate authority and responsibility to do so. - 3. **Dissemination of Policy:** All members of the contractor's staff who are authorized to hire, supervise, promote, and discharge employees, or who recommend such action, or who are substantially involved in such action, will be made fully cognizant of, and will implement, the contractor's EEO policy and contractual responsibilities to provide EEO in each grade and classification of employment. To ensure that the above agreement will be met, the following actions will be taken as a minimum: - a. Periodic meetings of supervisory and personnel office employees will be conducted before the start of work and then not less often than once every six months, at which time the contractor's EEO policy and its implementation will be reviewed and explained. The meetings will be conducted by the EEO Officer. - b. All new supervisory or personnel office employees will be given a thorough indoctrination by the EEO Officer, covering all major aspects of the contractor's EEO obligations within thirty days following their reporting for duty with the contractor. - c. All personnel who are engaged in direct recruitment for the project will be instructed by the EEO Officer in the contractor's procedures for locating and hiring minority group employees. - d. Notices and posters setting forth the contractor's EEO policy will be placed in areas readily accessible to employees, applicants for employment and potential employees. - e. The contractor's EEO policy and the procedures to implement such policy will be brought to the attention of employees by means of meetings, employee handbooks, or other appropriate means. - 4. **Recruitment:** When advertising for employees, the contractor will include in all advertisements for employees the notation: "An Equal Opportunity Employer." All such advertisements will be placed in publications having a large circulation among minority groups in the area from which the project work force would normally be derived. - a. The contractor will, unless precluded by a valid bargaining agreement, conduct systematic and direct recruitment through public and private employee referral sources likely to yield qualified minority group applicants. To meet this requirement, the contractor will identify sources of potential minority group employees, and establish with such identified sources procedures whereby minority group applicants may be referred to the contractor for employment consideration. - b. In the event the contractor has a valid bargaining agreement providing for exclusive hiring hall referrals, he is expected to observe the provisions of that agreement to the extent that the system permits the contractor's compliance with EEO contract provisions. (The DOL has held that where implementation of such agreements have the effect of discriminating against minorities or women, or obligates the contractor to do the same, such implementation violates Executive Order 11246, as amended.) - c. The contractor will encourage his present employees to refer minority group applicants for employment. Information and procedures with regard to referring minority group applicants will be discussed with employees. - 5. **Personnel Actions:** Wages, working conditions, and employee benefits shall be established and administered, and personnel actions of every type, including hiring, upgrading, promotion, transfer, demotion, layoff, and termination, shall be taken without regard to race, color, religion, sex, national origin, age or disability. The following procedures shall be followed: - a. The contractor will conduct periodic inspections of project sites to insure that working conditions and employee facilities do not indicate discriminatory treatment of project site personnel. - b. The contractor will periodically evaluate the spread of wages paid within each classification to determine any evidence of discriminatory wage practices. - c. The contractor will periodically review selected personnel actions in depth to determine whether there is evidence of discrimination. Where evidence is found, the contractor will promptly take corrective action. If the review indicates that the discrimination may extend beyond the actions reviewed, such corrective action shall include all affected persons. - d. The contractor will promptly investigate all complaints of alleged discrimination made to the contractor in connection with his obligations under this contract, will attempt to resolve such complaints, and will take appropriate corrective action within a reasonable time. If the investigation indicates that the discrimination may affect persons other than the complainant, such corrective action shall include such other persons. Upon completion of each investigation, the contractor will inform every complainant of all of his avenues of appeal. ## 6. Training and Promotion: - a. The contractor will assist in locating, qualifying, and increasing the skills of minority group and women employees, and applicants for employment. - b. Consistent with the contractor's work force requirements and as permissible under Federal and State regulations, the contractor shall make full use of training programs, i.e., apprenticeship, and on-the-job training programs for the geographical area of contract performance. Where feasible, 25 percent of apprentices or trainees in each occupation shall be in their first year of apprenticeship or training. In the event a special provision for training is provided under this contract, this subparagraph will be superseded as indicated in the special provision. - c. The contractor will advise employees and applicants for employment of available training programs and entrance requirements for each. - d. The contractor will periodically review the training and promotion potential of minority group and women employees and will encourage eligible employees to apply for such training and promotion. - 7. Unions: If the contractor relies in whole or in part upon unions as a source of employees, the contractor will use his/her best efforts to obtain the cooperation of such unions to increase opportunities for minority groups and women within the unions, and to effect referrals by such unions of minority and female employees. Actions by the contractor either directly or through a contractor's association acting as agent will include the procedures set forth below: - a. The contractor will use best efforts to develop, in cooperation with the unions, joint training programs aimed toward qualifying more minority group members and women for membership in the unions and increasing the skills of minority group employees and women so that they may qualify for higher paying employment. - b. The contractor will use best efforts to incorporate an EEO clause into each union agreement to the end that such union will be contractually bound to refer applicants without regard to their race, color, religion, sex, national origin, age or disability. - c. The contractor is to obtain information as to the referral practices and policies of the labor union except that to the extent such information is within the exclusive possession of the labor union and such labor union refuses to furnish such
information to the contractor, the contractor shall so certify to the SHA and shall set forth what efforts have been made to obtain such information. - d. In the event the union is unable to provide the contractor with a reasonable flow of minority and women referrals within the time limit set forth in the collective bargaining agreement, the contractor will, through independent recruitment efforts, fill the employment vacancies without regard to race, color, religion, sex, national origin, age or disability; making full efforts to obtain qualified and/or qualifiable minority group persons and women. (The DOL has held that it shall be no excuse that the union with which the contractor has a collective bargaining agreement providing for exclusive referral failed to refer minority employees.) In the event the union referral practice prevents the contractor from meeting the obligations pursuant to Executive Order 11246, as amended, and these special provisions, such contractor shall immediately notify the SHA. - 8. **Selection of Subcontractors, Procurement of Materials and Leasing of Equipment:** The contractor shall not discriminate on the grounds of race, color, religion, sex, national origin, age or disability in the selection and retention of subcontractors, including procurement of materials and leases of equipment. - a. The contractor shall notify all potential subcontractors and suppliers of his/her EEO obligations under this contract. - b. Disadvantaged business enterprises (DBE), as defined in 49 CFR 23, shall have equal opportunity to compete for and perform subcontracts which the contractor enters into pursuant to this contract. The contractor will use his best efforts to solicit bids from and to utilize DBE subcontractors or subcontractors with meaningful minority group and female representation among their employees. Contractors shall obtain lists of DBE construction firms from SHA personnel. - c. The contractor will use his best efforts to ensure subcontractor compliance with their EEO obligations. - 9. **Records and Reports:** The contractor shall keep such records as necessary to document compliance with the EEO requirements. Such records shall be retained for a period of three years following completion of the contract work and shall be available at reasonable times and places for inspection by authorized representatives of the SHA and the FHWA. - a. The records kept by the contractor shall document the following: - (1) The number of minority and non-minority group members and women employed in each work classification on the project; - (2) The progress and efforts being made in cooperation with unions, when applicable, to increase employment opportunities for minorities and women; - (3) The progress and efforts being made in locating, hiring, training, qualifying, and upgrading minority and female employees; and - (4) The progress and efforts being made in securing the services of DBE subcontractors or subcontractors with meaningful minority and female representation among their employees. - b. The contractors will submit an annual report to the SHA each July for the duration of the project, indicating the number of minority, women, and non-minority group employees currently engaged in each work classification required by the contract work. This information is to be reported on Form FHWA-1391. If on-the-job training is being required by special provision, the contractor will be required to collect and report training data. #### III. NONSEGREGATED FACILITIES (Applicable to all Federal-aid construction contracts and to all related subcontracts of \$10,000 or more.) - a. By submission of this bid, the execution of this contract or subcontract, or the consummation of this material supply agreement or purchase order, as appropriate, the bidder, Federal-aid construction contractor, subcontractor, material supplier, or vendor, as appropriate, certifies that the firm does not maintain or provide for its employees any segregated facilities at any of its establishments, and that the firm does not permit its employees to perform their services at any location, under its control, where segregated facilities are maintained. The firm agrees that a breach of this certification is a violation of the EEO provisions of this contract. The firm further certifies that no employee will be denied access to adequate facilities on the basis of sex or disability. - b. As used in this certification, the term "segregated facilities" means any waiting rooms, work areas, restrooms and washrooms, restaurants and other eating areas, time clocks, locker rooms, and other storage or dressing areas, parking lots, drinking fountains, recreation or entertainment areas, transportation, and housing facilities provided for employees which are segregated by explicit directive, or are, in fact, segregated on the basis of race, color, religion, national origin, age or disability, because of habit, local custom, or otherwise. The only exception will be for the disabled when the demands for accessibility override (e.g. disabled parking). c. The contractor agrees that it has obtained or will obtain identical certification from proposed subcontractors or material suppliers prior to award of subcontracts or consummation of material supply agreements of \$10,000 or more and that it will retain such certifications in its files. #### IV. PAYMENT OF PREDETERMINED MINIMUM WAGE (Applicable to all Federal-aid construction contracts exceeding \$2,000 and to all related subcontracts, except for projects located on roadways classified as local roads or rural minor collectors, which are exempt.) #### 1. General: - a. All mechanics and laborers employed or working upon the site of the work will be paid unconditionally and not less often than once a week and without subsequent deduction or rebate on any account [except such payroll deductions as are permitted by regulations (29 CFR 3)] issued by the Secretary of Labor under the Copeland Act (40 U.S.C. 276c) the full amounts of wages and bona fide fringe benefits (or cash equivalents thereof) due at time of payment. The payment shall be computed at wage rates not less than those contained in the wage determination of the Secretary of Labor (hereinafter "the wage determination") which is attached hereto and made a part hereof, regardless of any contractual relationship which may be alleged to exist between the contractor or its subcontractors and such laborers and mechanics. The wage determination (including any additional classifications and wage rates conformed under paragraph 2 of this Section IV and the DOL poster (WH-1321) or Form FHWA-1495) shall be posted at all times by the contractor and its subcontractors at the site of the work in a prominent and accessible place where it can be easily seen by the workers. For the purpose of this Section, contributions made or costs reasonably anticipated for bona fide fringe benefits under Section 1(b)(2) of the Davis-Bacon Act (40 U.S.C. 276a) on behalf of laborers or mechanics are considered wages paid to such laborers or mechanics, subject to the provisions of Section IV, paragraph 3b, hereof. Also, for the purpose of this Section, regular contributions made or costs incurred for more than a weekly period (but not less often than quarterly) under plans, funds, or programs, which cover the particular weekly period, are deemed to be constructively made or incurred during such weekly period. Such laborers and mechanics shall be paid the appropriate wage rate and fringe benefits on the wage determination for the classification of work actually performed, without regard to skill, except as provided in paragraphs 4 and 5 of this Section IV. - b. Laborers or mechanics performing work in more than one classification may be compensated at the rate specified for each classification for the time actually worked therein, provided, that the employer's payroll records accurately set forth the time spent in each classification in which work is performed. - c. All rulings and interpretations of the Davis-Bacon Act and related acts contained in 29 CFR 1, 3, and 5 are herein incorporated by reference in this contract. ## 2. Classification: - a. The SHA contracting officer shall require that any class of laborers or mechanics employed under the contract, which is not listed in the wage determination, shall be classified in conformance with the wage determination. - b. The contracting officer shall approve an additional classification, wage rate and fringe benefits only when the following criteria have been met: - (1) the work to be performed by the additional classification requested is not performed by a classification in the wage determination; - (2) the additional classification is utilized in the area by the construction industry; - (3) the proposed wage rate, including any bona fide fringe benefits, bears a reasonable relationship to the wage rates contained in the wage determination; and - (4) with respect to helpers, when such a classification prevails in the area in which the work is performed. - c. If the contractor or subcontractors, as appropriate, the laborers and mechanics (if known) to be employed in the additional classification or their representatives, and the contracting officer agree on the classification and wage rate (including the amount designated for fringe benefits where appropriate), a report of the action taken shall be sent by the contracting officer to the DOL, Administrator of the Wage and Hour Division, Employment Standards Administration, Washington, D.C. 20210. The Wage and Hour Administrator, or an authorized representative, will approve, modify, or disapprove every additional classification action within 30 days of receipt and so advise the contracting officer or will notify the contracting officer within the 30-day period that additional time is necessary. - d. In the event the contractor or subcontractors, as appropriate, the laborers or
mechanics to be employed in the additional classification or their representatives, and the contracting officer do not agree on the proposed classification and wage rate (including the amount designated for fringe benefits, where appropriate), the contracting officer shall refer the questions, including the views of all interested parties and the recommendation of the contracting officer, to the Wage and Hour Administrator for determination. Said Administrator, or an authorized representative, will issue a determination within 30 days of receipt and so advise the contracting officer or will notify the contracting officer within the 30-day period that additional time is necessary - e. The wage rate (including fringe benefits where appropriate) determined pursuant to paragraph 2c or 2d of this Section IV shall be paid to all workers performing work in the additional classification from the first day on which work is performed in the classification. ## 3. Payment of Fringe Benefits: - a. Whenever the minimum wage rate prescribed in the contract for a class of laborers or mechanics includes a fringe benefit which is not expressed as an hourly rate, the contractor or subcontractors, as appropriate, shall either pay the benefit as stated in the wage determination or shall pay another bona fide fringe benefit or an hourly case equivalent thereof. - b. If the contractor or subcontractor, as appropriate, does not make payments to a trustee or other third person, he/she may consider as a part of the wages of any laborer or mechanic the amount of any costs reasonably anticipated in providing bona fide fringe benefits under a plan or program, provided, that the Secretary of Labor has found, upon the written request of the contractor, that the applicable standards of the Davis-Bacon Act have been met. The Secretary of Labor may require the contractor to set aside in a separate account assets for the meeting of obligations under the plan or program. ## 4. Apprentices and Trainees (Programs of the U.S. DOL) and Helpers: # a. Apprentices: - (1) Apprentices will be permitted to work at less than the predetermined rate for the work they performed when they are employed pursuant to and individually registered in a bona fide apprenticeship program registered with the DOL, Employment and Training Administration, Bureau of Apprenticeship and Training, or with a State apprenticeship agency recognized by the Bureau, or if a person is employed in his/her first 90 days of probationary employment as an apprentice in such an apprenticeship program, who is not individually registered in the program, but who has been certified by the Bureau of Apprenticeship and Training or a State apprenticeship agency (where appropriate) to be eligible for probationary employment as an apprentice. - (2) The allowable ratio of apprentices to journeyman-level employees on the job site in any craft classification shall not be greater than the ratio permitted to the contractor as to the entire work force under the registered program. Any employee listed on a payroll at an apprentice wage rate, who is not registered or otherwise employed as stated above, shall be paid not less than the applicable wage rate listed in the wage determination for the classification of work actually performed. In addition, any apprentice performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate on the wage determination for the work actually performed. Where a contractor or subcontractor is performing construction on a project in a locality other than that in which its program is registered, the ratios and wage rates (expressed in percentages of the journeyman-level hourly rate) specified in the contractor's or subcontractor's registered program shall be observed. - (3) Every apprentice must be paid at not less than the rate specified in the registered program for the apprentice's level of progress, expressed as a percentage of the journeyman-level hourly rate specified in Contract No. 07-195904 the applicable wage determination. Apprentices shall be paid fringe benefits in accordance with the provisions of the apprenticeship program. If the apprenticeship program does not specify fringe benefits, apprentices must be paid the full amount of fringe benefits listed on the wage determination for the applicable classification. If the Administrator for the Wage and Hour Division determines that a different practice prevails for the applicable apprentice classification, fringes shall be paid in accordance with that determination. (4) In the event the Bureau of Apprenticeship and Training, or a State apprenticeship agency recognized by the Bureau, withdraws approval of an apprenticeship program, the contractor or subcontractor will no longer be permitted to utilize apprentices at less than the applicable predetermined rate for the comparable work performed by regular employees until an acceptable program is approved. #### b. Trainees: - (1) Except as provided in 29 CFR 5.16, trainees will not be permitted to work at less than the predetermined rate for the work performed unless they are employed pursuant to and individually registered in a program which has received prior approval, evidenced by formal certification by the DOL, Employment and Training Administration. - (2) The ratio of trainees to journeyman-level employees on the job site shall not be greater than permitted under the plan approved by the Employment and Training Administration. Any employee listed on the payroll at a trainee rate who is not registered and participating in a training plan approved by the Employment and Training Administration shall be paid not less than the applicable wage rate on the wage determination for the classification of work actually performed. In addition, any trainee performing work on the job site in excess of the ratio permitted under the registered program shall be paid not less than the applicable wage rate on the wage determination for the work actually performed. - (3) Every trainee must be paid at not less than the rate specified in the approved program for his/her level of progress, expressed as a percentage of the journeyman-level hourly rate specified in the applicable wage determination. Trainees shall be paid fringe benefits in accordance with the provisions of the trainee program. If the trainee program does not mention fringe benefits, trainees shall be paid the full amount of fringe benefits listed on the wage determination unless the Administrator of the Wage and Hour Division determines that there is an apprenticeship program associated with the corresponding journeyman-level wage rate on the wage determination which provides for less than full fringe benefits for apprentices, in which case such trainees shall receive the same fringe benefits as apprentices. - (4) In the event the Employment and Training Administration withdraws approval of a training program, the contractor or subcontractor will no longer be permitted to utilize trainees at less than the applicable predetermined rate for the work performed until an acceptable program is approved. #### c. Helpers: Helpers will be permitted to work on a project if the helper classification is specified and defined on the applicable wage determination or is approved pursuant to the conformance procedure set forth in Section IV.2. Any worker listed on a payroll at a helper wage rate, who is not a helper under an approved definition, shall be paid not less than the applicable wage rate on the wage determination for the classification of work actually performed. # 5. Apprentices and Trainees (Programs of the U.S. DOT): Apprentices and trainees working under apprenticeship and skill training programs which have been certified by the Secretary of Transportation as promoting EEO in connection with Federal-aid highway construction programs are not subject to the requirements of paragraph 4 of this Section IV. The straight time hourly wage rates for apprentices and trainees under such programs will be established by the particular programs. The ratio of apprentices and trainees to journeymen shall not be greater than permitted by the terms of the particular program. # 6. Withholding: The SHA shall upon its own action or upon written request of an authorized representative of the DOL withhold, or cause to be withheld, from the contractor or subcontractor under this contract or any other Federal contract with the same prime contractor, or any other Federally-assisted contract subject to Davis-Bacon prevailing wage requirements which is held by the same prime contractor, as much of the accrued payments or advances as may be considered necessary to pay laborers and mechanics, including apprentices, trainees, and helpers, employed by the contractor or any subcontractor the full amount of wages required by the contract. In the event of failure to pay any laborer or mechanic, including any apprentice, trainee, or helper, employed or working on the site of the work, all or part of the wages required by the contract, the SHA contracting officer may, after written notice to the contractor, take such action as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds until such violations have ceased. ## 7. Overtime Requirements: No contractor or subcontractor contracting for any part of the contract work which may require or involve the employment of laborers, mechanics, watchmen, or guards (including apprentices, trainees, and helpers described in paragraphs 4 and 5 above) shall require or permit any laborer, mechanic, watchman, or guard in any workweek in which he/she is employed on such work, to work in excess of 40 hours in such workweek unless such laborer, mechanic, watchman, or guard receives compensation at a rate not less than one-and-one-half times his/her basic rate of pay for all hours worked in excess of 40
hours in such workweek. #### 8. Violation: Liability for Unpaid Wages; Liquidated Damages: In the event of any violation of the clause set forth in paragraph 7 above, the contractor and any subcontractor responsible thereof shall be liable to the affected employee for his/her unpaid wages. In addition, such contractor and subcontractor shall be liable to the United States (in the case of work done under contract for the District of Columbia or a territory, to such District or to such territory) for liquidated damages. Such liquidated damages shall be computed with respect to each individual laborer, mechanic, watchman, or guard employed in violation of the clause set forth in paragraph 7, in the sum of \$10 for each calendar day on which such employee was required or permitted to work in excess of the standard work week of 40 hours without payment of the overtime wages required by the clause set forth in paragraph 7. ## 9. Withholding for Unpaid Wages and Liquidated Damages: The SHA shall upon its own action or upon written request of any authorized representative of the DOL withhold, or cause to be withheld, from any monies payable on account of work performed by the contractor or subcontractor under any such contract or any other Federal contract with the same prime contractor, or any other Federally-assisted contract subject to the Contract Work Hours and Safety Standards Act, which is held by the same prime contractor, such sums as may be determined to be necessary to satisfy any liabilities of such contractor or subcontractor for unpaid wages and liquidated damages as provided in the clause set forth in paragraph 8 above. ## V. STATEMENTS AND PAYROLLS (Applicable to all Federal-aid construction contracts exceeding \$2,000 and to all related subcontracts, except for projects located on roadways classified as local roads or rural collectors, which are exempt.) ## 1. Compliance with Copeland Regulations (29 CFR 3): The contractor shall comply with the Copeland Regulations of the Secretary of Labor which are herein incorporated by reference. ## 2. Payrolls and Payroll Records: - a. Payrolls and basic records relating thereto shall be maintained by the contractor and each subcontractor during the course of the work and preserved for a period of 3 years from the date of completion of the contract for all laborers, mechanics, apprentices, trainees, watchmen, helpers, and guards working at the site of the work. - b. The payroll records shall contain the name, social security number, and address of each such employee; his or her correct classification; hourly rates of wages paid (including rates of contributions or costs anticipated for bona fide fringe benefits or cash equivalent thereof the types described in Section 1(b)(2)(B) of the Davis Bacon Act); daily and weekly number of hours worked; deductions made; and actual wages paid. In addition, for Appalachian contracts, the payroll records shall contain a notation indicating whether the employee does, or does not, normally reside in the labor area as defined in Attachment A, paragraph 1. Whenever the Secretary of Labor, pursuant to Section IV, paragraph 3b, has found that the wages of any laborer or mechanic include the amount of any costs reasonably anticipated in providing benefits under a plan or program described in Section 1(b)(2)(B) of the Davis Bacon Act, the contractor and each subcontractor shall maintain records which show that the commitment to provide such benefits is enforceable, that the plan or program is financially responsible, that the plan or program has been communicated in writing to the laborers or mechanics affected, and show the cost anticipated or the actual cost incurred in providing benefits. Contractors or subcontractors employing apprentices or trainees under approved programs shall maintain written evidence of the registration of apprentices and trainees, and ratios and wage rates prescribed in the applicable programs. - c. Each contractor and subcontractor shall furnish, each week in which any contract work is performed, to the SHA resident engineer a payroll of wages paid each of its employees (including apprentices, trainees, and helpers, described in Section IV, paragraphs 4 and 5, and watchmen and guards engaged on work during the preceding weekly payroll period). The payroll submitted shall set out accurately and completely all of the information required to be maintained under paragraph 2b of this Section V. This information may be submitted in any form desired. Optional Form WH-347 is available for this purpose and may be purchased from the Superintendent of Documents (Federal stock number 029-005-0014-1), U.S. Government Printing Office, Washington, D.C. 20402. The prime contractor is responsible for the submission of copies of payrolls by all subcontractors. - d. Each payroll submitted shall be accompanied by a "Statement of Compliance," signed by the contractor or subcontractor or his/her agent who pays or supervises the payment of the persons employed under the contract and shall certify the following: - (1) that the payroll for the payroll period contains the information required to be maintained under paragraph 2b of this Section V and that such information is correct and complete; - (2) that such laborer or mechanic (including each helper, apprentice, and trainee) employed on the contract during the payroll period has been paid the full weekly wages earned, without rebate, either directly or indirectly, and that no deductions have been made either directly or indirectly from the full wages earned, other than permissible deductions as set forth in the Regulations, 29 CFR 3; - (3) that each laborer or mechanic has been paid not less that the applicable wage rate and fringe benefits or cash equivalent for the classification of worked performed, as specified in the applicable wage determination incorporated into the contract. - e. The weekly submission of a properly executed certification set forth on the reverse side of Optional Form WH-347 shall satisfy the requirement for submission of the "Statement of Compliance" required by paragraph 2d of this Section V. - f. The falsification of any of the above certifications may subject the contractor to civil or criminal prosecution under 18 U.S.C. 1001 and 31 U.S.C. 231. - g. The contractor or subcontractor shall make the records required under paragraph 2b of this Section V available for inspection, copying, or transcription by authorized representatives of the SHA, the FHWA, or the DOL, and shall permit such representatives to interview employees during working hours on the job. If the contractor or subcontractor fails to submit the required records or to make them available, the SHA, the FHWA, the DOL, or all may, after written notice to the contractor, sponsor, applicant, or owner, take such actions as may be necessary to cause the suspension of any further payment, advance, or guarantee of funds. Furthermore, failure to submit the required records upon request or to make such records available may be grounds for debarment action pursuant to 29 CFR 5.12. ## VI. RECORD OF MATERIALS, SUPPLIES, AND LABOR - 1. On all Federal-aid contracts on the National Highway System, except those which provide solely for the installation of protective devices at railroad grade crossings, those which are constructed on a force account or direct labor basis, highway beautification contracts, and contracts for which the total final construction cost for roadway and bridge is less than \$1,000,000 (23 CFR 635) the contractor shall: - a. Become familiar with the list of specific materials and supplies contained in Form FHWA-47, "Statement of Materials and Labor Used by Contractor of Highway Construction Involving Federal Funds," prior to the commencement of work under this contract. - b. Maintain a record of the total cost of all materials and supplies purchased for and incorporated in the work, and also of the quantities of those specific materials and supplies listed on Form FHWA-47, and in the units shown on Form FHWA-47. - c. Furnish, upon the completion of the contract, to the SHA resident engineer on Form FHWA-47 together with the data required in paragraph 1b relative to materials and supplies, a final labor summary of all contract work indicating the total hours worked and the total amount earned. - 2. At the prime contractor's option, either a single report covering all contract work or separate reports for the contractor and for each subcontract shall be submitted. #### VII. SUBLETTING OR ASSIGNING THE CONTRACT - 1. The contractor shall perform with its own organization contract work amounting to not less than 30 percent (or a greater percentage if specified elsewhere in the contract) of the total original contract price, excluding any specialty items designated by the State. Specialty items may be performed by subcontract and the amount of any such specialty items performed may be deducted from the total original contract price before computing the amount of work required to be performed by the contractor's own organization (23 CFR 635). - a. "Its own organization" shall be construed to include only workers employed and paid directly by the prime contractor and equipment owned or rented by the prime contractor, with or without operators. Such term does not include employees or equipment of a subcontractor, assignee, or agent of the prime contractor. - b. "Specialty Items" shall be construed to be limited to work that requires highly specialized knowledge, abilities, or equipment not ordinarily available in the type of contracting organizations qualified and expected to bid on the contract as a whole and in general are to be limited to minor components of the overall contract. - 2. The contract amount upon which the requirements set forth in paragraph 1 of Section VII is computed includes the cost of material and manufactured products which are to be purchased or produced by the
contractor under the contract provisions. - 3. The contractor shall furnish (a) a competent superintendent or supervisor who is employed by the firm, has full authority to direct performance of the work in accordance with the contract requirements, and is in charge of all construction operations (regardless of who performs the work) and (b) such other of its own organizational resources (supervision, management, and engineering services) as the SHA contracting officer determines is necessary to assure the performance of the contract. - 4. No portion of the contract shall be sublet, assigned or otherwise disposed of except with the written consent of the SHA contracting officer, or authorized representative, and such consent when given shall not be construed to relieve the contractor of any responsibility for the fulfillment of the contract. Written consent will be given only after the SHA has assured that each subcontract is evidenced in writing and that it contains all pertinent provisions and requirements of the prime contract. #### VIII. SAFETY - ACCIDENT PREVENTION - 1. In the performance of this contract the contractor shall comply with all applicable Federal, State, and local laws governing safety, health, and sanitation (23 CFR 635). The contractor shall provide all safeguards, safety devices and protective equipment and take any other needed actions as it determines, or as the SHA contracting officer may determine, to be reasonably necessary to protect the life and health of employees on the job and the safety of the public and to protect property in connection with the performance of the work covered by the contract. - 2. It is a condition of this contract, and shall be made a condition of each subcontract, which the contractor enters into pursuant to this contract, that the contractor and any subcontractor shall not permit any employee, in performance of the contract, to work in surroundings or under conditions which are unsanitary, hazardous or dangerous to his/her health or safety, as determined under construction safety and health standards (29 CFR 1926) promulgated by the Secretary of Labor, in accordance with Section 107 of the Contract Work Hours and Safety Standards Act (40 U.S.C. 333). - 3. Pursuant to 29 CFR 1926.3, it is a condition of this contract that the Secretary of Labor or authorized representative thereof, shall have right of entry to any site of contract performance to inspect or investigate the matter of Contract No. 07-195904 compliance with the construction safety and health standards and to carry out the duties of the Secretary under Section 107 of the Contract Work Hours and Safety Standards Act (40 U.S.C. 333). #### IX. FALSE STATEMENTS CONCERNING HIGHWAY PROJECTS In order to assure high quality and durable construction in conformity with approved plans and specifications and a high degree of reliability on statements and representations made by engineers, contractors, suppliers, and workers on Federal-aid highway projects, it is essential that all persons concerned with the project perform their functions as carefully, thoroughly, and honestly as possible. Willful falsification, distortion, or misrepresentation with respect to any facts related to the project is a violation of Federal law. To prevent any misunderstanding regarding the seriousness of these and similar acts, the following notice shall be posted on each Federal-aid highway project (23 CFR 635) in one or more places where it is readily available to all persons concerned with the project: # Notice To All Personnel Engaged On Federal-Aid Highway Projects ### 18 U.S.C. 1020 READS AS FOLLOWS: "Whoever being an officer, agent, or employee of the United States, or any State or Territory, or whoever, whether a person, association, firm, or corporation, knowingly makes any false statement, false representation, or false report as to the character, quality, quantity, or cost of the material used or to be used, or the quantity or quality of the work performed or to be performed, or the cost thereof in connection with the submission of plans, maps, specifications, contracts, or costs of construction on any highway or related project submitted for approval to the Secretary of Transportation; or Whoever knowingly makes any false statement, false representation, false report or false claim with respect to the character, quality, quantity, or cost of any work performed or to be performed, or materials furnished or to be furnished, in connection with the construction of any highway or related project approved by the Secretary of Transportation; or Whoever knowingly makes any false statement or false representation as to material fact in any statement, certificate, or report submitted pursuant to provisions of the Federal-aid Roads Act approved July 1, 1916, (39 Stat. 355), as amended and supplemented; Shall be fined not more that \$10,000 or imprisoned not more than 5 years or both." ## X. IMPLEMENTATION OF CLEAN AIR ACT AND FEDERAL WATER POLLUTION CONTROL ACT (Applicable to all Federal-aid construction contracts and to all related subcontracts of \$100,000 or more.) By submission of this bid or the execution of this contract, or subcontract, as appropriate, the bidder, Federal-aid construction contractor, or subcontractor, as appropriate, will be deemed to have stipulated as follows: - 1. That any facility that is or will be utilized in the performance of this contract, unless such contract is exempt under the Clean Air Act, as amended (42 U.S.C. 1857 et seq., as amended by Pub.L. 91-604), and under the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq., as amended by Pub.L. 92-500), Executive Order 11738, and regulations in implementation thereof (40 CFR 15) is not listed, on the date of contract award, on the U.S. Environmental Protection Agency (EPA) List of Violating Facilities pursuant to 40 CFR 15.20. - 2. That the firm agrees to comply and remain in compliance with all the requirements of Section 114 of the Clean Air Act and Section 308 of the Federal Water Pollution Control Act and all regulations and guidelines listed thereunder. - 3. That the firm shall promptly notify the SHA of the receipt of any communication from the Director, Office of Federal Activities, EPA, indicating that a facility that is or will be utilized for the contract is under consideration to be listed on the EPA List of Violating Facilities. - 4. That the firm agrees to include or cause to be included the requirements of paragraph 1 through 4 of this Section X in every nonexempt subcontract, and further agrees to take such action as the government may direct as a means of enforcing such requirements. # XI. CERTIFICATION REGARDING DEBARMENT, SUSPENSION, INELIGIBILITY AND VOLUNTARY EXCLUSION ## 1. Instructions for Certification - Primary Covered Transactions: (Applicable to all Federal-aid contracts - 49 CFR 29) - a. By signing and submitting this proposal, the prospective primary participant is providing the certification set out below. - b. The inability of a person to provide the certification set out below will not necessarily result in denial of participation in this covered transaction. The prospective participant shall submit an explanation of why it cannot provide the certification set out below. The certification or explanation will be considered in connection with the department or agency's determination whether to enter into this transaction. However, failure of the prospective primary participant to furnish a certification or an explanation shall disqualify such a person from participation in this transaction. - c. The certification in this clause is a material representation of fact upon which reliance was placed when the department or agency determined to enter into this transaction. If it is later determined that the prospective primary participant knowingly rendered an erroneous certification, in addition to other remedies available to the Federal Government, the department or agency may terminate this transaction for cause of default. - d. The prospective primary participant shall provide immediate written notice to the department or agency to whom this proposal is submitted if any time the prospective primary participant learns that its certification was erroneous when submitted or has become erroneous by reason of changed circumstances. - e. The terms "covered transaction," "debarred," "suspended," "ineligible," "lower tier covered transaction," "participant," "person," "primary covered transaction," "principal," "proposal," and "voluntarily excluded," as used in this clause, have the meanings set out in the Definitions and Coverage sections of rules implementing Executive Order 12549. You may contact the department or agency to which this proposal is submitted for assistance in obtaining a copy of those regulations. - f. The prospective primary participant agrees by submitting this proposal that, should the proposed covered transaction be entered into, it shall not knowingly enter into any lower tier covered transaction with a person who is debarred, suspended, declared ineligible, or voluntarily excluded from participation in this covered transaction, unless authorized by the department or agency entering into this transaction. - g. The prospective primary participant further agrees by submitting this proposal that it will include the clause titled "Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion-Lower Tier Covered Transaction," provided by the department or agency entering into this covered transaction, without modification, in all lower tier covered transactions and in all solicitations for lower tier covered transactions. - h. A participant in a covered transaction may rely upon a certification of a prospective participant in a lower tier covered transaction that is not debarred, suspended, ineligible, or voluntarily excluded from the covered transaction, unless it
knows that the certification is erroneous. A participant may decide the method and frequency by which it determines the eligibility of its principals. Each participant may, but is not required to, check the nonprocurement portion of the "Lists of Parties Excluded From Federal Procurement or Nonprocurement Programs" (Nonprocurement List) which is compiled by the General Services Administration. - i. Nothing contained in the foregoing shall be construed to require establishment of a system of records in order to render in good faith the certification required by this clause. The knowledge and information of participant is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings. - j. Except for transactions authorized under paragraph f of these instructions, if a participant in a covered transaction knowingly enters into a lower tier covered transaction with a person who is suspended, debarred, ineligible, or voluntarily excluded from participation in this transaction, in addition to other remedies available to the Federal Government, the department or agency may terminate this transaction for cause or default. # 2. Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion — Primary Covered Transactions: - a. The prospective primary participant certifies to the best of its knowledge and belief, that it and its principals: - (1) Are not presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from covered transactions by any Federal department or agency; - (2) Have not within a 3-year period preceding this proposal been convicted of or had a civil judgement rendered against them for commission of fraud or a criminal offense in connection with obtaining, attempting to obtain, or performing a public (Federal, State or local) transaction or contract under a public transaction; violation of Federal or State antitrust statutes or commission of embezzlement, theft, forgery, bribery, falsification or destruction of records, making false statements, or receiving stolen property; - (3) Are not presently indicted for or otherwise criminally or civilly charged by a governmental entity (Federal, State or local) with commission of any of the offenses enumerated in paragraph 1b of this certification; and - (4) Have not within a 3-year period preceding this application/proposal had one or more public transactions (Federal, State or local) terminated for cause or default. - b. Where the prospective primary participant is unable to certify to any of the statements in this certification, such prospective participant shall attach an explanation to this proposal. ## 3. Instructions for Certification - Lower Tier Covered Transactions: (Applicable to all subcontracts, purchase orders and other lower tier transactions of \$25,000 or more - 49 CFR 29) - a. By signing and submitting this proposal, the prospective lower tier is providing the certification set out below. - b. The certification in this clause is a material representation of fact upon which reliance was placed when this transaction was entered into. If it is later determined that the prospective lower tier participant knowingly rendered an erroneous certification, in addition to other remedies available to the Federal Government, the department or agency with which this transaction originated may pursue available remedies, including suspension and/or debarment. - c. The prospective lower tier participant shall provide immediate written notice to the person to which this proposal is submitted if at any time the prospective lower tier participant learns that its certification was erroneous by reason of changed circumstances. - d. The terms "covered transaction," "debarred," "suspended," "ineligible," "primary covered transaction," "participant," "person," "principal," "proposal," and "voluntarily excluded," as used in this clause, have the meanings set out in the Definitions and Coverage sections of rules implementing Executive Order 12549. You may contact the person to which this proposal is submitted for assistance in obtaining a copy of those regulations. - e. The prospective lower tier participant agrees by submitting this proposal that, should the proposed covered transaction be entered into, it shall not knowingly enter into any lower tier covered transaction with a person who is debarred, suspended, declared ineligible, or voluntarily excluded from participation in this covered transaction, unless authorized by the department or agency with which this transaction originated. - f. The prospective lower tier participant further agrees by submitting this proposal that it will include this clause titled "Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion-Lower Tier Covered Transaction," without modification, in all lower tier covered transactions and in all solicitations for lower tier covered transactions. - g. A participant in a covered transaction may rely upon a certification of a prospective participant in a lower tier covered transaction that is not debarred, suspended, ineligible, or voluntarily excluded from the covered transaction, unless it knows that the certification is erroneous. A participant may decide the method and frequency by which it determines the eligibility of its principals. Each participant may, but is not required to, check the Nonprocurement List. - h. Nothing contained in the foregoing shall be construed to require establishment of a system of records in order to render in good faith the certification required by this clause. The knowledge and information of participant is not required to exceed that which is normally possessed by a prudent person in the ordinary course of business dealings. - i. Except for transactions authorized under paragraph e of these instructions, if a participant in a covered transaction knowingly enters into a lower tier covered transaction with a person who is suspended, debarred, ineligible, or voluntarily excluded from participation in this transaction, in addition to other remedies available to the Federal Government, the department or agency with which this transaction originated may pursue available remedies, including suspension and/or debarment. # 4. Certification Regarding Debarment, Suspension, Ineligibility and Voluntary Exclusion — Lower Tier Covered Transactions: - a. The prospective lower tier participant certifies, by submission of this proposal, that neither it nor its principals is presently debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from participation in this transaction by any Federal department or agency. - b. Where the prospective lower tier participant is unable to certify to any of the statements in this certification, such prospective participant shall attach an explanation to this proposal. # XII. CERTIFICATION REGARDING USE OF CONTRACT FUNDS FOR LOBBYING (Applicable to all Federal-aid construction contracts and to all related subcontracts which exceed \$100,000 - 49 CFR 20) - 1. The prospective participant certifies, by signing and submitting this bid or proposal, to the best of his or her knowledge and belief, that: - a. No Federal appropriated funds have been paid or will be paid, by or on behalf of the undersigned, to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with the awarding of any Federal contract, the making of any Federal grant, the making of any Federal loan, the entering into of any cooperative agreement, and the extension, continuation, renewal, amendment, or modification of any Federal contract, grant, loan, or cooperative agreement. - b. If any funds other than Federal appropriated funds have been paid or will be paid to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with this Federal contract, grant, loan, or cooperative agreement, the undersigned shall complete and submit Standard Form-LLL, "Disclosure Form to Report Lobbying," in accordance with its instructions. - 2. This certification is a material representation of fact upon which reliance was placed when this transaction was made or entered into. Submission of this certification is a prerequisite for making or entering into this transaction imposed by 31 U.S.C. 1352. Any person who fails to file the required certification shall be subject to a civil penalty of not less than \$10,000 and not more than \$100,000 for each such failure. - 3. The prospective participant also agrees by submitting his or her bid or proposal that he or she shall require that the language of this certification be included in all lower tier subcontracts, which exceed \$100,000 and that all such recipients shall certify and disclose accordingly. # FEDERAL-AID FEMALE AND MINORITY GOALS In accordance with Section II, "Nondiscrimination," of "Required Contract Provisions Federal-aid Construction Contracts" the following are the goals for female utilization: 6.9 Goal for Women (applies nationwide).....(percent) The following are goals for minority utilization: # CALIFORNIA ECONOMIC AREA | | | Goal (Percent) | |-----
--|----------------| | 174 | Redding, CA: | | | | Non-SMSA Counties | 6.8 | | | CA Lassen; CA Modoc; CA Plumas; CA Shasta; CA Siskiyou; CA Tehama. | | | 175 | Eureka, CA | | | | Non-SMSA Counties | 6.6 | | | CA Del Norte; CA Humboldt; CA Trinity. | | | 176 | San Francisco-Oakland-San Jose, CA: SMSA Counties: | | | | 7120 Salinas-Seaside-Monterey, CA | 28.9 | | | CA Monterey. | 20.9 | | | 7360 San Francisco-Oakland | 25.6 | | | CA Alameda; CA Contra Costa; CA Marin; CA San Francisco; CA San Mateo. | | | | 7400 San Jose, CA | 19.6 | | | CA Santa Clara. | 440 | | | 7485 Santa Cruz, CA. | 14.9 | | | CA Santa Cruz. | 9.1 | | | 7500 Santa Rosa, CA
CA Sonoma. | 9.1 | | | 8720 Vallejo-Fairfield- Napa, CA | 17.1 | | | CA Napa; CA Solano | 17.12 | | | Non-SMSA Counties | 23.2 | | | CA Lake; CA Mendocino; CA San Benito | | | 177 | Sacramento, CA: | | | | SMSA Counties: | | | | 6920 Sacramento, CA | 16.1 | | | CA Placer; CA Sacramento; CA Yolo. Non-SMSA Counties | 14.3 | | | CA Butte; CA Colusa; CA El Dorado; CA Glenn; CA Nevada; CA Sierra; CA | 14.3 | | | Sutter; CA Yuba. | | | 178 | Stockton-Modesto, CA: | | | | SMSA Counties: | 10.0 | | | 5170 Modesto, CA | 12.3 | | | CA Stanislaus. | 24.2 | | | 8120 Stockton, CA
CA San Joaquin. | 24.3 | | | Non-SMSA Counties | 19.8 | | | CA Alpine; CA Amador; CA Calaveras; CA Mariposa; CA Merced; CA Tuolumne. | 17.0 | | | The series of th | | | | | Goal
(Percent) | |-----|--|-------------------| | 179 | Fresno-Bakersfield, CA | | | | SMSA Counties: | | | | 0680 Bakersfield, CA | 19.1 | | | CA Kern. | | | | 2840 Fresno, CA | 26.1 | | | CA Fresno. | | | | Non-SMSA Counties | 23.6 | | | CA Kings; CA Madera; CA Tulare. | | | 180 | Los Angeles, CA: | | | 100 | SMSA Counties: | | | | 0360 Anaheim-Santa Ana-Garden Grove, CA | 11.9 | | | CA Orange. | | | | 4480 Los Angeles-Long Beach, CA | 28.3 | | | CA Los Angeles. | | | | 6000 Oxnard-Simi Valley-Ventura, CA | 21.5 | | | CA Ventura. | | | | 6780 Riverside-San Bernardino-Ontario, CA. | 19.0 | | | CA Riverside; CA San Bernardino. | | | | 7480 Santa Barbara-Santa Maria-Lompoc, CA | 19.7 | | | CA Santa Barbara. | | | | Non-SMSA Counties | 24.6 | | | CA Inyo; CA Mono; CA San Luis Obispo. | | | 181 | San Diego, CA: | | | | SMSA Counties | | | | 7320 San Diego, CA. | 16.9 | | | CA San Diego. | | | | Non-SMSA Counties | 18.2 | | | CA Imperial. | | In addition to the reporting requirements set forth elsewhere in this contract the Contractor and subcontractors holding subcontracts, not including material suppliers, of \$10,000 or more, shall submit for every month of July during which work is performed, employment data as contained under Form FHWA PR-1391 (Appendix C to 23 CFR, Part 230), and in accordance with the instructions included thereon. ## FEDERAL REQUIREMENT TRAINING SPECIAL PROVISIONS As part of the Contractor's equal employment opportunity affirmative action program, training shall be provided as follows: The Contractor shall provide on-the-job training to develop full journeymen in the types of trades or job classification involved. The goal for the number of trainees or apprentices to be trained under the requirements of this special provision will be 10. In the event the Contractor subcontracts a portion of the contract work, he shall determine how many, if any, of the trainees or apprentices are to be trained by the subcontractor, provided however, that the Contractor shall retain the primary responsibility for meeting the training requirements imposed by this special provision. The Contractor shall also insure that this Training Special Provision is made applicable to such subcontract. Where feasible, 25 percent of trainees or apprentices in each occupation shall be in their first year of apprenticeship or training. The number of trainees or apprentices shall be distributed among the work classifications on the basis of the Contractor's needs and the availability of journeymen in the various classifications within a reasonable area of recruitment. Prior to commencing work, the Contractor shall submit to the Department for approval the number of trainees or apprentices to be trained in each selected classification and training program to be used. Furthermore, the Contractor shall specify the starting time for training in each of the classifications. The Contractor will be credited for each trainee or apprentice employed by him on the contract work who is currently enrolled or becomes enrolled in an approved program and will be reimbursed for such trainees or apprentices as provided hereinafter. Training and upgrading of minorities and women toward journeymen status is a primary objective of this Training Special Provision. Accordingly, the Contractor shall make every effort to enroll minority and women trainees or apprentices (e.g., by conducting systematic and direct recruitment through public and private sources likely to yield minority and women trainees or apprentices) to the extent such persons are available within a reasonable area of recruitment. The Contractor will be responsible for demonstrating the steps that he has taken in pursuance thereof, prior to a determination as to whether the Contractor is in compliance with this Training Special Provision. This training commitment is not intended, and shall not be used, to discriminate against any applicant for training, whether a member of a minority group or not. No employee shall be employed as a trainee or apprentice in any classification in which he has successfully completed a training course leading to journeyman status or in which he has been employed as a journeyman. The Contractor should satisfy this requirement by including appropriate questions in the employee application or by other suitable means. Regardless of the method used the Contractor's records should document the findings in each case. The minimum length and type of training for each classification will be as established in the training program selected by the Contractor and approved by both the Department and the Federal Highway Administration. The Department and the Federal Highway Administration will approve a program if it is reasonably calculated to meet the equal employment opportunity obligations of the Contractor and to qualify the average trainee or apprentice for journeyman status in the classification concerned by the end of the training period. Furthermore, apprenticeship programs registered with the U.S. Department of Labor, Bureau of Apprenticeship and Training, or with the State of California, Department of Industrial Relations, Division of Apprenticeship Standards recognized by the Bureau and training programs approved but not necessarily sponsored by the U.S. Department of Labor, Manpower Administration, Bureau of Apprenticeship and Training shall also be considered acceptable provided it is being administered in a manner consistent with the equal employment obligations of Federal-aid highway construction contracts. Approval or acceptance of a training program shall be obtained from the State prior to commencing work on the classification covered by the program. It is the intention of these provisions that training is to be provided in the construction crafts rather than clerk-typists or secretarial-type positions. Training is permissible in lower level management positions such as office engineers, estimators, timekeepers, etc., where the training is oriented toward construction applications. Training in the laborer classification may be permitted provided that significant and meaningful training is provided and approved by the division office. Some offsite training is permissible as long as the training is an integral part of an approved training program and does not comprise a significant part of the overall training. Except as otherwise noted below, the Contractor will be reimbursed 80 cents per hour of training given an employee
on this contract in accordance with an approved training program. As approved by the Engineer, reimbursement will be made for training of persons in excess of the number specified herein. This reimbursement will be made even though the Contractor receives additional training program funds from other sources, provided such other source does not specifically prohibit the Contractor from receiving other reimbursement. Reimbursement for offsite training indicated above may only be made to the Contractor where he does one or more of the following and the trainees or apprentices are concurrently employed on a Federal-aid project; contributes to the cost of the training, provides the instruction to the trainee or apprentice or pays the trainee's or apprentice's wages during the offsite training period. No payment shall be made to the Contractor if either the failure to provide the required training, or the failure to hire the trainee or apprentice as a journeyman, is caused by the Contractor and evidences a lack of good faith on the part of the Contractor in meeting the requirements of this Training Special Provision. It is normally expected that a trainee or apprentice will begin his training on the project as soon as feasible after start of work utilizing the skill involved and remain on the project as long as training opportunities exist in his work classification or until he has completed his training program. It is not required that all trainees or apprentices be on board for the entire length of the contract. A Contractor will have fulfilled his responsibilities under this Training Special Provision if he has provided acceptable training to the number of trainees or apprentices specified. The number trained shall be determined on the basis of the total number enrolled on the contract for a significant period. Only trainees or apprentices registered in a program approved by the State of California's State Administrator of Apprenticeship may be employed on the project and said trainees or apprentices shall be paid the standard wage specified under the regulations of the craft or trade at which they are employed. The Contractor shall furnish the trainee or apprentice a copy of the program he will follow in providing the training. The Contractor shall provide each trainee or apprentice with a certification showing the type and length of training satisfactorily completed. The Contractor will provide for the maintenance of records and furnish periodic reports documenting his performance under this Training Special Provision.